Chromium Code Reviews| Index: src/math.js |
| diff --git a/src/math.js b/src/math.js |
| index 9dc4b37d0ce2115ed9e9b5078f204fd060f926b9..370bff6870fb04beaf25c321a18859b1ca1c5371 100644 |
| --- a/src/math.js |
| +++ b/src/math.js |
| @@ -56,12 +56,6 @@ function MathCeil(x) { |
| return -MathFloor(-x); |
| } |
| -// ECMA 262 - 15.8.2.7 |
| -function MathCos(x) { |
| - x = MathAbs(x); // Convert to number and get rid of -0. |
| - return TrigonometricInterpolation(x, 1); |
| -} |
| - |
| // ECMA 262 - 15.8.2.8 |
| function MathExp(x) { |
| return %MathExpRT(TO_NUMBER_INLINE(x)); |
| @@ -164,94 +158,252 @@ function MathRound(x) { |
| return %RoundNumber(TO_NUMBER_INLINE(x)); |
| } |
| -// ECMA 262 - 15.8.2.16 |
| -function MathSin(x) { |
| - x = x * 1; // Convert to number and deal with -0. |
| - if (%_IsMinusZero(x)) return x; |
| - return TrigonometricInterpolation(x, 0); |
| -} |
| - |
| // ECMA 262 - 15.8.2.17 |
| function MathSqrt(x) { |
| return %_MathSqrtRT(TO_NUMBER_INLINE(x)); |
| } |
| -// ECMA 262 - 15.8.2.18 |
| -function MathTan(x) { |
| - return MathSin(x) / MathCos(x); |
| -} |
| - |
| // Non-standard extension. |
| function MathImul(x, y) { |
| return %NumberImul(TO_NUMBER_INLINE(x), TO_NUMBER_INLINE(y)); |
| } |
| +// ------------------------------------------------------------------- |
| + |
| +// A straightforward translation of fdlibm routines for sin, cos, and |
| +// tan, by Raymond Toy (rtoy@google.com). |
| + |
| +// ==================================================== |
| +// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| +// |
| +// Developed at SunSoft, a Sun Microsystems, Inc. business. |
| +// Permission to use, copy, modify, and distribute this |
| +// software is freely granted, provided that this notice |
| +// is preserved. |
| +// ==================================================== |
| + |
| +// Initialized to a Float64Array during genesis and is not writable. |
| +var kTrig; |
| + |
| +macro REMPIO2(X) |
|
Raymond Toy
2014/07/24 18:08:44
Does this have to be a macro? Dropping this big ch
Yang
2014/07/28 11:28:59
Yes. Calling a function with double arguments in V
Raymond Toy
2014/07/30 19:55:04
Ok, that's not too surprising if your tests stress
|
| + var n, y0, y1; |
| + var hx = %_DoubleHi(X); |
| + var ix = hx & 0x7fffffff; |
| + |
| + if (ix < 0x4002d97c) { |
| + // |X| ~< 3*pi/4, special case with n = +/- 1 |
| + if (hx > 0) { |
| + var z = X - kTrig[1]; |
|
Raymond Toy
2014/07/24 16:51:11
Readability would be improved if the kTrig values
Yang
2014/07/28 11:28:59
That is true. However, given that we currently don
Raymond Toy
2014/07/30 19:55:04
Could you give symbolic names for the indices? So
Yang
2014/08/01 07:29:55
Done with macros
|
