Index: src/math.js |
diff --git a/src/math.js b/src/math.js |
index 9dc4b37d0ce2115ed9e9b5078f204fd060f926b9..370bff6870fb04beaf25c321a18859b1ca1c5371 100644 |
--- a/src/math.js |
+++ b/src/math.js |
@@ -56,12 +56,6 @@ function MathCeil(x) { |
return -MathFloor(-x); |
} |
-// ECMA 262 - 15.8.2.7 |
-function MathCos(x) { |
- x = MathAbs(x); // Convert to number and get rid of -0. |
- return TrigonometricInterpolation(x, 1); |
-} |
- |
// ECMA 262 - 15.8.2.8 |
function MathExp(x) { |
return %MathExpRT(TO_NUMBER_INLINE(x)); |
@@ -164,94 +158,252 @@ function MathRound(x) { |
return %RoundNumber(TO_NUMBER_INLINE(x)); |
} |
-// ECMA 262 - 15.8.2.16 |
-function MathSin(x) { |
- x = x * 1; // Convert to number and deal with -0. |
- if (%_IsMinusZero(x)) return x; |
- return TrigonometricInterpolation(x, 0); |
-} |
- |
// ECMA 262 - 15.8.2.17 |
function MathSqrt(x) { |
return %_MathSqrtRT(TO_NUMBER_INLINE(x)); |
} |
-// ECMA 262 - 15.8.2.18 |
-function MathTan(x) { |
- return MathSin(x) / MathCos(x); |
-} |
- |
// Non-standard extension. |
function MathImul(x, y) { |
return %NumberImul(TO_NUMBER_INLINE(x), TO_NUMBER_INLINE(y)); |
} |
+// ------------------------------------------------------------------- |
+ |
+// A straightforward translation of fdlibm routines for sin, cos, and |
+// tan, by Raymond Toy (rtoy@google.com). |
+ |
+// ==================================================== |
+// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
+// |
+// Developed at SunSoft, a Sun Microsystems, Inc. business. |
+// Permission to use, copy, modify, and distribute this |
+// software is freely granted, provided that this notice |
+// is preserved. |
+// ==================================================== |
+ |
+// Initialized to a Float64Array during genesis and is not writable. |
+var kTrig; |
+ |
+macro REMPIO2(X) |
Raymond Toy
2014/07/24 18:08:44
Does this have to be a macro? Dropping this big ch
Yang
2014/07/28 11:28:59
Yes. Calling a function with double arguments in V
Raymond Toy
2014/07/30 19:55:04
Ok, that's not too surprising if your tests stress
|
+ var n, y0, y1; |
+ var hx = %_DoubleHi(X); |
+ var ix = hx & 0x7fffffff; |
+ |
+ if (ix < 0x4002d97c) { |
+ // |X| ~< 3*pi/4, special case with n = +/- 1 |
+ if (hx > 0) { |
+ var z = X - kTrig[1]; |
Raymond Toy
2014/07/24 16:51:11
Readability would be improved if the kTrig values
Yang
2014/07/28 11:28:59
That is true. However, given that we currently don
Raymond Toy
2014/07/30 19:55:04
Could you give symbolic names for the indices? So
Yang
2014/08/01 07:29:55
Done with macros
|
