| Index: third_party/fdlibm/fdlibm.js
|
| diff --git a/third_party/fdlibm/fdlibm.js b/third_party/fdlibm/fdlibm.js
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..d5dbb72990a5adecafd3697393ca86928ba31970
|
| --- /dev/null
|
| +++ b/third_party/fdlibm/fdlibm.js
|
| @@ -0,0 +1,356 @@
|
| +// The following is adapted from fdlibm (http://www.netlib.org/fdlibm),
|
| +//
|
| +// ====================================================
|
| +// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
| +//
|
| +// Developed at SunSoft, a Sun Microsystems, Inc. business.
|
| +// Permission to use, copy, modify, and distribute this
|
| +// software is freely granted, provided that this notice
|
| +// is preserved.
|
| +// ====================================================
|
| +//
|
| +// The original source code covered by the above license above has been
|
| +// modified significantly by Google Inc.
|
| +// Copyright 2014 the V8 project authors. All rights reserved.
|
| +//
|
| +// The following is a straightforward translation of fdlibm routines for
|
| +// sin, cos, and tan, by Raymond Toy (rtoy@google.com).
|
| +
|
| +
|
| +var kTrig; // Initialized to a Float64Array during genesis and is not writable.
|
| +
|
| +const INVPIO2 = kTrig[0];
|
| +const PIO2_1 = kTrig[1];
|
| +const PIO2_1T = kTrig[2];
|
| +const PIO2_2 = kTrig[3];
|
| +const PIO2_2T = kTrig[4];
|
| +const PIO2_3 = kTrig[5];
|
| +const PIO2_3T = kTrig[6];
|
| +const PIO4 = kTrig[32];
|
| +const PIO4LO = kTrig[33];
|
| +
|
| +// Compute k and r such that x - k*pi/2 = r where |r| < pi/4. For
|
| +// precision, r is returned as two values y0 and y1 such that r = y0 + y1
|
| +// to more than double precision.
|
| +macro REMPIO2(X)
|
| + var n, y0, y1;
|
| + var hx = %_DoubleHi(X);
|
| + var ix = hx & 0x7fffffff;
|
| +
|
| + if (ix < 0x4002d97c) {
|
| + // |X| ~< 3*pi/4, special case with n = +/- 1
|
| + if (hx > 0) {
|
| + var z = X - PIO2_1;
|
| + if (ix != 0x3ff921fb) {
|
| + // 33+53 bit pi is good enough
|
| + y0 = z - PIO2_1T;
|
| + y1 = (z - y0) - PIO2_1T;
|
| + } else {
|
| + // near pi/2, use 33+33+53 bit pi
|
| + z -= PIO2_2;
|
| + y0 = z - PIO2_2T;
|
| + y1 = (z - y0) - PIO2_2T;
|
| + }
|
| + n = 1;
|
| + } else {
|
| + // Negative X
|
| + var z = X + PIO2_1;
|
| + if (ix != 0x3ff921fb) {
|
| + // 33+53 bit pi is good enough
|
| + y0 = z + PIO2_1T;
|
| + y1 = (z - y0) + PIO2_1T;
|
| + } else {
|
| + // near pi/2, use 33+33+53 bit pi
|
| + z += PIO2_2;
|
| + y0 = z + PIO2_2T;
|
| + y1 = (z - y0) + PIO2_2T;
|
| + }
|
| + n = -1;
|
| + }
|
| + } else if (ix <= 0x413921fb) {
|
| + // |X| ~<= 2^19*(pi/2), medium size
|
| + var t = MathAbs(X);
|
| + n = (t * INVPIO2 + 0.5) | 0;
|
| + var r = t - n * PIO2_1;
|
| + var w = n * PIO2_1T;
|
| + // First round good to 85 bit
|
| + y0 = r - w;
|
| + if (ix - (%_DoubleHi(y0) & 0x7ff00000) > 0x1000000) {
|
| + // 2nd iteration needed, good to 118
|
| + t = r;
|
| + w = n * PIO2_2;
|
| + r = t - w;
|
| + w = n * PIO2_2T - ((t - r) - w);
|
| + y0 = r - w;
|
| + if (ix - (%_DoubleHi(y0) & 0x7ff00000) > 0x3100000) {
|
| + // 3rd iteration needed. 151 bits accuracy
|
| + t = r;
|
| + w = n * PIO2_3;
|
| + r = t - w;
|
| + w = n * PIO2_3T - ((t - r) - w);
|
| + y0 = r - w;
|
| + }
|
| + }
|
| + y1 = (r - y0) - w;
|
| + if (hx < 0) {
|
| + n = -n;
|
| + y0 = -y0;
|
| + y1 = -y1;
|
| + }
|
| + } else {
|
| + // Need to do full Payne-Hanek reduction here.
