OLD | NEW |
---|---|
(Empty) | |
1 // The following is adapted from fdlibm (http://www.netlib.org/fdlibm), | |
2 // | |
3 // ==================================================== | |
4 // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | |
5 // | |
6 // Developed at SunSoft, a Sun Microsystems, Inc. business. | |
7 // Permission to use, copy, modify, and distribute this | |
8 // software is freely granted, provided that this notice | |
9 // is preserved. | |
10 // ==================================================== | |
11 // | |
12 // The original source code covered by the above license above has been | |
13 // modified significantly by Google Inc. | |
14 // Copyright 2014 the V8 project authors. All rights reserved. | |
15 // | |
16 // The following is a straightforward translation of fdlibm routines for | |
17 // sin, cos, and tan, by Raymond Toy (rtoy@google.com). | |
18 | |
19 | |
20 var kTrig; // Initialized to a Float64Array during genesis and is not writable. | |
21 | |
22 // Compute k and r such that x - k*pi/2 = r where |r| < pi/4. For | |
23 // precision, r is returned as two values y0 and y1 such that r = y0 + y1 | |
24 // to more than double precision. | |
25 macro REMPIO2(X) | |
26 var n, y0, y1; | |
27 var hx = %_DoubleHi(X); | |
28 var ix = hx & 0x7fffffff; | |
29 | |
30 if (ix < 0x4002d97c) { | |
31 // |X| ~< 3*pi/4, special case with n = +/- 1 | |
32 if (hx > 0) { | |
33 var z = X - kTrig[1]; | |
34 if (ix != 0x3ff921fb) { | |
35 // 33+53 bit pi is good enough | |
36 y0 = z - kTrig[2]; | |
37 y1 = (z - y0) - kTrig[2]; | |
38 } else { | |
39 // near pi/2, use 33+33+53 bit pi | |
40 z -= kTrig[3]; | |
41 y0 = z - kTrig[4]; | |
42 y1 = (z - y0) - kTrig[4]; | |
43 } | |
44 n = 1; | |
45 } else { | |
46 // Negative X | |
47 var z = X + kTrig[1]; | |
48 if (ix != 0x3ff921fb) { | |
49 // 33+53 bit pi is good enough | |
50 y0 = z + kTrig[2]; | |
51 y1 = (z - y0) + kTrig[2]; | |
52 } else { | |
53 // near pi/2, use 33+33+53 bit pi | |
54 z += kTrig[3]; | |
55 y0 = z + kTrig[4]; | |
56 y1 = (z - y0) + kTrig[4]; | |
57 } | |
58 n = -1; | |
59 } | |
60 } else if (ix <= 0x413921fb) { | |
61 // |X| ~<= 2^19*(pi/2), medium size | |
62 var t = MathAbs(X); | |
63 n = (t * kTrig[0] + 0.5) | 0; | |
64 var r = t - n * kTrig[1]; | |
65 var w = n * kTrig[2]; | |
66 // First round good to 85 bit | |
67 y0 = r - w; | |
68 if (ix - (%_DoubleHi(y0) & 0x7ff00000) > 0x1000000) { | |
69 // 2nd iteration needed, good to 118 | |
70 t = r; | |
71 w = n * kTrig[3]; | |
72 r = t - w; | |
73 w = n * kTrig[4] - ((t - r) - w); | |
74 y0 = r - w; | |
75 if (ix - (%_DoubleHi(y0) & 0x7ff00000) > 0x3100000) { | |