+ if (ix != 0x3ff921fb) { |
+ // 33+53 bit pi is good enough |
+ y0 = z - kTrig[2]; |
+ y1 = (z - y0) - kTrig[2]; |
+ } else { |
+ // near pi/2, use 33+33+53 bit pi |
+ z -= kTrig[3]; |
+ y0 = z - kTrig[4]; |
+ y1 = (z - y0) - kTrig[4]; |
+ } |
+ n = 1; |
+ } else { |
+ // Negative X |
+ var z = X + kTrig[1]; |
+ if (ix != 0x3ff921fb) { |
+ // 33+53 bit pi is good enough |
+ y0 = z + kTrig[2]; |
+ y1 = (z - y0) + kTrig[2]; |
+ } else { |
+ // near pi/2, use 33+33+53 bit pi |
+ z += kTrig[3]; |
+ y0 = z + kTrig[4]; |
+ y1 = (z - y0) + kTrig[4]; |
+ } |
+ n = -1; |
+ } |
+ } else if (ix <= 0x413921fb) { |
+ // |X| ~<= 2^19*(pi/2), medium size |
+ var t = MathAbs(X); |
+ n = (t * kTrig[0] + 0.5) | 0; |
+ var r = t - n * kTrig[1]; |
+ var w = n * kTrig[2]; |
+ // First round good to 85 bit |
+ y0 = r - w; |
+ if (ix - (%_DoubleHi(y0) & 0x7ff00000) > 0x1000000) { |
Raymond Toy
2014/07/30 19:55:04
It would certainly be good to document what this i
Yang
2014/08/01 07:29:55
I don't think we should be spending time documenti
Raymond Toy
2014/08/01 14:06:00
I would agree if this were in fact the original co
|
+ // 2nd iteration needed, good to 118 |
+ t = r; |
+ w = n * kTrig[3]; |
+ r = t - w; |
+ w = n * kTrig[4] - ((t - r) - w); |
+ y0 = r - w; |
+ if (ix - (%_DoubleHi(y0) & 0x7ff00000) > 0x3100000) { |
Raymond Toy
2014/07/30 19:55:03
Same comment as for line 231.
Yang
2014/08/01 07:29:55
Acknowledged.
|
+ // 3rd iteration needed. 151 bits accuracy |
+ t = r; |
+ w = n * kTrig[5]; |
+ r = t - w; |
+ w = n * kTrig[6] - ((t - r) - w); |
+ y0 = r - w; |
+ } |
+ } |
+ y1 = (r - y0) - w; |
+ if (hx < 0) { |
+ n = -n; |
+ y0 = -y0; |
+ y1 = -y1; |
+ } |
+ } else { |
+ // Need to do full Payne-Hanek reduction here! |
+ var r = %RemPiO2(X); |
+ n = r[0]; |
+ y0 = r[1]; |
+ y1 = r[2]; |
+ } |
+endmacro |
+ |
+// Sine for [-pi/4, pi/4], pi/4 ~ 0.7854 |
Raymond Toy
2014/07/24 16:51:11
I think it would be beneficial to add the original
Yang
2014/07/28 11:28:59
Done.
|
+macro RETURN_KERNELSIN(X0, X1, SIGN) |
+ var z = X0 * X0; |
+ var v = z * X0; |
+ var r = kTrig[8] + z * (kTrig[9] + z * (kTrig[10] + |
+ z * (kTrig[11] + z * kTrig[12]))); |
+ return (X0 - ((z * (0.5 * X1 - v * r) - X1) - v * kTrig[7])) SIGN; |
Raymond Toy
2014/07/24 16:51:11
The original kernel_sin function had a slight opti
Yang
2014/07/28 11:28:59
I think I checked this. And I rechecked. In neithe
Raymond Toy
2014/07/30 19:55:04
Fair enough.
|
+endmacro |
Raymond Toy
2014/07/24 16:51:12
I think readability would be enhanced if you had a
Yang
2014/07/28 11:28:59
Acknowledged.