|
| + var r = %RemPiO2(X);
|
| + n = r[0];
|
| + y0 = r[1];
|
| + y1 = r[2];
|
| + }
|
| +endmacro
|
| +
|
| +
|
| +// __kernel_sin(X, Y, IY)
|
| +// kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
|
| +// Input X is assumed to be bounded by ~pi/4 in magnitude.
|
| +// Input Y is the tail of X so that x = X + Y.
|
| +//
|
| +// Algorithm
|
| +// 1. Since ieee_sin(-x) = -ieee_sin(x), we need only to consider positive x.
|
| +// 2. ieee_sin(x) is approximated by a polynomial of degree 13 on
|
| +// [0,pi/4]
|
| +// 3 13
|
| +// sin(x) ~ x + S1*x + ... + S6*x
|
| +// where
|
| +//
|
| +// |ieee_sin(x) 2 4 6 8 10 12 | -58
|
| +// |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2
|
| +// | x |
|
| +//
|
| +// 3. ieee_sin(X+Y) = ieee_sin(X) + sin'(X')*Y
|
| +// ~ ieee_sin(X) + (1-X*X/2)*Y
|
| +// For better accuracy, let
|
| +// 3 2 2 2 2
|
| +// r = X *(S2+X *(S3+X *(S4+X *(S5+X *S6))))
|
| +// then 3 2
|
| +// sin(x) = X + (S1*X + (X *(r-Y/2)+Y))
|
| +//
|
| +macro KSIN(x)
|
| +kTrig[7+x]
|
| +endmacro
|
| +
|
| +macro RETURN_KERNELSIN(X, Y, SIGN)
|
| + var z = X * X;
|
| + var v = z * X;
|
| + var r = KSIN(1) + z * (KSIN(2) + z * (KSIN(3) +
|
| + z * (KSIN(4) + z * KSIN(5))));
|
| + return (X - ((z * (0.5 * Y - v * r) - Y) - v * KSIN(0))) SIGN;
|
| +endmacro
|
| +
|
| +// __kernel_cos(X, Y)
|
| +// kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
|
| +// Input X is assumed to be bounded by ~pi/4 in magnitude.
|
| +// Input Y is the tail of X so that x = X + Y.
|
| +//
|
| +// Algorithm
|
| +// 1. Since ieee_cos(-x) = ieee_cos(x), we need only to consider positive x.
|
| +// 2. ieee_cos(x) is approximated by a polynomial of degree 14 on
|
| +// [0,pi/4]
|
| +// 4 14
|
| +// cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
|
| +// where the remez error is
|
| +//
|
| +// | 2 4 6 8 10 12 14 | -58
|
| +// |ieee_cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2
|
| +// | |
|
| +//
|
| +// 4 6 8 10 12 14
|
| +// 3. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then
|
| +// ieee_cos(x) = 1 - x*x/2 + r
|
| +// since ieee_cos(X+Y) ~ ieee_cos(X) - ieee_sin(X)*Y
|
| +// ~ ieee_cos(X) - X*Y,
|
| +// a correction term is necessary in ieee_cos(x) and hence
|
| +// cos(X+Y) = 1 - (X*X/2 - (r - X*Y))
|
| +// For better accuracy when x > 0.3, let qx = |x|/4 with
|
| +// the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
|
| +// Then
|
| +// cos(X+Y) = (1-qx) - ((X*X/2-qx) - (r-X*Y)).