| + if (ix != 0x3ff921fb) { |
| + // 33+53 bit pi is good enough |
| + y0 = z - kTrig[2]; |
| + y1 = (z - y0) - kTrig[2]; |
| + } else { |
| + // near pi/2, use 33+33+53 bit pi |
| + z -= kTrig[3]; |
| + y0 = z - kTrig[4]; |
| + y1 = (z - y0) - kTrig[4]; |
| + } |
| + n = 1; |
| + } else { |
| + // Negative X |
| + var z = X + kTrig[1]; |
| + if (ix != 0x3ff921fb) { |
| + // 33+53 bit pi is good enough |
| + y0 = z + kTrig[2]; |
| + y1 = (z - y0) + kTrig[2]; |
| + } else { |
| + // near pi/2, use 33+33+53 bit pi |
| + z += kTrig[3]; |
| + y0 = z + kTrig[4]; |
| + y1 = (z - y0) + kTrig[4]; |
| + } |
| + n = -1; |
| + } |
| + } else if (ix <= 0x413921fb) { |
| + // |X| ~<= 2^19*(pi/2), medium size |
| + var t = MathAbs(X); |
| + n = (t * kTrig[0] + 0.5) | 0; |
| + var r = t - n * kTrig[1]; |
| + var w = n * kTrig[2]; |
| + // First round good to 85 bit |
| + y0 = r - w; |
| + if (ix - (%_DoubleHi(y0) & 0x7ff00000) > 0x1000000) { |
|
Raymond Toy
2014/07/30 19:55:04
It would certainly be good to document what this i
Yang
2014/08/01 07:29:55
I don't think we should be spending time documenti
Raymond Toy
2014/08/01 14:06:00
I would agree if this were in fact the original co
|
| + // 2nd iteration needed, good to 118 |
| + t = r; |
| + w = n * kTrig[3]; |
| + r = t - w; |
| + w = n * kTrig[4] - ((t - r) - w); |
| + y0 = r - w; |
| + if (ix - (%_DoubleHi(y0) & 0x7ff00000) > 0x3100000) { |
|
Raymond Toy
2014/07/30 19:55:03
Same comment as for line 231.
Yang
2014/08/01 07:29:55
Acknowledged.
|
| + // 3rd iteration needed. 151 bits accuracy |
| + t = r; |
| + w = n * kTrig[5]; |
| + r = t - w; |
| + w = n * kTrig[6] - ((t - r) - w); |
| + y0 = r - w; |
| + } |
| + } |
| + y1 = (r - y0) - w; |
| + if (hx < 0) { |
| + n = -n; |
| + y0 = -y0; |
| + y1 = -y1; |
| + } |
| + } else { |
| + // Need to do full Payne-Hanek reduction here! |
| + var r = %RemPiO2(X); |
| + n = r[0]; |
| + y0 = r[1]; |
| + y1 = r[2]; |
| + } |
| +endmacro |
| + |
| +// Sine for [-pi/4, pi/4], pi/4 ~ 0.7854 |
|
Raymond Toy
2014/07/24 16:51:11
I think it would be beneficial to add the original
Yang
2014/07/28 11:28:59
Done.
|
| +macro RETURN_KERNELSIN(X0, X1, SIGN) |
| + var z = X0 * X0; |
| + var v = z * X0; |
| + var r = kTrig[8] + z * (kTrig[9] + z * (kTrig[10] + |
| + z * (kTrig[11] + z * kTrig[12]))); |
| + return (X0 - ((z * (0.5 * X1 - v * r) - X1) - v * kTrig[7])) SIGN; |
|
Raymond Toy
2014/07/24 16:51:11
The original kernel_sin function had a slight opti
Yang
2014/07/28 11:28:59
I think I checked this. And I rechecked. In neithe
Raymond Toy
2014/07/30 19:55:04
Fair enough.
|
| +endmacro |
|
Raymond Toy
2014/07/24 16:51:12
I think readability would be enhanced if you had a
Yang
2014/07/28 11:28:59
Acknowledged.
