Index: third_party/fdlibm/fdlibm.js |
diff --git a/third_party/fdlibm/fdlibm.js b/third_party/fdlibm/fdlibm.js |
new file mode 100644 |
index 0000000000000000000000000000000000000000..d5dbb72990a5adecafd3697393ca86928ba31970 |
--- /dev/null |
+++ b/third_party/fdlibm/fdlibm.js |
@@ -0,0 +1,356 @@ |
+// The following is adapted from fdlibm (http://www.netlib.org/fdlibm), |
+// |
+// ==================================================== |
+// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
+// |
+// Developed at SunSoft, a Sun Microsystems, Inc. business. |
+// Permission to use, copy, modify, and distribute this |
+// software is freely granted, provided that this notice |
+// is preserved. |
+// ==================================================== |
+// |
+// The original source code covered by the above license above has been |
+// modified significantly by Google Inc. |
+// Copyright 2014 the V8 project authors. All rights reserved. |
+// |
+// The following is a straightforward translation of fdlibm routines for |
+// sin, cos, and tan, by Raymond Toy (rtoy@google.com). |
+ |
+ |
+var kTrig; // Initialized to a Float64Array during genesis and is not writable. |
+ |
+const INVPIO2 = kTrig[0]; |
+const PIO2_1 = kTrig[1]; |
+const PIO2_1T = kTrig[2]; |
+const PIO2_2 = kTrig[3]; |
+const PIO2_2T = kTrig[4]; |
+const PIO2_3 = kTrig[5]; |
+const PIO2_3T = kTrig[6]; |
+const PIO4 = kTrig[32]; |
+const PIO4LO = kTrig[33]; |
+ |
+// Compute k and r such that x - k*pi/2 = r where |r| < pi/4. For |
+// precision, r is returned as two values y0 and y1 such that r = y0 + y1 |
+// to more than double precision. |
+macro REMPIO2(X) |
+ var n, y0, y1; |
+ var hx = %_DoubleHi(X); |
+ var ix = hx & 0x7fffffff; |
+ |
+ if (ix < 0x4002d97c) { |
+ // |X| ~< 3*pi/4, special case with n = +/- 1 |
+ if (hx > 0) { |
+ var z = X - PIO2_1; |
+ if (ix != 0x3ff921fb) { |
+ // 33+53 bit pi is good enough |
+ y0 = z - PIO2_1T; |
+ y1 = (z - y0) - PIO2_1T; |
+ } else { |
+ // near pi/2, use 33+33+53 bit pi |
+ z -= PIO2_2; |
+ y0 = z - PIO2_2T; |
+ y1 = (z - y0) - PIO2_2T; |
+ } |
+ n = 1; |
+ } else { |
+ // Negative X |
+ var z = X + PIO2_1; |
+ if (ix != 0x3ff921fb) { |
+ // 33+53 bit pi is good enough |
+ y0 = z + PIO2_1T; |
+ y1 = (z - y0) + PIO2_1T; |
+ } else { |
+ // near pi/2, use 33+33+53 bit pi |
+ z += PIO2_2; |
+ y0 = z + PIO2_2T; |
+ y1 = (z - y0) + PIO2_2T; |
+ } |
+ n = -1; |
+ } |
+ } else if (ix <= 0x413921fb) { |
+ // |X| ~<= 2^19*(pi/2), medium size |
+ var t = MathAbs(X); |
+ n = (t * INVPIO2 + 0.5) | 0; |
+ var r = t - n * PIO2_1; |
+ var w = n * PIO2_1T; |
+ // First round good to 85 bit |
+ y0 = r - w; |
+ if (ix - (%_DoubleHi(y0) & 0x7ff00000) > 0x1000000) { |
+ // 2nd iteration needed, good to 118 |
+ t = r; |
+ w = n * PIO2_2; |
+ r = t - w; |
+ w = n * PIO2_2T - ((t - r) - w); |
+ y0 = r - w; |
+ if (ix - (%_DoubleHi(y0) & 0x7ff00000) > 0x3100000) { |
+ // 3rd iteration needed. 151 bits accuracy |
+ t = r; |
+ w = n * PIO2_3; |
+ r = t - w; |
+ w = n * PIO2_3T - ((t - r) - w); |
+ y0 = r - w; |
+ } |
+ } |
+ y1 = (r - y0) - w; |
+ if (hx < 0) { |
+ n = -n; |
+ y0 = -y0; |
+ y1 = -y1; |
+ } |
+ } else { |
+ // Need to do full Payne-Hanek reduction here. |
+ var r = %RemPiO2(X); |
+ n = r[0]; |
+ y0 = r[1]; |
+ y1 = r[2]; |
+ } |
+endmacro |
+ |
+ |
+// __kernel_sin(X, Y, IY) |
+// kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854 |
+// Input X is assumed to be bounded by ~pi/4 in magnitude. |
+// Input Y is the tail of X so that x = X + Y. |
+// |
+// Algorithm |