|
| +// Note that 1-qx and (X*X/2-qx) is EXACT here, and the
|
| +// magnitude of the latter is at least a quarter of X*X/2,
|
| +// thus, reducing the rounding error in the subtraction.
|
| +//
|
| +macro KCOS(x)
|
| +kTrig[13+x]
|
| +endmacro
|
| +
|
| +macro RETURN_KERNELCOS(X, Y, SIGN)
|
| + var ix = %_DoubleHi(X) & 0x7fffffff;
|
| + var z = X * X;
|
| + var r = z * (KCOS(0) + z * (KCOS(1) + z * (KCOS(2)+
|
| + z * (KCOS(3) + z * (KCOS(4) + z * KCOS(5))))));
|
| + if (ix < 0x3fd33333) { // |x| ~< 0.3
|
| + return (1 - (0.5 * z - (z * r - X * Y))) SIGN;
|
| + } else {
|
| + var qx;
|
| + if (ix > 0x3fe90000) { // |x| > 0.78125
|
| + qx = 0.28125;
|
| + } else {
|
| + qx = %_ConstructDouble(%_DoubleHi(0.25 * X), 0);
|
| + }
|
| + var hz = 0.5 * z - qx;
|
| + return (1 - qx - (hz - (z * r - X * Y))) SIGN;
|
| + }
|
| +endmacro
|
| +
|
| +// kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
|
| +// Input x is assumed to be bounded by ~pi/4 in magnitude.
|
| +// Input y is the tail of x.
|
| +// Input k indicates whether ieee_tan (if k = 1) or -1/tan (if k = -1)
|
| +// is returned.
|
| +//
|
| +// Algorithm
|
| +// 1. Since ieee_tan(-x) = -ieee_tan(x), we need only to consider positive x.
|
| +// 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
|
| +// 3. ieee_tan(x) is approximated by a odd polynomial of degree 27 on
|
| +// [0,0.67434]
|
| +// 3 27
|
| +// tan(x) ~ x + T1*x + ... + T13*x
|
| +// where
|
| +//
|
| +// |ieee_tan(x) 2 4 26 | -59.2
|
| +// |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
|
| +// | x |
|
| +//
|
| +// Note: ieee_tan(x+y) = ieee_tan(x) + tan'(x)*y
|
| +// ~ ieee_tan(x) + (1+x*x)*y
|
| +// Therefore, for better accuracy in computing ieee_tan(x+y), let
|
| +// 3 2 2 2 2
|
| +// r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
|
| +// then
|
| +// 3 2
|
| +// tan(x+y) = x + (T1*x + (x *(r+y)+y))
|
| +//
|
| +// 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
|
| +// tan(x) = ieee_tan(pi/4-y) = (1-ieee_tan(y))/(1+ieee_tan(y))
|
| +// = 1 - 2*(ieee_tan(y) - (ieee_tan(y)^2)/(1+ieee_tan(y)))
|
| +//
|
| +// Set returnTan to 1 for tan; -1 for cot. Anything else is illegal
|
| +// and will cause incorrect results.