|
| -var kInversePiHalf = 0.636619772367581343; // 2 / pi |
| -var kInversePiHalfS26 = 9.48637384723993156e-9; // 2 / pi / (2^26) |
| -var kS26 = 1 << 26; |
| -var kTwoStepThreshold = 1 << 27; |
| -// pi / 2 rounded up |
| -var kPiHalf = 1.570796326794896780; // 0x192d4454fb21f93f |
| -// We use two parts for pi/2 to emulate a higher precision. |
| -// pi_half_1 only has 26 significant bits for mantissa. |
| -// Note that pi_half > pi_half_1 + pi_half_2 |
| -var kPiHalf1 = 1.570796325802803040; // 0x00000054fb21f93f |
| -var kPiHalf2 = 9.920935796805404252e-10; // 0x3326a611460b113e |
| - |
| -var kSamples; // Initialized to a number during genesis. |
| -var kIndexConvert; // Initialized to kSamples / (pi/2) during genesis. |
| -var kSinTable; // Initialized to a Float64Array during genesis. |
| -var kCosXIntervalTable; // Initialized to a Float64Array during genesis. |
| - |
| -// This implements sine using the following algorithm. |
| -// 1) Multiplication takes care of to-number conversion. |
| -// 2) Reduce x to the first quadrant [0, pi/2]. |
| -// Conveniently enough, in case of +/-Infinity, we get NaN. |
| -// Note that we try to use only 26 instead of 52 significant bits for |
| -// mantissa to avoid rounding errors when multiplying. For very large |
| -// input we therefore have additional steps. |
| -// 3) Replace x by (pi/2-x) if x was in the 2nd or 4th quadrant. |
| -// 4) Do a table lookup for the closest samples to the left and right of x. |
| -// 5) Find the derivatives at those sampling points by table lookup: |
| -// dsin(x)/dx = cos(x) = sin(pi/2-x) for x in [0, pi/2]. |
| -// 6) Use cubic spline interpolation to approximate sin(x). |
| -// 7) Negate the result if x was in the 3rd or 4th quadrant. |
| -// 8) Get rid of -0 by adding 0. |
| -function TrigonometricInterpolation(x, phase) { |
| - if (x < 0 || x > kPiHalf) { |
| - var multiple; |
| - while (x < -kTwoStepThreshold || x > kTwoStepThreshold) { |
| - // Let's assume this loop does not terminate. |
| - // All numbers x in each loop forms a set S. |
| - // (1) abs(x) > 2^27 for all x in S. |
| - // (2) abs(multiple) != 0 since (2^27 * inverse_pi_half_s26) > 1 |
| - // (3) multiple is rounded down in 2^26 steps, so the rounding error is |
| - // at most max(ulp, 2^26). |
| - // (4) so for x > 2^27, we subtract at most (1+pi/4)x and at least |
| - // (1-pi/4)x |
| - // (5) The subtraction results in x' so that abs(x') <= abs(x)*pi/4. |
| - // Note that this difference cannot be simply rounded off. |
| - // Set S cannot exist since (5) violates (1). Loop must terminate. |
| - multiple = MathFloor(x * kInversePiHalfS26) * kS26; |
| - x = x - multiple * kPiHalf1 - multiple * kPiHalf2; |
| +// Cosine for [-pi/4, pi/4], pi/4 ~ 0.7854 |
| +macro RETURN_KERNELCOS(X0, X1, SIGN) |
| + var ix = %_DoubleHi(X0) & 0x7fffffff; |
| + var z = X0 * X0; |
| + var r = z * (kTrig[13] + z * (kTrig[14] + z * (kTrig[15] + |
|
Raymond Toy
2014/07/24 16:51:11
Can we use a separate array for kTrig values here
Yang
2014/07/28 11:28:59
There is not much readability to be gained here im
Raymond Toy
2014/07/30 19:55:04
I have no problems with the various random constan
Yang
2014/08/01 07:29:55
Done with macros.
|
| + z * (kTrig[16] + z * (kTrig[17] + z * kTrig[18]))))); |
| + if (ix < 0x3fd33333) { |
|
Raymond Toy
2014/07/30 19:55:03
Add comment that ix < 0x3fd33333 is testing for |x
Yang
2014/08/01 07:29:55
Done.