76 // 3rd iteration needed. 151 bits accuracy | |
77 t = r; | |
78 w = n * kTrig[5]; | |
79 r = t - w; | |
80 w = n * kTrig[6] - ((t - r) - w); | |
81 y0 = r - w; | |
82 } | |
83 } | |
84 y1 = (r - y0) - w; | |
85 if (hx < 0) { | |
86 n = -n; | |
87 y0 = -y0; | |
88 y1 = -y1; | |
89 } | |
90 } else { | |
91 // Need to do full Payne-Hanek reduction here. | |
92 var r = %RemPiO2(X); | |
93 n = r[0]; | |
94 y0 = r[1]; | |
95 y1 = r[2]; | |
96 } | |
97 endmacro | |
98 | |
99 | |
100 // __kernel_sin(X, Y, IY) | |
101 // kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854 | |
102 // Input X is assumed to be bounded by ~pi/4 in magnitude. | |
103 // Input Y is the tail of X so that x = X + Y. | |
104 // | |
105 // Algorithm | |
106 // 1. Since ieee_sin(-x) = -ieee_sin(x), we need only to consider positive x. | |
107 // 2. ieee_sin(x) is approximated by a polynomial of degree 13 on | |
108 // [0,pi/4] | |
109 // 3 13 | |
110 // sin(x) ~ x + S1*x + ... + S6*x | |
111 // where | |
112 // | |
113 // |ieee_sin(x) 2 4 6 8 10 12 | -58 | |
114 // |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2 | |
115 // | x | | |
Raymond Toy
2014/07/30 19:55:05
Please fix the alignment. The exponents and right
Yang
2014/08/01 07:29:56
I aligned it to visually match the port you gave m
| |
116 // | |
117 // 3. ieee_sin(X+Y) = ieee_sin(X) + sin'(X')*Y | |
118 // ~ ieee_sin(X) + (1-X*X/2)*Y | |
119 // For better accuracy, let | |
120 // 3 2 2 2 2 | |
121 // r = X *(S2+X *(S3+X *(S4+X *(S5+X *S6)))) | |
122 // then 3 2 | |
123 // sin(x) = X + (S1*X + (X *(r-Y/2)+Y)) | |
124 // | |
125 macro RETURN_KERNELSIN(X, Y, SIGN) | |
126 var z = X * X; | |
127 var v = z * X; | |
128 var r = kTrig[8] + z * (kTrig[9] + z * (kTrig[10] + | |
129 z * (kTrig[11] + z * kTrig[12]))); | |
130 return (X - ((z * (0.5 * Y - v * r) - Y) - v * kTrig[7])) SIGN; | |
131 endmacro | |
132 | |
133 // __kernel_cos(X, Y) | |
134 // kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164 | |
135 // Input X is assumed to be bounded by ~pi/4 in magnitude. | |
136 // Input Y is the tail of X so that x = X + Y. | |
137 // | |
138 // Algorithm | |
139 // 1. Since ieee_cos(-x) = ieee_cos(x), we need only to consider positive x. | |
140 // 2. ieee_cos(x) is approximated by a polynomial of degree 14 on | |
141 // [0,pi/4] | |
142 // 4 14 | |
143 // cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x | |
144 // where the remez error is | |
145 // | |
146 // | 2 4 6 8 10 12 14 | -58 | |
147 // |ieee_cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2 | |
Raymond Toy
2014/07/30 19:55:05
Fix alignment of exponents.
Yang
2014/08/01 07:29:56
Done.