|
-var kInversePiHalf = 0.636619772367581343; // 2 / pi |
-var kInversePiHalfS26 = 9.48637384723993156e-9; // 2 / pi / (2^26) |
-var kS26 = 1 << 26; |
-var kTwoStepThreshold = 1 << 27; |
-// pi / 2 rounded up |
-var kPiHalf = 1.570796326794896780; // 0x192d4454fb21f93f |
-// We use two parts for pi/2 to emulate a higher precision. |
-// pi_half_1 only has 26 significant bits for mantissa. |
-// Note that pi_half > pi_half_1 + pi_half_2 |
-var kPiHalf1 = 1.570796325802803040; // 0x00000054fb21f93f |
-var kPiHalf2 = 9.920935796805404252e-10; // 0x3326a611460b113e |
- |
-var kSamples; // Initialized to a number during genesis. |
-var kIndexConvert; // Initialized to kSamples / (pi/2) during genesis. |
-var kSinTable; // Initialized to a Float64Array during genesis. |
-var kCosXIntervalTable; // Initialized to a Float64Array during genesis. |
- |
-// This implements sine using the following algorithm. |
-// 1) Multiplication takes care of to-number conversion. |
-// 2) Reduce x to the first quadrant [0, pi/2]. |
-// Conveniently enough, in case of +/-Infinity, we get NaN. |
-// Note that we try to use only 26 instead of 52 significant bits for |
-// mantissa to avoid rounding errors when multiplying. For very large |
-// input we therefore have additional steps. |
-// 3) Replace x by (pi/2-x) if x was in the 2nd or 4th quadrant. |
-// 4) Do a table lookup for the closest samples to the left and right of x. |
-// 5) Find the derivatives at those sampling points by table lookup: |
-// dsin(x)/dx = cos(x) = sin(pi/2-x) for x in [0, pi/2]. |
-// 6) Use cubic spline interpolation to approximate sin(x). |
-// 7) Negate the result if x was in the 3rd or 4th quadrant. |
-// 8) Get rid of -0 by adding 0. |
-function TrigonometricInterpolation(x, phase) { |
- if (x < 0 || x > kPiHalf) { |
- var multiple; |
- while (x < -kTwoStepThreshold || x > kTwoStepThreshold) { |
- // Let's assume this loop does not terminate. |
- // All numbers x in each loop forms a set S. |
- // (1) abs(x) > 2^27 for all x in S. |
- // (2) abs(multiple) != 0 since (2^27 * inverse_pi_half_s26) > 1 |
- // (3) multiple is rounded down in 2^26 steps, so the rounding error is |
- // at most max(ulp, 2^26). |
- // (4) so for x > 2^27, we subtract at most (1+pi/4)x and at least |
- // (1-pi/4)x |
- // (5) The subtraction results in x' so that abs(x') <= abs(x)*pi/4. |
- // Note that this difference cannot be simply rounded off. |
- // Set S cannot exist since (5) violates (1). Loop must terminate. |
- multiple = MathFloor(x * kInversePiHalfS26) * kS26; |
- x = x - multiple * kPiHalf1 - multiple * kPiHalf2; |
+// Cosine for [-pi/4, pi/4], pi/4 ~ 0.7854 |
+macro RETURN_KERNELCOS(X0, X1, SIGN) |
+ var ix = %_DoubleHi(X0) & 0x7fffffff; |
+ var z = X0 * X0; |
+ var r = z * (kTrig[13] + z * (kTrig[14] + z * (kTrig[15] + |
Raymond Toy
2014/07/24 16:51:11
Can we use a separate array for kTrig values here
Yang
2014/07/28 11:28:59
There is not much readability to be gained here im
Raymond Toy
2014/07/30 19:55:04
I have no problems with the various random constan
Yang
2014/08/01 07:29:55
Done with macros.
|
+ z * (kTrig[16] + z * (kTrig[17] + z * kTrig[18]))))); |
+ if (ix < 0x3fd33333) { |
Raymond Toy
2014/07/30 19:55:03
Add comment that ix < 0x3fd33333 is testing for |x
Yang
2014/08/01 07:29:55
Done.
|
+ return (1 - (0.5 * z - (z * r - X0 * X1))) SIGN; |
+ } else { |
+ var qx; |
+ if (ix > 0x3fe90000) { |
Raymond Toy
2014/07/24 16:51:12
I think it's really useful to include the fdlibm c
Yang
2014/07/28 11:28:59
imo the comment in your port doesn't explain much
Raymond Toy
2014/07/30 19:55:03
No, but at least it makes it clear that ix > 0x3fe
Yang
2014/08/01 07:29:55
Done.