|
| + return (1 - (0.5 * z - (z * r - X0 * X1))) SIGN; |
| + } else { |
| + var qx; |
| + if (ix > 0x3fe90000) { |
|
Raymond Toy
2014/07/24 16:51:12
I think it's really useful to include the fdlibm c
Yang
2014/07/28 11:28:59
imo the comment in your port doesn't explain much
Raymond Toy
2014/07/30 19:55:03
No, but at least it makes it clear that ix > 0x3fe
Yang
2014/08/01 07:29:55
Done.
|
| + qx = 0.28125; |
| + } else { |
| + qx = %_ConstructDouble(%_DoubleHi(0.25 * X0), 0); |
| } |
| - multiple = MathFloor(x * kInversePiHalf); |
| - x = x - multiple * kPiHalf1 - multiple * kPiHalf2; |
| - phase += multiple; |
| + var hz = 0.5 * z - qx; |
| + return (1 - qx - (hz - (z * r - X0 * X1))) SIGN; |
| + } |
| +endmacro |
| + |
| +// Tangent for [-pi/4, pi/4], pi/4 ~ 0.7854 |
|
Raymond Toy
2014/07/24 16:51:12
Include original fdlibm comment. Without that it's
Yang
2014/07/28 11:28:59
Done.
|
| +function KernelTan(x, y, returnTan) { |
| + var z; |
| + var w; |
| + var hx = %_DoubleHi(x); |
| + var ix = hx & 0x7fffffff; |
| + |
| + if (ix < 0x3e300000) { |
| + // x < 2^-28 |
| + if (((ix | %_DoubleLo(x)) | (returnTan + 1)) == 0) { |
|
Raymond Toy
2014/07/30 19:55:04
This might be more obvious if we said abs(x) == 0
Yang
2014/08/01 07:29:55
I don't think I changed anything here from your po
|
| + return 1 / MathAbs(x); |
| + } else { |
| + if (returnTan == 1) { |
| + return x; |
| + } else { |
| + // Compute -1/(x + y) carefully |
| + var w = x + y; |
| + var z = %_ConstructDouble(%_DoubleHi(w), 0); |
| + var v = y - (z - x); |
| + var a = -1 / w; |
| + var t = %_ConstructDouble(%_DoubleHi(a), 0); |
| + var s = 1 + t * z; |
| + return t + a * (s + t * v); |
| + } |
| + } |
| + } |
| + if (ix >= 0x3fe59429) { |
| + // |x| > .6744 |
| + if (x < 0) { |
| + x = -x; |
| + y = -y; |
| + } |
| + z = kTrig[32] - x; |
| + w = kTrig[33] - y; |
| + x = z + w; |
| + y = 0; |
| + } |
| + z = x * x; |
| + w = z * z; |
| + |
| + var r = kTrig[20] + w * (kTrig[22] + w * (kTrig[24] + |
|
Raymond Toy
2014/07/24 16:51:11
Can we use a separate array for the coefficients i
Yang
2014/07/28 11:28:59
Acknowledged.
Raymond Toy
2014/07/30 19:55:04
Add back the comment. This would be unexpected fro
|
| + w * (kTrig[26] + w * (kTrig[28] + w * kTrig[30])))); |
| + var v = z * (kTrig[21] + w * (kTrig[23] + w * (kTrig[25] + |
| + w * (kTrig[27] + w * (kTrig[29] + w * kTrig[31]))))); |
| + var s = z * x; |
| + r = y + z * (s * (r + v) + y); |
| + r = r + kTrig[19] * s; |
| + w = x + r; |
| + if (ix >= 0x3fe59428) { |
|
Raymond Toy
2014/07/30 19:55:04
Document what 0x3fe59428 is.
|
| + return (1 - ((hx >> 30) & 2)) * |
|
Raymond Toy
2014/07/30 19:55:04
Describe what ((hx >> 30) & 2) is doing.
