OLD | NEW |
(Empty) | |
| 1 // The following is adapted from fdlibm (http://www.netlib.org/fdlibm), |
| 2 // |
| 3 // ==================================================== |
| 4 // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 5 // |
| 6 // Developed at SunSoft, a Sun Microsystems, Inc. business. |
| 7 // Permission to use, copy, modify, and distribute this |
| 8 // software is freely granted, provided that this notice |
| 9 // is preserved. |
| 10 // ==================================================== |
| 11 // |
| 12 // The original source code covered by the above license above has been |
| 13 // modified significantly by Google Inc. |
| 14 // Copyright 2014 the V8 project authors. All rights reserved. |
| 15 // |
| 16 // The following is a straightforward translation of fdlibm routines for |
| 17 // sin, cos, and tan, by Raymond Toy (rtoy@google.com). |
| 18 |
| 19 |
| 20 var kTrig; // Initialized to a Float64Array during genesis and is not writable. |
| 21 |
| 22 const INVPIO2 = kTrig[0]; |
| 23 const PIO2_1 = kTrig[1]; |
| 24 const PIO2_1T = kTrig[2]; |
| 25 const PIO2_2 = kTrig[3]; |
| 26 const PIO2_2T = kTrig[4]; |
| 27 const PIO2_3 = kTrig[5]; |
| 28 const PIO2_3T = kTrig[6]; |
| 29 const PIO4 = kTrig[32]; |
| 30 const PIO4LO = kTrig[33]; |
| 31 |
| 32 // Compute k and r such that x - k*pi/2 = r where |r| < pi/4. For |
| 33 // precision, r is returned as two values y0 and y1 such that r = y0 + y1 |
| 34 // to more than double precision. |
| 35 macro REMPIO2(X) |
| 36 var n, y0, y1; |
| 37 var hx = %_DoubleHi(X); |
| 38 var ix = hx & 0x7fffffff; |
| 39 |
| 40 if (ix < 0x4002d97c) { |
| 41 // |X| ~< 3*pi/4, special case with n = +/- 1 |
| 42 if (hx > 0) { |
| 43 var z = X - PIO2_1; |
| 44 if (ix != 0x3ff921fb) { |
| 45 // 33+53 bit pi is good enough |
| 46 y0 = z - PIO2_1T; |
| 47 y1 = (z - y0) - PIO2_1T; |
| 48 } else { |
| 49 // near pi/2, use 33+33+53 bit pi |
| 50 z -= PIO2_2; |
| 51 y0 = z - PIO2_2T; |
| 52 y1 = (z - y0) - PIO2_2T; |
| 53 } |
| 54 n = 1; |
| 55 } else { |
| 56 // Negative X |
| 57 var z = X + PIO2_1; |
| 58 if (ix != 0x3ff921fb) { |
| 59 // 33+53 bit pi is good enough |
| 60 y0 = z + PIO2_1T; |
| 61 y1 = (z - y0) + PIO2_1T; |
| 62 } else { |
| 63 // near pi/2, use 33+33+53 bit pi |
| 64 z += PIO2_2; |
| 65 y0 = z + PIO2_2T; |
| 66 y1 = (z - y0) + PIO2_2T; |
| 67 } |
| 68 n = -1; |
| 69 } |
| 70 } else if (ix <= 0x413921fb) { |
| 71 // |X| ~<= 2^19*(pi/2), medium size |
| 72 var t = MathAbs(X); |
| 73 n = (t * INVPIO2 + 0.5) | 0; |
| 74 var r = t - n * PIO2_1; |
| 75 var w = n * PIO2_1T; |
| 76 // First round good to 85 bit |
| 77 y0 = r - w; |
| 78 if (ix - (%_DoubleHi(y0) & 0x7ff00000) > 0x1000000) { |
| 79 // 2nd iteration needed, good to 118 |
| 80 t = r; |
| 81 w = n * PIO2_2; |
| 82 r = t - w; |
| 83 w = n * PIO2_2T - ((t - r) - w); |
| 84 y0 = r - w; |
| 85 if (ix - (%_DoubleHi(y0) & 0x7ff00000) > 0x3100000) { |
| 86 // 3rd iteration needed. 151 bits accuracy |