+// 1. Since ieee_sin(-x) = -ieee_sin(x), we need only to consider positive x. |
+// 2. ieee_sin(x) is approximated by a polynomial of degree 13 on |
+// [0,pi/4] |
+// 3 13 |
+// sin(x) ~ x + S1*x + ... + S6*x |
+// where |
+// |
+// |ieee_sin(x) 2 4 6 8 10 12 | -58 |
+// |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2 |
+// | x | |
+// |
+// 3. ieee_sin(X+Y) = ieee_sin(X) + sin'(X')*Y |
+// ~ ieee_sin(X) + (1-X*X/2)*Y |
+// For better accuracy, let |
+// 3 2 2 2 2 |
+// r = X *(S2+X *(S3+X *(S4+X *(S5+X *S6)))) |
+// then 3 2 |
+// sin(x) = X + (S1*X + (X *(r-Y/2)+Y)) |
+// |
+macro KSIN(x) |
+kTrig[7+x] |
+endmacro |
+ |
+macro RETURN_KERNELSIN(X, Y, SIGN) |
+ var z = X * X; |
+ var v = z * X; |
+ var r = KSIN(1) + z * (KSIN(2) + z * (KSIN(3) + |
+ z * (KSIN(4) + z * KSIN(5)))); |
+ return (X - ((z * (0.5 * Y - v * r) - Y) - v * KSIN(0))) SIGN; |
+endmacro |
+ |
+// __kernel_cos(X, Y) |
+// kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164 |
+// Input X is assumed to be bounded by ~pi/4 in magnitude. |
+// Input Y is the tail of X so that x = X + Y. |
+// |
+// Algorithm |
+// 1. Since ieee_cos(-x) = ieee_cos(x), we need only to consider positive x. |
+// 2. ieee_cos(x) is approximated by a polynomial of degree 14 on |
+// [0,pi/4] |
+// 4 14 |
+// cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x |
+// where the remez error is |
+// |
+// | 2 4 6 8 10 12 14 | -58 |
+// |ieee_cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2 |
+// | | |
+// |
+// 4 6 8 10 12 14 |
+// 3. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then |
+// ieee_cos(x) = 1 - x*x/2 + r |
+// since ieee_cos(X+Y) ~ ieee_cos(X) - ieee_sin(X)*Y |
+// ~ ieee_cos(X) - X*Y, |
+// a correction term is necessary in ieee_cos(x) and hence |
+// cos(X+Y) = 1 - (X*X/2 - (r - X*Y)) |
+// For better accuracy when x > 0.3, let qx = |x|/4 with |
+// the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125. |
+// Then |
+// cos(X+Y) = (1-qx) - ((X*X/2-qx) - (r-X*Y)). |
+// Note that 1-qx and (X*X/2-qx) is EXACT here, and the |
+// magnitude of the latter is at least a quarter of X*X/2, |
+// thus, reducing the rounding error in the subtraction. |
+// |
+macro KCOS(x) |
+kTrig[13+x] |
+endmacro |
+ |
+macro RETURN_KERNELCOS(X, Y, SIGN) |
+ var ix = %_DoubleHi(X) & 0x7fffffff; |
+ var z = X * X; |
+ var r = z * (KCOS(0) + z * (KCOS(1) + z * (KCOS(2)+ |
+ z * (KCOS(3) + z * (KCOS(4) + z * KCOS(5)))))); |
+ if (ix < 0x3fd33333) { // |x| ~< 0.3 |
+ return (1 - (0.5 * z - (z * r - X * Y))) SIGN; |
+ } else { |
+ var qx; |
+ if (ix > 0x3fe90000) { // |x| > 0.78125 |
+ qx = 0.28125; |
+ } else { |
+ qx = %_ConstructDouble(%_DoubleHi(0.25 * X), 0); |
+ } |
+ var hz = 0.5 * z - qx; |
+ return (1 - qx - (hz - (z * r - X * Y))) SIGN; |
+ } |
+endmacro |
+ |
+// kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 |
+// Input x is assumed to be bounded by ~pi/4 in magnitude. |
+// Input y is the tail of x. |
+// Input k indicates whether ieee_tan (if k = 1) or -1/tan (if k = -1) |
+// is returned. |
+// |
+// Algorithm |
+// 1. Since ieee_tan(-x) = -ieee_tan(x), we need only to consider positive x. |
+// 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0. |
+// 3. ieee_tan(x) is approximated by a odd polynomial of degree 27 on |
+// [0,0.67434] |
+// 3 27 |
+// tan(x) ~ x + T1*x + ... + T13*x |
+// where |
+// |
+// |ieee_tan(x) 2 4 26 | -59.2 |
+// |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2 |
+// | x | |
+// |
+// Note: ieee_tan(x+y) = ieee_tan(x) + tan'(x)*y |
+// ~ ieee_tan(x) + (1+x*x)*y |