| |
148 // | | | |
149 // | |
150 // 4 6 8 10 12 14 | |
151 // 3. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then | |
152 // ieee_cos(x) = 1 - x*x/2 + r | |
153 // since ieee_cos(X+Y) ~ ieee_cos(X) - ieee_sin(X)*Y | |
154 // ~ ieee_cos(X) - X*Y, | |
155 // a correction term is necessary in ieee_cos(x) and hence | |
156 // cos(X+Y) = 1 - (X*X/2 - (r - X*Y)) | |
157 // For better accuracy when x > 0.3, let qx = |x|/4 with | |
158 // the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125. | |
159 // Then | |
160 // cos(X+Y) = (1-qx) - ((X*X/2-qx) - (r-X*Y)). | |
161 // Note that 1-qx and (X*X/2-qx) is EXACT here, and the | |
162 // magnitude of the latter is at least a quarter of X*X/2, | |
163 // thus, reducing the rounding error in the subtraction. | |
164 // | |
165 macro RETURN_KERNELCOS(X, Y, SIGN) | |
166 var ix = %_DoubleHi(X) & 0x7fffffff; | |
167 var z = X * X; | |
168 var r = z * (kTrig[13] + z * (kTrig[14] + z * (kTrig[15] + | |
169 z * (kTrig[16] + z * (kTrig[17] + z * kTrig[18]))))); | |
170 if (ix < 0x3fd33333) { | |
171 return (1 - (0.5 * z - (z * r - X * Y))) SIGN; | |
172 } else { | |
173 var qx; | |
174 if (ix > 0x3fe90000) { | |
175 qx = 0.28125; | |
176 } else { | |
177 qx = %_ConstructDouble(%_DoubleHi(0.25 * X), 0); | |
178 } | |
179 var hz = 0.5 * z - qx; | |
180 return (1 - qx - (hz - (z * r - X * Y))) SIGN; | |
181 } | |
182 endmacro | |
183 | |
184 // kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 | |
185 // Input x is assumed to be bounded by ~pi/4 in magnitude. | |
186 // Input y is the tail of x. | |
187 // Input k indicates whether ieee_tan (if k = 1) or -1/tan (if k = -1) | |
188 // is returned. | |
189 // | |
190 // Algorithm | |
191 // 1. Since ieee_tan(-x) = -ieee_tan(x), we need only to consider positive x. | |
192 // 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0. | |
193 // 3. ieee_tan(x) is approximated by a odd polynomial of degree 27 on | |
194 // [0,0.67434] | |
195 // 3 27 | |
196 // tan(x) ~ x + T1*x + ... + T13*x | |
197 // where | |
198 // | |
199 // |ieee_tan(x) 2 4 26 | -59.2 | |
200 // |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2 | |
Raymond Toy
2014/07/30 19:55:05
Line up exponents correctly.
Yang
2014/08/01 07:29:56
Done.
| |
201 // | x | | |
202 // | |
203 // Note: ieee_tan(x+y) = ieee_tan(x) + tan'(x)*y | |
204 // ~ ieee_tan(x) + (1+x*x)*y | |
205 // Therefore, for better accuracy in computing ieee_tan(x+y), let | |
206 // 3 2 2 2 2 | |
207 // r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) | |
208 // then | |
209 // 3 2 | |
210 // tan(x+y) = x + (T1*x + (x *(r+y)+y)) | |
211 // | |
212 // 4. For x in [0.67434,pi/4], let y = pi/4 - x, then | |
213 // tan(x) = ieee_tan(pi/4-y) = (1-ieee_tan(y))/(1+ieee_tan(y)) | |
214 // = 1 - 2*(ieee_tan(y) - (ieee_tan(y)^2)/(1+ieee_tan(y))) | |
215 // | |
216 // Set returnTan to 1 for tan; -1 for cot. Anything else is illegal | |
217 // and will cause incorrect results. | |
218 // | |
219 function KernelTan(x, y, returnTan) { | |
220 var z; | |
221 var w; | |
222 var hx = %_DoubleHi(x); | |
223 var ix = hx & 0x7fffffff; | |
224 | |
225 if (ix < 0x3e300000) { | |
226 // x < 2^-28 | |
227 if (((ix | %_DoubleLo(x)) | (returnTan + 1)) == 0) { | |
228 return 1 / MathAbs(x); | |
229 } else { | |