| 87 t = r; |
| 88 w = n * PIO2_3; |
| 89 r = t - w; |
| 90 w = n * PIO2_3T - ((t - r) - w); |
| 91 y0 = r - w; |
| 92 } |
| 93 } |
| 94 y1 = (r - y0) - w; |
| 95 if (hx < 0) { |
| 96 n = -n; |
| 97 y0 = -y0; |
| 98 y1 = -y1; |
| 99 } |
| 100 } else { |
| 101 // Need to do full Payne-Hanek reduction here. |
| 102 var r = %RemPiO2(X); |
| 103 n = r[0]; |
| 104 y0 = r[1]; |
| 105 y1 = r[2]; |
| 106 } |
| 107 endmacro |
| 108 |
| 109 |
| 110 // __kernel_sin(X, Y, IY) |
| 111 // kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854 |
| 112 // Input X is assumed to be bounded by ~pi/4 in magnitude. |
| 113 // Input Y is the tail of X so that x = X + Y. |
| 114 // |
| 115 // Algorithm |
| 116 // 1. Since ieee_sin(-x) = -ieee_sin(x), we need only to consider positive x. |
| 117 // 2. ieee_sin(x) is approximated by a polynomial of degree 13 on |
| 118 // [0,pi/4] |
| 119 // 3 13 |
| 120 // sin(x) ~ x + S1*x + ... + S6*x |
| 121 // where |
| 122 // |
| 123 // |ieee_sin(x) 2 4 6 8 10 12 | -58 |
| 124 // |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2 |
| 125 // | x | |
| 126 // |
| 127 // 3. ieee_sin(X+Y) = ieee_sin(X) + sin'(X')*Y |
| 128 // ~ ieee_sin(X) + (1-X*X/2)*Y |
| 129 // For better accuracy, let |
| 130 // 3 2 2 2 2 |
| 131 // r = X *(S2+X *(S3+X *(S4+X *(S5+X *S6)))) |
| 132 // then 3 2 |
| 133 // sin(x) = X + (S1*X + (X *(r-Y/2)+Y)) |
| 134 // |
| 135 macro KSIN(x) |
| 136 kTrig[7+x] |
| 137 endmacro |
| 138 |
| 139 macro RETURN_KERNELSIN(X, Y, SIGN) |
| 140 var z = X * X; |
| 141 var v = z * X; |
| 142 var r = KSIN(1) + z * (KSIN(2) + z * (KSIN(3) + |
| 143 z * (KSIN(4) + z * KSIN(5)))); |
| 144 return (X - ((z * (0.5 * Y - v * r) - Y) - v * KSIN(0))) SIGN; |
| 145 endmacro |
| 146 |
| 147 // __kernel_cos(X, Y) |
| 148 // kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164 |
| 149 // Input X is assumed to be bounded by ~pi/4 in magnitude. |
| 150 // Input Y is the tail of X so that x = X + Y. |
| 151 // |
| 152 // Algorithm |
| 153 // 1. Since ieee_cos(-x) = ieee_cos(x), we need only to consider positive x. |
| 154 // 2. ieee_cos(x) is approximated by a polynomial of degree 14 on |
| 155 // [0,pi/4] |
| 156 // 4 14 |
| 157 // cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x |
| 158 // where the remez error is |
| 159 // |
| 160 // | 2 4 6 8 10 12 14 | -58 |
| 161 // |ieee_cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2 |
| 162 // | | |
| 163 // |
| 164 // 4 6 8 10 12 14 |
| 165 // 3. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then |
| 166 // ieee_cos(x) = 1 - x*x/2 + r |
| 167 // since ieee_cos(X+Y) ~ ieee_cos(X) - ieee_sin(X)*Y |
| 168 // ~ ieee_cos(X) - X*Y, |
| 169 // a correction term is necessary in ieee_cos(x) and hence |
| 170 // cos(X+Y) = 1 - (X*X/2 - (r - X*Y)) |
| 171 // For better accuracy when x > 0.3, let qx = |x|/4 with |
| 172 // the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125. |
| 173 // Then |
| 174 // cos(X+Y) = (1-qx) - ((X*X/2-qx) - (r-X*Y)). |