+// Therefore, for better accuracy in computing ieee_tan(x+y), let |
+// 3 2 2 2 2 |
+// r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) |
+// then |
+// 3 2 |
+// tan(x+y) = x + (T1*x + (x *(r+y)+y)) |
+// |
+// 4. For x in [0.67434,pi/4], let y = pi/4 - x, then |
+// tan(x) = ieee_tan(pi/4-y) = (1-ieee_tan(y))/(1+ieee_tan(y)) |
+// = 1 - 2*(ieee_tan(y) - (ieee_tan(y)^2)/(1+ieee_tan(y))) |
+// |
+// Set returnTan to 1 for tan; -1 for cot. Anything else is illegal |
+// and will cause incorrect results. |
+// |
+macro KTAN(x) |
+kTrig[19+x] |
+endmacro |
+ |
+function KernelTan(x, y, returnTan) { |
+ var z; |
+ var w; |
+ var hx = %_DoubleHi(x); |
+ var ix = hx & 0x7fffffff; |
+ |
+ if (ix < 0x3e300000) { // |x| < 2^-28 |
+ if (((ix | %_DoubleLo(x)) | (returnTan + 1)) == 0) { |
+ // x == 0 && returnTan = -1 |
+ return 1 / MathAbs(x); |
+ } else { |
+ if (returnTan == 1) { |
+ return x; |
+ } else { |
+ // Compute -1/(x + y) carefully |
+ var w = x + y; |
+ var z = %_ConstructDouble(%_DoubleHi(w), 0); |
+ var v = y - (z - x); |
+ var a = -1 / w; |
+ var t = %_ConstructDouble(%_DoubleHi(a), 0); |
+ var s = 1 + t * z; |
+ return t + a * (s + t * v); |
+ } |
+ } |
+ } |
+ if (ix >= 0x3fe59429) { // |x| > .6744 |
+ if (x < 0) { |
+ x = -x; |
+ y = -y; |
+ } |
+ z = PIO4 - x; |
+ w = PIO4LO - y; |
+ x = z + w; |
+ y = 0; |
+ } |
+ z = x * x; |
+ w = z * z; |
+ |
+ // Break x^5 * (T1 + x^2*T2 + ...) into |
+ // x^5 * (T1 + x^4*T3 + ... + x^20*T11) + |
+ // x^5 * (x^2 * (T2 + x^4*T4 + ... + x^22*T12)) |
+ var r = KTAN(1) + w * (KTAN(3) + w * (KTAN(5) + |
+ w * (KTAN(7) + w * (KTAN(9) + w * KTAN(11))))); |
+ var v = z * (KTAN(2) + w * (KTAN(4) + w * (KTAN(6) + |
+ w * (KTAN(8) + w * (KTAN(10) + w * KTAN(12)))))); |
+ var s = z * x; |
+ r = y + z * (s * (r + v) + y); |
+ r = r + KTAN(0) * s; |
+ w = x + r; |
+ if (ix >= 0x3fe59428) { |
+ return (1 - ((hx >> 30) & 2)) * |
+ (returnTan - 2.0 * (x - (w * w / (w + returnTan) - r))); |
+ } |
+ if (returnTan == 1) { |
+ return w; |
+ } else { |
+ z = %_ConstructDouble(%_DoubleHi(w), 0); |
+ v = r - (z - x); |
+ var a = -1 / w; |
+ var t = %_ConstructDouble(%_DoubleHi(a), 0); |
+ s = 1 + t * z; |
+ return t + a * (s + t * v); |
+ } |
+} |
+ |
+function MathSinSlow(x) { |
+ REMPIO2(x); |
+ var sign = 1 - (n & 2); |
+ if (n & 1) { |
+ RETURN_KERNELCOS(y0, y1, * sign); |
+ } else { |
+ RETURN_KERNELSIN(y0, y1, * sign); |
+ } |
+} |
+ |
+function MathCosSlow(x) { |
+ REMPIO2(x); |
+ if (n & 1) { |
+ var sign = (n & 2) - 1; |
+ RETURN_KERNELSIN(y0, y1, * sign); |
+ } else { |
+ var sign = 1 - (n & 2); |
+ RETURN_KERNELCOS(y0, y1, * sign); |
+ } |
+} |
+ |
+// ECMA 262 - 15.8.2.16 |
+function MathSin(x) { |
+ x = x * 1; // Convert to number. |
+ if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) { |
+ // |x| < pi/4, approximately. No reduction needed. |
+ RETURN_KERNELSIN(x, 0, /* empty */); |
+ } |
+ return MathSinSlow(x); |
+} |
+ |
+// ECMA 262 - 15.8.2.7 |
+function MathCos(x) { |
+ x = x * 1; // Convert to number. |
+ if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) { |
+ // |x| < pi/4, approximately. No reduction needed. |
+ RETURN_KERNELCOS(x, 0, /* empty */); |
+ } |
+ return MathCosSlow(x); |
+} |
+ |
+// ECMA 262 - 15.8.2.18 |
+function MathTan(x) { |
+ x = x * 1; // Convert to number. |
+ if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) { |
+ // |x| < pi/4, approximately. No reduction needed. |
+ return KernelTan(x, 0, 1); |
+ } |
+ REMPIO2(x); |
+ return KernelTan(y0, y1, (n & 1) ? -1 : 1); |
+} |