|
+ qx = 0.28125; |
+ } else { |
+ qx = %_ConstructDouble(%_DoubleHi(0.25 * X0), 0); |
} |
- multiple = MathFloor(x * kInversePiHalf); |
- x = x - multiple * kPiHalf1 - multiple * kPiHalf2; |
- phase += multiple; |
+ var hz = 0.5 * z - qx; |
+ return (1 - qx - (hz - (z * r - X0 * X1))) SIGN; |
+ } |
+endmacro |
+ |
+// Tangent for [-pi/4, pi/4], pi/4 ~ 0.7854 |
Raymond Toy
2014/07/24 16:51:12
Include original fdlibm comment. Without that it's
Yang
2014/07/28 11:28:59
Done.
|
+function KernelTan(x, y, returnTan) { |
+ var z; |
+ var w; |
+ var hx = %_DoubleHi(x); |
+ var ix = hx & 0x7fffffff; |
+ |
+ if (ix < 0x3e300000) { |
+ // x < 2^-28 |
+ if (((ix | %_DoubleLo(x)) | (returnTan + 1)) == 0) { |
Raymond Toy
2014/07/30 19:55:04
This might be more obvious if we said abs(x) == 0
Yang
2014/08/01 07:29:55
I don't think I changed anything here from your po
|
+ return 1 / MathAbs(x); |
+ } else { |
+ if (returnTan == 1) { |
+ return x; |
+ } else { |
+ // Compute -1/(x + y) carefully |
+ var w = x + y; |
+ var z = %_ConstructDouble(%_DoubleHi(w), 0); |
+ var v = y - (z - x); |
+ var a = -1 / w; |
+ var t = %_ConstructDouble(%_DoubleHi(a), 0); |
+ var s = 1 + t * z; |
+ return t + a * (s + t * v); |
+ } |
+ } |
+ } |
+ if (ix >= 0x3fe59429) { |
+ // |x| > .6744 |
+ if (x < 0) { |
+ x = -x; |
+ y = -y; |
+ } |
+ z = kTrig[32] - x; |
+ w = kTrig[33] - y; |
+ x = z + w; |
+ y = 0; |
+ } |
+ z = x * x; |
+ w = z * z; |
+ |
+ var r = kTrig[20] + w * (kTrig[22] + w * (kTrig[24] + |
Raymond Toy
2014/07/24 16:51:11
Can we use a separate array for the coefficients i
Yang
2014/07/28 11:28:59
Acknowledged.
Raymond Toy
2014/07/30 19:55:04
Add back the comment. This would be unexpected fro
|
+ w * (kTrig[26] + w * (kTrig[28] + w * kTrig[30])))); |
+ var v = z * (kTrig[21] + w * (kTrig[23] + w * (kTrig[25] + |
+ w * (kTrig[27] + w * (kTrig[29] + w * kTrig[31]))))); |
+ var s = z * x; |
+ r = y + z * (s * (r + v) + y); |
+ r = r + kTrig[19] * s; |
+ w = x + r; |
+ if (ix >= 0x3fe59428) { |
Raymond Toy
2014/07/30 19:55:04
Document what 0x3fe59428 is.
|
+ return (1 - ((hx >> 30) & 2)) * |
Raymond Toy
2014/07/30 19:55:04
Describe what ((hx >> 30) & 2) is doing.