|
| + (returnTan - 2.0 * (x - (w * w / (w + returnTan) - r))); |
| + } |
| + if (returnTan == 1) { |
| + return w; |
| + } else { |
| + z = %_ConstructDouble(%_DoubleHi(w), 0); |
| + v = r - (z - x); |
| + var a = -1 / w; |
| + var t = %_ConstructDouble(%_DoubleHi(a), 0); |
| + s = 1 + t * z; |
| + return t + a * (s + t * v); |
| + } |
| +} |
| + |
| +function MathSinSlow(x) { |
|
Raymond Toy
2014/07/24 16:51:12
I think MathSinAccurate is a better name. Or maybe
Yang
2014/07/28 11:28:59
This function is not more accurate. The difference
Raymond Toy
2014/07/30 19:55:03
Sure, that makes sense.
|
| + REMPIO2(x); |
| + var sign = 1 - (n & 2); |
| + if (n & 1) { |
| + RETURN_KERNELCOS(y0, y1, * sign); |
| + } else { |
| + RETURN_KERNELSIN(y0, y1, * sign); |
| + } |
| +} |
| + |
| +function MathCosSlow(x) { |
|
Raymond Toy
2014/07/24 16:51:11
Similar comment as MathSinSlow.
Yang
2014/07/28 11:28:59
Acknowledged.
|
| + REMPIO2(x); |
| + if (n & 1) { |
| + var sign = (n & 2) - 1; |
| + RETURN_KERNELSIN(y0, y1, * sign); |
| + } else { |
| + var sign = 1 - (n & 2); |
| + RETURN_KERNELCOS(y0, y1, * sign); |
| + } |
| +} |
| + |
| +// ECMA 262 - 15.8.2.16 |
| +function MathSin(x) { |
| + x = x * 1; // Convert to number. |
| + if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) { |
| + // |x| < pi/4, approximately. No reduction needed. |
| + if (%_IsMinusZero(x)) return x; |
|
Raymond Toy
2014/07/24 18:08:44
Is this test for -0 necessary? KERNELSIN should be
Yang
2014/07/28 11:28:59
You are right. Removed.
|
| + RETURN_KERNELSIN(x, 0, /* empty */); |
| + } |
| + return MathSinSlow(x); |
| +} |
| + |
| +// ECMA 262 - 15.8.2.7 |
| +function MathCos(x) { |
| + x = x * 1; // Convert to number. |
| + if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) { |
| + // |x| < pi/4, approximately. No reduction needed. |
| + RETURN_KERNELCOS(x, 0, /* empty */); |
| + } |
| + return MathCosSlow(x); |
| +} |
| + |
| +// ECMA 262 - 15.8.2.18 |
| +function MathTan(x) { |
| + x = x * 1; // Convert to number. |
| + if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) { |
| + // |x| < pi/4, approximately. No reduction needed. |
| + if (%_IsMinusZero(x)) return x; |
|
Raymond Toy
2014/07/24 18:08:43
Is this test for -0 really necessary? If KernelTan
Yang
2014/07/28 11:28:59
Done.
|
| + return KernelTan(x, 0, 1); |
| } |
| - var double_index = x * kIndexConvert; |
| - if (phase & 1) double_index = kSamples - double_index; |
| - var index = double_index | 0; |
| - var t1 = double_index - index; |
| - var t2 = 1 - t1; |
| - var y1 = kSinTable[index]; |
| - var y2 = kSinTable[index + 1]; |
| - var dy = y2 - y1; |
| - return (t2 * y1 + t1 * y2 + |
| - t1 * t2 * ((kCosXIntervalTable[index] - dy) * t2 + |
| - (dy - kCosXIntervalTable[index + 1]) * t1)) |
| - * (1 - (phase & 2)) + 0; |
| + REMPIO2(x); |
| + return KernelTan(y0, y1, (n & 1) ? -1 : 1); |
| } |
| @@ -537,8 +689,6 @@ function SetUpMath() { |
| %SetInlineBuiltinFlag(MathRandom); |
| %SetInlineBuiltinFlag(MathSin); |
| %SetInlineBuiltinFlag(MathCos); |
| - %SetInlineBuiltinFlag(MathTan); |
| - %SetInlineBuiltinFlag(TrigonometricInterpolation); |
| } |
| SetUpMath(); |