Index: test/mjsunit/sin-cos.js |
diff --git a/test/mjsunit/sin-cos.js b/test/mjsunit/sin-cos.js |
index 02ae57ba2773529d20e683eb63fc7b10d135bd26..71fae2056d31c070cb4a4f6d942498530bb05497 100644 |
--- a/test/mjsunit/sin-cos.js |
+++ b/test/mjsunit/sin-cos.js |
@@ -157,8 +157,8 @@ assertEquals(0, Math.sin("0x00000")); |
assertEquals(1, Math.cos("0x00000")); |
assertTrue(isNaN(Math.sin(Infinity))); |
assertTrue(isNaN(Math.cos("-Infinity"))); |
-assertEquals("Infinity", String(Math.tan(Math.PI/2))); |
-assertEquals("-Infinity", String(Math.tan(-Math.PI/2))); |
+assertTrue(Math.tan(Math.PI/2) > 1e16); |
+assertTrue(Math.tan(-Math.PI/2) < -1e16); |
assertEquals("-Infinity", String(1/Math.sin("-0"))); |
// Assert that the remainder after division by pi is reasonably precise. |
@@ -185,3 +185,96 @@ for (var i = -1024; i < 1024; i++) { |
assertFalse(isNaN(Math.cos(1.57079632679489700))); |
assertFalse(isNaN(Math.cos(-1e-100))); |
assertFalse(isNaN(Math.cos(-1e-323))); |
+ |
+// Tests for specific values expected from the fdlibm implementation. |
+ |
+var two_32 = Math.pow(2, -32); |
+var two_28 = Math.pow(2, -28); |
+ |
+// Tests for Math.sin for |x| < pi/4 |
+assertEquals(Infinity, 1/Math.sin(+0.0)); |
+assertEquals(-Infinity, 1/Math.sin(-0.0)); |
+// sin(x) = x for x < 2^-27 |
+assertEquals(two_32, Math.sin(two_32)); |
+assertEquals(-two_32, Math.sin(-two_32)); |
+// sin(pi/8) = sqrt(sqrt(2)-1)/2^(3/4) |
+assertEquals(0.3826834323650898, Math.sin(Math.PI/8)); |
+assertEquals(-0.3826834323650898, -Math.sin(Math.PI/8)); |
+ |
+// Tests for Math.cos for |x| < pi/4 |
+// cos(x) = 1 for |x| < 2^-27 |
+assertEquals(1, Math.cos(two_32)); |
+assertEquals(1, Math.cos(-two_32)); |
+// Test KERNELCOS for |x| < 0.3. |
+// cos(pi/20) = sqrt(sqrt(2)*sqrt(sqrt(5)+5)+4)/2^(3/2) |
+assertEquals(0.9876883405951378, Math.cos(Math.PI/20)); |
+// Test KERNELCOS for x ~= 0.78125 |
+assertEquals(0.7100335477927638, Math.cos(0.7812504768371582)); |
+assertEquals(0.7100338835660797, Math.cos(0.78125)); |
+// Test KERNELCOS for |x| > 0.3. |
+// cos(pi/8) = sqrt(sqrt(2)+1)/2^(3/4) |
+assertEquals(0.9238795325112867, Math.cos(Math.PI/8)); |
+// Test KERNELTAN for |x| < 0.67434. |
+assertEquals(0.9238795325112867, Math.cos(-Math.PI/8)); |
+ |
+// Tests for Math.tan for |x| < pi/4 |
+assertEquals(Infinity, 1/Math.tan(0.0)); |
+assertEquals(-Infinity, 1/Math.tan(-0.0)); |
+// tan(x) = x for |x| < 2^-28 |
+assertEquals(two_32, Math.tan(two_32)); |
+assertEquals(-two_32, Math.tan(-two_32)); |
+// Test KERNELTAN for |x| > 0.67434. |
+assertEquals(0.8211418015898941, Math.tan(11/16)); |
+assertEquals(-0.8211418015898941, Math.tan(-11/16)); |
+assertEquals(0.41421356237309503, Math.tan(Math.PI / 8)); |