|
+ (returnTan - 2.0 * (x - (w * w / (w + returnTan) - r))); |
+ } |
+ if (returnTan == 1) { |
+ return w; |
+ } else { |
+ z = %_ConstructDouble(%_DoubleHi(w), 0); |
+ v = r - (z - x); |
+ var a = -1 / w; |
+ var t = %_ConstructDouble(%_DoubleHi(a), 0); |
+ s = 1 + t * z; |
+ return t + a * (s + t * v); |
+ } |
+} |
+ |
+function MathSinSlow(x) { |
Raymond Toy
2014/07/24 16:51:12
I think MathSinAccurate is a better name. Or maybe
Yang
2014/07/28 11:28:59
This function is not more accurate. The difference
Raymond Toy
2014/07/30 19:55:03
Sure, that makes sense.
|
+ REMPIO2(x); |
+ var sign = 1 - (n & 2); |
+ if (n & 1) { |
+ RETURN_KERNELCOS(y0, y1, * sign); |
+ } else { |
+ RETURN_KERNELSIN(y0, y1, * sign); |
+ } |
+} |
+ |
+function MathCosSlow(x) { |
Raymond Toy
2014/07/24 16:51:11
Similar comment as MathSinSlow.
Yang
2014/07/28 11:28:59
Acknowledged.
|
+ REMPIO2(x); |
+ if (n & 1) { |
+ var sign = (n & 2) - 1; |
+ RETURN_KERNELSIN(y0, y1, * sign); |
+ } else { |
+ var sign = 1 - (n & 2); |
+ RETURN_KERNELCOS(y0, y1, * sign); |
+ } |
+} |
+ |
+// ECMA 262 - 15.8.2.16 |
+function MathSin(x) { |
+ x = x * 1; // Convert to number. |
+ if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) { |
+ // |x| < pi/4, approximately. No reduction needed. |
+ if (%_IsMinusZero(x)) return x; |
Raymond Toy
2014/07/24 18:08:44
Is this test for -0 necessary? KERNELSIN should be
Yang
2014/07/28 11:28:59
You are right. Removed.
|
+ RETURN_KERNELSIN(x, 0, /* empty */); |
+ } |
+ return MathSinSlow(x); |
+} |
+ |
+// ECMA 262 - 15.8.2.7 |
+function MathCos(x) { |
+ x = x * 1; // Convert to number. |
+ if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) { |
+ // |x| < pi/4, approximately. No reduction needed. |
+ RETURN_KERNELCOS(x, 0, /* empty */); |
+ } |
+ return MathCosSlow(x); |
+} |
+ |
+// ECMA 262 - 15.8.2.18 |
+function MathTan(x) { |
+ x = x * 1; // Convert to number. |
+ if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) { |
+ // |x| < pi/4, approximately. No reduction needed. |
+ if (%_IsMinusZero(x)) return x; |
Raymond Toy
2014/07/24 18:08:43
Is this test for -0 really necessary? If KernelTan
Yang
2014/07/28 11:28:59
Done.
|
+ return KernelTan(x, 0, 1); |
} |
- var double_index = x * kIndexConvert; |
- if (phase & 1) double_index = kSamples - double_index; |
- var index = double_index | 0; |
- var t1 = double_index - index; |
- var t2 = 1 - t1; |
- var y1 = kSinTable[index]; |
- var y2 = kSinTable[index + 1]; |
- var dy = y2 - y1; |
- return (t2 * y1 + t1 * y2 + |
- t1 * t2 * ((kCosXIntervalTable[index] - dy) * t2 + |
- (dy - kCosXIntervalTable[index + 1]) * t1)) |
- * (1 - (phase & 2)) + 0; |
+ REMPIO2(x); |
+ return KernelTan(y0, y1, (n & 1) ? -1 : 1); |
} |
@@ -537,8 +689,6 @@ function SetUpMath() { |
%SetInlineBuiltinFlag(MathRandom); |
%SetInlineBuiltinFlag(MathSin); |
%SetInlineBuiltinFlag(MathCos); |
- %SetInlineBuiltinFlag(MathTan); |
- %SetInlineBuiltinFlag(TrigonometricInterpolation); |
} |
SetUpMath(); |