| 175 // Note that 1-qx and (X*X/2-qx) is EXACT here, and the |
| 176 // magnitude of the latter is at least a quarter of X*X/2, |
| 177 // thus, reducing the rounding error in the subtraction. |
| 178 // |
| 179 macro KCOS(x) |
| 180 kTrig[13+x] |
| 181 endmacro |
| 182 |
| 183 macro RETURN_KERNELCOS(X, Y, SIGN) |
| 184 var ix = %_DoubleHi(X) & 0x7fffffff; |
| 185 var z = X * X; |
| 186 var r = z * (KCOS(0) + z * (KCOS(1) + z * (KCOS(2)+ |
| 187 z * (KCOS(3) + z * (KCOS(4) + z * KCOS(5)))))); |
| 188 if (ix < 0x3fd33333) { // |x| ~< 0.3 |
| 189 return (1 - (0.5 * z - (z * r - X * Y))) SIGN; |
| 190 } else { |
| 191 var qx; |
| 192 if (ix > 0x3fe90000) { // |x| > 0.78125 |
| 193 qx = 0.28125; |
| 194 } else { |
| 195 qx = %_ConstructDouble(%_DoubleHi(0.25 * X), 0); |
| 196 } |
| 197 var hz = 0.5 * z - qx; |
| 198 return (1 - qx - (hz - (z * r - X * Y))) SIGN; |
| 199 } |
| 200 endmacro |
| 201 |
| 202 // kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 |
| 203 // Input x is assumed to be bounded by ~pi/4 in magnitude. |
| 204 // Input y is the tail of x. |
| 205 // Input k indicates whether ieee_tan (if k = 1) or -1/tan (if k = -1) |
| 206 // is returned. |
| 207 // |
| 208 // Algorithm |
| 209 // 1. Since ieee_tan(-x) = -ieee_tan(x), we need only to consider positive x. |
| 210 // 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0. |
| 211 // 3. ieee_tan(x) is approximated by a odd polynomial of degree 27 on |
| 212 // [0,0.67434] |
| 213 // 3 27 |
| 214 // tan(x) ~ x + T1*x + ... + T13*x |
| 215 // where |
| 216 // |
| 217 // |ieee_tan(x) 2 4 26 | -59.2 |
| 218 // |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2 |
| 219 // | x | |
| 220 // |
| 221 // Note: ieee_tan(x+y) = ieee_tan(x) + tan'(x)*y |
| 222 // ~ ieee_tan(x) + (1+x*x)*y |
| 223 // Therefore, for better accuracy in computing ieee_tan(x+y), let |
| 224 // 3 2 2 2 2 |
| 225 // r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) |
| 226 // then |
| 227 // 3 2 |
| 228 // tan(x+y) = x + (T1*x + (x *(r+y)+y)) |
| 229 // |
| 230 // 4. For x in [0.67434,pi/4], let y = pi/4 - x, then |
| 231 // tan(x) = ieee_tan(pi/4-y) = (1-ieee_tan(y))/(1+ieee_tan(y)) |
| 232 // = 1 - 2*(ieee_tan(y) - (ieee_tan(y)^2)/(1+ieee_tan(y))) |
| 233 // |
| 234 // Set returnTan to 1 for tan; -1 for cot. Anything else is illegal |
| 235 // and will cause incorrect results. |
| 236 // |
| 237 macro KTAN(x) |
| 238 kTrig[19+x] |
| 239 endmacro |
| 240 |
| 241 function KernelTan(x, y, returnTan) { |
| 242 var z; |
| 243 var w; |
| 244 var hx = %_DoubleHi(x); |
| 245 var ix = hx & 0x7fffffff; |
| 246 |
| 247 if (ix < 0x3e300000) { // |x| < 2^-28 |
| 248 if (((ix | %_DoubleLo(x)) | (returnTan + 1)) == 0) { |
| 249 // x == 0 && returnTan = -1 |
| 250 return 1 / MathAbs(x); |
| 251 } else { |
| 252 if (returnTan == 1) { |
| 253 return x; |
| 254 } else { |
| 255 // Compute -1/(x + y) carefully |
| 256 var w = x + y; |
