Chromium Code Reviews| Index: third_party/fdlibm/fdlibm.js |
| diff --git a/third_party/fdlibm/fdlibm.js b/third_party/fdlibm/fdlibm.js |
| new file mode 100644 |
| index 0000000000000000000000000000000000000000..2891936f01e89de18bf90406f1b70cb93549c8c1 |
| --- /dev/null |
| +++ b/third_party/fdlibm/fdlibm.js |
| @@ -0,0 +1,332 @@ |
| +// The following is adapted from fdlibm (http://www.netlib.org/fdlibm), |
| +// |
| +// ==================================================== |
| +// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| +// |
| +// Developed at SunSoft, a Sun Microsystems, Inc. business. |
| +// Permission to use, copy, modify, and distribute this |
| +// software is freely granted, provided that this notice |
| +// is preserved. |
| +// ==================================================== |
| +// |
| +// The original source code covered by the above license above has been |
| +// modified significantly by Google Inc. |
| +// Copyright 2014 the V8 project authors. All rights reserved. |
| +// |
| +// The following is a straightforward translation of fdlibm routines for |
| +// sin, cos, and tan, by Raymond Toy (rtoy@google.com). |
| + |
| + |
| +var kTrig; // Initialized to a Float64Array during genesis and is not writable. |
| + |
| +// Compute k and r such that x - k*pi/2 = r where |r| < pi/4. For |
| +// precision, r is returned as two values y0 and y1 such that r = y0 + y1 |
| +// to more than double precision. |
| +macro REMPIO2(X) |
| + var n, y0, y1; |
| + var hx = %_DoubleHi(X); |
| + var ix = hx & 0x7fffffff; |
| + |
| + if (ix < 0x4002d97c) { |
| + // |X| ~< 3*pi/4, special case with n = +/- 1 |
| + if (hx > 0) { |
| + var z = X - kTrig[1]; |
| + if (ix != 0x3ff921fb) { |
| + // 33+53 bit pi is good enough |
| + y0 = z - kTrig[2]; |
| + y1 = (z - y0) - kTrig[2]; |
| + } else { |
| + // near pi/2, use 33+33+53 bit pi |
| + z -= kTrig[3]; |
| + y0 = z - kTrig[4]; |
| + y1 = (z - y0) - kTrig[4]; |
| + } |
| + n = 1; |
| + } else { |
| + // Negative X |
| + var z = X + kTrig[1]; |
| + if (ix != 0x3ff921fb) { |
| + // 33+53 bit pi is good enough |
| + y0 = z + kTrig[2]; |
| + y1 = (z - y0) + kTrig[2]; |
| + } else { |
| + // near pi/2, use 33+33+53 bit pi |
| + z += kTrig[3]; |
| + y0 = z + kTrig[4]; |
| + y1 = (z - y0) + kTrig[4]; |
| + } |
| + n = -1; |
| + } |
| + } else if (ix <= 0x413921fb) { |
| + // |X| ~<= 2^19*(pi/2), medium size |
| + var t = MathAbs(X); |
| + n = (t * kTrig[0] + 0.5) | 0; |
| + var r = t - n * kTrig[1]; |
| + var w = n * kTrig[2]; |
| + // First round good to 85 bit |
| + y0 = r - w; |
| + if (ix - (%_DoubleHi(y0) & 0x7ff00000) > 0x1000000) { |
| + // 2nd iteration needed, good to 118 |
| + t = r; |
| + w = n * kTrig[3]; |
| + r = t - w; |
| + w = n * kTrig[4] - ((t - r) - w); |
| + y0 = r - w; |
| + if (ix - (%_DoubleHi(y0) & 0x7ff00000) > 0x3100000) { |
| + // 3rd iteration needed. 151 bits accuracy |
| + t = r; |
| + w = n * kTrig[5]; |
| + r = t - w; |
| + w = n * kTrig[6] - ((t - r) - w); |
| + y0 = r - w; |
| + } |
| + } |
| + y1 = (r - y0) - w; |
| + if (hx < 0) { |
| + n = -n; |
| + y0 = -y0; |
| + y1 = -y1; |
| + } |
| + } else { |
| + // Need to do full Payne-Hanek reduction here. |
| + var r = %RemPiO2(X); |
| + n = r[0]; |
| + y0 = r[1]; |
| + y1 = r[2]; |
| + } |
| +endmacro |
| + |
| + |
| +// __kernel_sin(X, Y, IY) |
| +// kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854 |
| +// Input X is assumed to be bounded by ~pi/4 in magnitude. |
| +// Input Y is the tail of X so that x = X + Y. |
| +// |
| +// Algorithm |
| +// 1. Since ieee_sin(-x) = -ieee_sin(x), we need only to consider positive x. |
| +// 2. ieee_sin(x) is approximated by a polynomial of degree 13 on |