230 if (returnTan == 1) { | |
231 return x; | |
232 } else { | |
233 // Compute -1/(x + y) carefully | |
234 var w = x + y; | |
235 var z = %_ConstructDouble(%_DoubleHi(w), 0); | |
236 var v = y - (z - x); | |
237 var a = -1 / w; | |
238 var t = %_ConstructDouble(%_DoubleHi(a), 0); | |
239 var s = 1 + t * z; | |
240 return t + a * (s + t * v); | |
241 } | |
242 } | |
243 } | |
244 if (ix >= 0x3fe59429) { | |
245 // |x| > .6744 | |
246 if (x < 0) { | |
247 x = -x; | |
248 y = -y; | |
249 } | |
250 z = kTrig[32] - x; | |
251 w = kTrig[33] - y; | |
252 x = z + w; | |
253 y = 0; | |
254 } | |
255 z = x * x; | |
256 w = z * z; | |
257 | |
258 var r = kTrig[20] + w * (kTrig[22] + w * (kTrig[24] + | |
259 w * (kTrig[26] + w * (kTrig[28] + w * kTrig[30])))); | |
260 var v = z * (kTrig[21] + w * (kTrig[23] + w * (kTrig[25] + | |
261 w * (kTrig[27] + w * (kTrig[29] + w * kTrig[31]))))); | |
262 var s = z * x; | |
263 r = y + z * (s * (r + v) + y); | |
264 r = r + kTrig[19] * s; | |
265 w = x + r; | |
266 if (ix >= 0x3fe59428) { | |
267 return (1 - ((hx >> 30) & 2)) * | |
268 (returnTan - 2.0 * (x - (w * w / (w + returnTan) - r))); | |
269 } | |
270 if (returnTan == 1) { | |
271 return w; | |
272 } else { | |
273 z = %_ConstructDouble(%_DoubleHi(w), 0); | |
274 v = r - (z - x); | |
275 var a = -1 / w; | |
276 var t = %_ConstructDouble(%_DoubleHi(a), 0); | |
277 s = 1 + t * z; | |
278 return t + a * (s + t * v); | |
279 } | |
280 } | |
281 | |
282 function MathSinSlow(x) { | |
283 REMPIO2(x); | |
Raymond Toy
2014/07/30 19:55:05
Since we're doing the slow path anyway, I think it
Yang
2014/08/01 07:29:56
We just generally don't care about performance for
| |
284 var sign = 1 - (n & 2); | |
285 if (n & 1) { | |
286 RETURN_KERNELCOS(y0, y1, * sign); | |
287 } else { | |
288 RETURN_KERNELSIN(y0, y1, * sign); | |
289 } | |
290 } | |
291 | |
292 function MathCosSlow(x) { | |
293 REMPIO2(x); | |
294 if (n & 1) { | |
295 var sign = (n & 2) - 1; | |
296 RETURN_KERNELSIN(y0, y1, * sign); | |
297 } else { | |
298 var sign = 1 - (n & 2); | |
299 RETURN_KERNELCOS(y0, y1, * sign); | |
300 } | |
301 } | |
302 | |
303 // ECMA 262 - 15.8.2.16 | |
304 function MathSin(x) { | |
305 x = x * 1; // Convert to number. | |
306 if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) { | |
307 // |x| < pi/4, approximately. No reduction needed. | |
308 RETURN_KERNELSIN(x, 0, /* empty */); | |
309 } | |
310 return MathSinSlow(x); | |
311 } | |
312 | |
313 // ECMA 262 - 15.8.2.7 | |
314 function MathCos(x) { | |
315 x = x * 1; // Convert to number. | |
316 if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) { | |
317 // |x| < pi/4, approximately. No reduction needed. | |
318 RETURN_KERNELCOS(x, 0, /* empty */); | |
319 } | |
320 return MathCosSlow(x); | |
321 } | |
322 | |
323 // ECMA 262 - 15.8.2.18 | |
324 function MathTan(x) { | |
325 x = x * 1; // Convert to number. | |
326 if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) { | |
327 // |x| < pi/4, approximately. No reduction needed. | |
328 return KernelTan(x, 0, 1); | |
329 } | |
330 REMPIO2(x); | |
Raymond Toy
2014/07/30 19:55:05
Like for MathSinSlow and MathCosSlow, I think you
Yang
2014/08/01 07:29:56
Done.
| |
331 return KernelTan(y0, y1, (n & 1) ? -1 : 1); | |
332 } | |
OLD | NEW |