| 257 var z = %_ConstructDouble(%_DoubleHi(w), 0); |
| 258 var v = y - (z - x); |
| 259 var a = -1 / w; |
| 260 var t = %_ConstructDouble(%_DoubleHi(a), 0); |
| 261 var s = 1 + t * z; |
| 262 return t + a * (s + t * v); |
| 263 } |
| 264 } |
| 265 } |
| 266 if (ix >= 0x3fe59429) { // |x| > .6744 |
| 267 if (x < 0) { |
| 268 x = -x; |
| 269 y = -y; |
| 270 } |
| 271 z = PIO4 - x; |
| 272 w = PIO4LO - y; |
| 273 x = z + w; |
| 274 y = 0; |
| 275 } |
| 276 z = x * x; |
| 277 w = z * z; |
| 278 |
| 279 // Break x^5 * (T1 + x^2*T2 + ...) into |
| 280 // x^5 * (T1 + x^4*T3 + ... + x^20*T11) + |
| 281 // x^5 * (x^2 * (T2 + x^4*T4 + ... + x^22*T12)) |
| 282 var r = KTAN(1) + w * (KTAN(3) + w * (KTAN(5) + |
| 283 w * (KTAN(7) + w * (KTAN(9) + w * KTAN(11))))); |
| 284 var v = z * (KTAN(2) + w * (KTAN(4) + w * (KTAN(6) + |
| 285 w * (KTAN(8) + w * (KTAN(10) + w * KTAN(12)))))); |
| 286 var s = z * x; |
| 287 r = y + z * (s * (r + v) + y); |
| 288 r = r + KTAN(0) * s; |
| 289 w = x + r; |
| 290 if (ix >= 0x3fe59428) { |
| 291 return (1 - ((hx >> 30) & 2)) * |
| 292 (returnTan - 2.0 * (x - (w * w / (w + returnTan) - r))); |
| 293 } |
| 294 if (returnTan == 1) { |
| 295 return w; |
| 296 } else { |
| 297 z = %_ConstructDouble(%_DoubleHi(w), 0); |
| 298 v = r - (z - x); |
| 299 var a = -1 / w; |
| 300 var t = %_ConstructDouble(%_DoubleHi(a), 0); |
| 301 s = 1 + t * z; |
| 302 return t + a * (s + t * v); |
| 303 } |
| 304 } |
| 305 |
| 306 function MathSinSlow(x) { |
| 307 REMPIO2(x); |
| 308 var sign = 1 - (n & 2); |
| 309 if (n & 1) { |
| 310 RETURN_KERNELCOS(y0, y1, * sign); |
| 311 } else { |
| 312 RETURN_KERNELSIN(y0, y1, * sign); |
| 313 } |
| 314 } |
| 315 |
| 316 function MathCosSlow(x) { |
| 317 REMPIO2(x); |
| 318 if (n & 1) { |
| 319 var sign = (n & 2) - 1; |
| 320 RETURN_KERNELSIN(y0, y1, * sign); |
| 321 } else { |
| 322 var sign = 1 - (n & 2); |
| 323 RETURN_KERNELCOS(y0, y1, * sign); |
| 324 } |
| 325 } |
| 326 |
| 327 // ECMA 262 - 15.8.2.16 |
| 328 function MathSin(x) { |
| 329 x = x * 1; // Convert to number. |
| 330 if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) { |
| 331 // |x| < pi/4, approximately. No reduction needed. |
| 332 RETURN_KERNELSIN(x, 0, /* empty */); |
| 333 } |
| 334 return MathSinSlow(x); |
| 335 } |
| 336 |
| 337 // ECMA 262 - 15.8.2.7 |
| 338 function MathCos(x) { |
| 339 x = x * 1; // Convert to number. |
| 340 if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) { |
| 341 // |x| < pi/4, approximately. No reduction needed. |
| 342 RETURN_KERNELCOS(x, 0, /* empty */); |
| 343 } |
| 344 return MathCosSlow(x); |
| 345 } |
| 346 |
| 347 // ECMA 262 - 15.8.2.18 |
| 348 function MathTan(x) { |
| 349 x = x * 1; // Convert to number. |
| 350 if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) { |
| 351 // |x| < pi/4, approximately. No reduction needed. |
| 352 return KernelTan(x, 0, 1); |
| 353 } |
| 354 REMPIO2(x); |
| 355 return KernelTan(y0, y1, (n & 1) ? -1 : 1); |
| 356 } |
OLD | NEW |