+ |
+// Tests for Math.sin. |
+assertEquals(0.479425538604203, Math.sin(0.5)); |
+assertEquals(-0.479425538604203, Math.sin(-0.5)); |
+assertEquals(1, Math.sin(Math.PI/2)); |
+assertEquals(-1, Math.sin(-Math.PI/2)); |
+// Test that Math.sin(Math.PI) != 0 since Math.PI is not exact. |
+assertEquals(1.2246467991473532e-16, Math.sin(Math.PI)); |
+assertEquals(-7.047032979958965e-14, Math.sin(2200*Math.PI)); |
+// Test Math.sin for various phases. |
+assertEquals(-0.7071067811865477, Math.sin(7/4 * Math.PI)); |
+assertEquals(0.7071067811865474, Math.sin(9/4 * Math.PI)); |
+assertEquals(0.7071067811865483, Math.sin(11/4 * Math.PI)); |
+assertEquals(-0.7071067811865479, Math.sin(13/4 * Math.PI)); |
+assertEquals(-3.2103381051568376e-11, Math.sin(1048576/4 * Math.PI)); |
+ |
+// Tests for Math.cos. |
+assertEquals(1, Math.cos(two_28)); |
+// Cover different code paths in KERNELCOS. |
+assertEquals(0.9689124217106447, Math.cos(0.25)); |
+assertEquals(0.8775825618903728, Math.cos(0.5)); |
+assertEquals(0.7073882691671998, Math.cos(0.785)); |
+// Test that Math.cos(Math.PI/2) != 0 since Math.PI is not exact. |
+assertEquals(6.123233995736766e-17, Math.cos(Math.PI/2)); |
+// Test Math.cos for various phases. |
+assertEquals(0.7071067811865474, Math.cos(7/4 * Math.PI)); |
+assertEquals(0.7071067811865477, Math.cos(9/4 * Math.PI)); |
+assertEquals(-0.7071067811865467, Math.cos(11/4 * Math.PI)); |
+assertEquals(-0.7071067811865471, Math.cos(13/4 * Math.PI)); |
+assertEquals(0.9367521275331447, Math.cos(1000000)); |
+assertEquals(-3.435757038074824e-12, Math.cos(1048575/2 * Math.PI)); |
+ |
+// Tests for Math.tan. |
+assertEquals(two_28, Math.tan(two_28)); |
+// Test that Math.tan(Math.PI/2) != Infinity since Math.PI is not exact. |
+assertEquals(1.633123935319537e16, Math.tan(Math.PI/2)); |
+// Cover different code paths in KERNELTAN (tangent and cotangent) |
+assertEquals(0.5463024898437905, Math.tan(0.5)); |
+assertEquals(2.0000000000000027, Math.tan(1.107148717794091)); |
+assertEquals(-1.0000000000000004, Math.tan(7/4*Math.PI)); |
+assertEquals(0.9999999999999994, Math.tan(9/4*Math.PI)); |
+assertEquals(-6.420676210313675e-11, Math.tan(1048576/2*Math.PI)); |
+assertEquals(2.910566692924059e11, Math.tan(1048575/2*Math.PI)); |
+ |
+// Test Hayne-Panek reduction. |
+assertEquals(0.377820109360752e0, Math.sin(Math.pow(2, 120))); |
+assertEquals(-0.9258790228548379e0, Math.cos(Math.pow(2, 120))); |
+assertEquals(-0.40806638884180424e0, Math.tan(Math.pow(2, 120))); |
+assertEquals(-0.377820109360752e0, Math.sin(-Math.pow(2, 120))); |
+assertEquals(-0.9258790228548379e0, Math.cos(-Math.pow(2, 120))); |
+assertEquals(0.40806638884180424e0, Math.tan(-Math.pow(2, 120))); |