| +// [0,pi/4] |
| +// 3 13 |
| +// sin(x) ~ x + S1*x + ... + S6*x |
| +// where |
| +// |
| +// |ieee_sin(x) 2 4 6 8 10 12 | -58 |
| +// |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2 |
| +// | x | |
|
Raymond Toy
2014/07/30 19:55:05
Please fix the alignment. The exponents and right
Yang
2014/08/01 07:29:56
I aligned it to visually match the port you gave m
|
| +// |
| +// 3. ieee_sin(X+Y) = ieee_sin(X) + sin'(X')*Y |
| +// ~ ieee_sin(X) + (1-X*X/2)*Y |
| +// For better accuracy, let |
| +// 3 2 2 2 2 |
| +// r = X *(S2+X *(S3+X *(S4+X *(S5+X *S6)))) |
| +// then 3 2 |
| +// sin(x) = X + (S1*X + (X *(r-Y/2)+Y)) |
| +// |
| +macro RETURN_KERNELSIN(X, Y, SIGN) |
| + var z = X * X; |
| + var v = z * X; |
| + var r = kTrig[8] + z * (kTrig[9] + z * (kTrig[10] + |
| + z * (kTrig[11] + z * kTrig[12]))); |
| + return (X - ((z * (0.5 * Y - v * r) - Y) - v * kTrig[7])) SIGN; |
| +endmacro |
| + |
| +// __kernel_cos(X, Y) |
| +// kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164 |
| +// Input X is assumed to be bounded by ~pi/4 in magnitude. |
| +// Input Y is the tail of X so that x = X + Y. |
| +// |
| +// Algorithm |
| +// 1. Since ieee_cos(-x) = ieee_cos(x), we need only to consider positive x. |
| +// 2. ieee_cos(x) is approximated by a polynomial of degree 14 on |
| +// [0,pi/4] |
| +// 4 14 |
| +// cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x |
| +// where the remez error is |
| +// |
| +// | 2 4 6 8 10 12 14 | -58 |
| +// |ieee_cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2 |
|
Raymond Toy
2014/07/30 19:55:05
Fix alignment of exponents.
Yang
2014/08/01 07:29:56
Done.
|
| +// | | |
| +// |
| +// 4 6 8 10 12 14 |
| +// 3. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then |
| +// ieee_cos(x) = 1 - x*x/2 + r |
| +// since ieee_cos(X+Y) ~ ieee_cos(X) - ieee_sin(X)*Y |
| +// ~ ieee_cos(X) - X*Y, |
| +// a correction term is necessary in ieee_cos(x) and hence |
| +// cos(X+Y) = 1 - (X*X/2 - (r - X*Y)) |
| +// For better accuracy when x > 0.3, let qx = |x|/4 with |
| +// the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125. |
| +// Then |
| +// cos(X+Y) = (1-qx) - ((X*X/2-qx) - (r-X*Y)). |
| +// Note that 1-qx and (X*X/2-qx) is EXACT here, and the |
| +// magnitude of the latter is at least a quarter of X*X/2, |
| +// thus, reducing the rounding error in the subtraction. |
| +// |
| +macro RETURN_KERNELCOS(X, Y, SIGN) |
| + var ix = %_DoubleHi(X) & 0x7fffffff; |
| + var z = X * X; |
| + var r = z * (kTrig[13] + z * (kTrig[14] + z * (kTrig[15] + |
| + z * (kTrig[16] + z * (kTrig[17] + z * kTrig[18]))))); |
| + if (ix < 0x3fd33333) { |
| + return (1 - (0.5 * z - (z * r - X * Y))) SIGN; |
| + } else { |
| + var qx; |
| + if (ix > 0x3fe90000) { |
| + qx = 0.28125; |
| + } else { |
| + qx = %_ConstructDouble(%_DoubleHi(0.25 * X), 0); |
| + } |
| + var hz = 0.5 * z - qx; |
| + return (1 - qx - (hz - (z * r - X * Y))) SIGN; |
| + } |
| +endmacro |
| + |
| +// kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 |
| +// Input x is assumed to be bounded by ~pi/4 in magnitude. |
| +// Input y is the tail of x. |
| +// Input k indicates whether ieee_tan (if k = 1) or -1/tan (if k = -1) |
| +// is returned. |
| +// |
| +// Algorithm |
| +// 1. Since ieee_tan(-x) = -ieee_tan(x), we need only to consider positive x. |
| +// 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0. |
| +// 3. ieee_tan(x) is approximated by a odd polynomial of degree 27 on |
| +// [0,0.67434] |
| +// 3 27 |
| +// tan(x) ~ x + T1*x + ... + T13*x |
| +// where |
| +// |
| +// |ieee_tan(x) 2 4 26 | -59.2 |
| +// |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2 |
|
Raymond Toy
2014/07/30 19:55:05
Line up exponents correctly.