|
| +//
|
| +macro KTAN(x)
|
| +kTrig[19+x]
|
| +endmacro
|
| +
|
| +function KernelTan(x, y, returnTan) {
|
| + var z;
|
| + var w;
|
| + var hx = %_DoubleHi(x);
|
| + var ix = hx & 0x7fffffff;
|
| +
|
| + if (ix < 0x3e300000) { // |x| < 2^-28
|
| + if (((ix | %_DoubleLo(x)) | (returnTan + 1)) == 0) {
|
| + // x == 0 && returnTan = -1
|
| + return 1 / MathAbs(x);
|
| + } else {
|
| + if (returnTan == 1) {
|
| + return x;
|
| + } else {
|
| + // Compute -1/(x + y) carefully
|
| + var w = x + y;
|
| + var z = %_ConstructDouble(%_DoubleHi(w), 0);
|
| + var v = y - (z - x);
|
| + var a = -1 / w;
|
| + var t = %_ConstructDouble(%_DoubleHi(a), 0);
|
| + var s = 1 + t * z;
|
| + return t + a * (s + t * v);
|
| + }
|
| + }
|
| + }
|
| + if (ix >= 0x3fe59429) { // |x| > .6744
|
| + if (x < 0) {
|
| + x = -x;
|
| + y = -y;
|
| + }
|
| + z = PIO4 - x;
|
| + w = PIO4LO - y;
|
| + x = z + w;
|
| + y = 0;
|
| + }
|
| + z = x * x;
|
| + w = z * z;
|
| +
|
| + // Break x^5 * (T1 + x^2*T2 + ...) into
|
| + // x^5 * (T1 + x^4*T3 + ... + x^20*T11) +
|
| + // x^5 * (x^2 * (T2 + x^4*T4 + ... + x^22*T12))
|
| + var r = KTAN(1) + w * (KTAN(3) + w * (KTAN(5) +
|
| + w * (KTAN(7) + w * (KTAN(9) + w * KTAN(11)))));
|
| + var v = z * (KTAN(2) + w * (KTAN(4) + w * (KTAN(6) +
|
| + w * (KTAN(8) + w * (KTAN(10) + w * KTAN(12))))));
|
| + var s = z * x;
|
| + r = y + z * (s * (r + v) + y);
|
| + r = r + KTAN(0) * s;
|
| + w = x + r;
|
| + if (ix >= 0x3fe59428) {
|
| + return (1 - ((hx >> 30) & 2)) *
|
| + (returnTan - 2.0 * (x - (w * w / (w + returnTan) - r)));
|
| + }
|
| + if (returnTan == 1) {
|
| + return w;
|
| + } else {
|
| + z = %_ConstructDouble(%_DoubleHi(w), 0);
|
| + v = r - (z - x);
|
| + var a = -1 / w;
|
| + var t = %_ConstructDouble(%_DoubleHi(a), 0);
|
| + s = 1 + t * z;
|
| + return t + a * (s + t * v);
|
| + }
|
| +}
|
| +
|
| +function MathSinSlow(x) {
|
| + REMPIO2(x);
|
| + var sign = 1 - (n & 2);
|
| + if (n & 1) {
|
| + RETURN_KERNELCOS(y0, y1, * sign);
|
| + } else {
|
| + RETURN_KERNELSIN(y0, y1, * sign);
|
| + }
|
| +}
|
| +
|
| +function MathCosSlow(x) {
|
| + REMPIO2(x);
|
| + if (n & 1) {
|
| + var sign = (n & 2) - 1;
|
| + RETURN_KERNELSIN(y0, y1, * sign);
|
| + } else {
|
| + var sign = 1 - (n & 2);
|
| + RETURN_KERNELCOS(y0, y1, * sign);
|
| + }
|
| +}
|
| +
|
| +// ECMA 262 - 15.8.2.16
|
| +function MathSin(x) {
|
| + x = x * 1; // Convert to number.
|
| + if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) {
|
| + // |x| < pi/4, approximately. No reduction needed.
|
| + RETURN_KERNELSIN(x, 0, /* empty */);
|
| + }
|
| + return MathSinSlow(x);
|
| +}
|
| +
|
| +// ECMA 262 - 15.8.2.7
|
| +function MathCos(x) {
|
| + x = x * 1; // Convert to number.
|
| + if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) {
|
| + // |x| < pi/4, approximately. No reduction needed.
|
| + RETURN_KERNELCOS(x, 0, /* empty */);
|
| + }
|
| + return MathCosSlow(x);
|
| +}
|
| +
|
| +// ECMA 262 - 15.8.2.18
|
| +function MathTan(x) {
|
| + x = x * 1; // Convert to number.
|
| + if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) {
|
| + // |x| < pi/4, approximately. No reduction needed.
|
| + return KernelTan(x, 0, 1);
|
| + }
|
| + REMPIO2(x);
|
| + return KernelTan(y0, y1, (n & 1) ? -1 : 1);
|
| +}
|
|
|