Yang
2014/08/01 07:29:56
Done.
|
| +// | x | |
| +// |
| +// Note: ieee_tan(x+y) = ieee_tan(x) + tan'(x)*y |
| +// ~ ieee_tan(x) + (1+x*x)*y |
| +// Therefore, for better accuracy in computing ieee_tan(x+y), let |
| +// 3 2 2 2 2 |
| +// r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) |
| +// then |
| +// 3 2 |
| +// tan(x+y) = x + (T1*x + (x *(r+y)+y)) |
| +// |
| +// 4. For x in [0.67434,pi/4], let y = pi/4 - x, then |
| +// tan(x) = ieee_tan(pi/4-y) = (1-ieee_tan(y))/(1+ieee_tan(y)) |
| +// = 1 - 2*(ieee_tan(y) - (ieee_tan(y)^2)/(1+ieee_tan(y))) |
| +// |
| +// Set returnTan to 1 for tan; -1 for cot. Anything else is illegal |
| +// and will cause incorrect results. |
| +// |
| +function KernelTan(x, y, returnTan) { |
| + var z; |
| + var w; |
| + var hx = %_DoubleHi(x); |
| + var ix = hx & 0x7fffffff; |
| + |
| + if (ix < 0x3e300000) { |
| + // x < 2^-28 |
| + if (((ix | %_DoubleLo(x)) | (returnTan + 1)) == 0) { |
| + return 1 / MathAbs(x); |
| + } else { |
| + if (returnTan == 1) { |
| + return x; |
| + } else { |
| + // Compute -1/(x + y) carefully |
| + var w = x + y; |
| + var z = %_ConstructDouble(%_DoubleHi(w), 0); |
| + var v = y - (z - x); |
| + var a = -1 / w; |
| + var t = %_ConstructDouble(%_DoubleHi(a), 0); |
| + var s = 1 + t * z; |
| + return t + a * (s + t * v); |
| + } |
| + } |
| + } |
| + if (ix >= 0x3fe59429) { |
| + // |x| > .6744 |
| + if (x < 0) { |
| + x = -x; |
| + y = -y; |
| + } |
| + z = kTrig[32] - x; |
| + w = kTrig[33] - y; |
| + x = z + w; |
| + y = 0; |
| + } |
| + z = x * x; |
| + w = z * z; |
| + |
| + var r = kTrig[20] + w * (kTrig[22] + w * (kTrig[24] + |
| + w * (kTrig[26] + w * (kTrig[28] + w * kTrig[30])))); |
| + var v = z * (kTrig[21] + w * (kTrig[23] + w * (kTrig[25] + |
| + w * (kTrig[27] + w * (kTrig[29] + w * kTrig[31]))))); |
| + var s = z * x; |
| + r = y + z * (s * (r + v) + y); |
| + r = r + kTrig[19] * s; |
| + w = x + r; |
| + if (ix >= 0x3fe59428) { |
| + return (1 - ((hx >> 30) & 2)) * |
| + (returnTan - 2.0 * (x - (w * w / (w + returnTan) - r))); |
| + } |
| + if (returnTan == 1) { |
| + return w; |
| + } else { |
| + z = %_ConstructDouble(%_DoubleHi(w), 0); |
| + v = r - (z - x); |
| + var a = -1 / w; |
| + var t = %_ConstructDouble(%_DoubleHi(a), 0); |
| + s = 1 + t * z; |
| + return t + a * (s + t * v); |
| + } |
| +} |
| + |
| +function MathSinSlow(x) { |
| + REMPIO2(x); |
|
Raymond Toy
2014/07/30 19:55:05
Since we're doing the slow path anyway, I think it
Yang
2014/08/01 07:29:56
We just generally don't care about performance for
|
| + var sign = 1 - (n & 2); |
| + if (n & 1) { |
| + RETURN_KERNELCOS(y0, y1, * sign); |
| + } else { |
| + RETURN_KERNELSIN(y0, y1, * sign); |
| + } |
| +} |
| + |
| +function MathCosSlow(x) { |
| + REMPIO2(x); |
| + if (n & 1) { |
| + var sign = (n & 2) - 1; |
| + RETURN_KERNELSIN(y0, y1, * sign); |
| + } else { |
| + var sign = 1 - (n & 2); |
| + RETURN_KERNELCOS(y0, y1, * sign); |
| + } |
| +} |
| + |
| +// ECMA 262 - 15.8.2.16 |
| +function MathSin(x) { |
| + x = x * 1; // Convert to number. |
| + if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) { |
| + // |x| < pi/4, approximately. No reduction needed. |
| + RETURN_KERNELSIN(x, 0, /* empty */); |
| + } |
| + return MathSinSlow(x); |
| +} |
| + |
| +// ECMA 262 - 15.8.2.7 |
| +function MathCos(x) { |
| + x = x * 1; // Convert to number. |
| + if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) { |
| + // |x| < pi/4, approximately. No reduction needed. |
| + RETURN_KERNELCOS(x, 0, /* empty */); |
| + } |
| + return MathCosSlow(x); |
| +} |
| + |
| +// ECMA 262 - 15.8.2.18 |
| +function MathTan(x) { |
| + x = x * 1; // Convert to number. |
| + if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) { |
| + // |x| < pi/4, approximately. No reduction needed. |
| + return KernelTan(x, 0, 1); |
| + } |
| + REMPIO2(x); |
|
Raymond Toy
2014/07/30 19:55:05
Like for MathSinSlow and MathCosSlow, I think you
Yang
2014/08/01 07:29:56
Done.
|
| + return KernelTan(y0, y1, (n & 1) ? -1 : 1); |
| +} |