Index: cc/resources/tile_manager.cc |
diff --git a/cc/resources/tile_manager.cc b/cc/resources/tile_manager.cc |
index bf10d9504150aab4e26657a70055f52fad30f463..dab3f5562823f5eadbdac2e7d7488726dee14f14 100644 |
--- a/cc/resources/tile_manager.cc |
+++ b/cc/resources/tile_manager.cc |
@@ -1136,6 +1136,441 @@ |
return tile; |
} |
+void TileManager::GetPairedPictureLayers( |
+ std::vector<PairedPictureLayer>* paired_layers) const { |
+ const std::vector<PictureLayerImpl*>& layers = client_->GetPictureLayers(); |
+ |
+ paired_layers->clear(); |
+ // Reserve a maximum possible paired layers. |
+ paired_layers->reserve(layers.size()); |
+ |
+ for (std::vector<PictureLayerImpl*>::const_iterator it = layers.begin(); |
+ it != layers.end(); |
+ ++it) { |
+ PictureLayerImpl* layer = *it; |
+ |
+ // TODO(vmpstr): Iterators and should handle this instead. crbug.com/381704 |
+ if (!layer->HasValidTilePriorities()) |
+ continue; |
+ |
+ PictureLayerImpl* twin_layer = layer->GetTwinLayer(); |
+ |
+ // Ignore the twin layer when tile priorities are invalid. |
+ // TODO(vmpstr): Iterators should handle this instead. crbug.com/381704 |
+ if (twin_layer && !twin_layer->HasValidTilePriorities()) |
+ twin_layer = NULL; |
+ |
+ PairedPictureLayer paired_layer; |
+ WhichTree tree = layer->GetTree(); |
+ |
+ // If the current tree is ACTIVE_TREE, then always generate a paired_layer. |
+ // If current tree is PENDING_TREE, then only generate a paired_layer if |
+ // there is no twin layer. |
+ if (tree == ACTIVE_TREE) { |
+ DCHECK(!twin_layer || twin_layer->GetTree() == PENDING_TREE); |
+ paired_layer.active_layer = layer; |
+ paired_layer.pending_layer = twin_layer; |
+ paired_layers->push_back(paired_layer); |
+ } else if (!twin_layer) { |
+ paired_layer.active_layer = NULL; |
+ paired_layer.pending_layer = layer; |
+ paired_layers->push_back(paired_layer); |
+ } |
+ } |
+} |
+ |
+TileManager::PairedPictureLayer::PairedPictureLayer() |
+ : active_layer(NULL), pending_layer(NULL) {} |
+ |
+TileManager::PairedPictureLayer::~PairedPictureLayer() {} |
+ |
+TileManager::RasterTileIterator::RasterTileIterator(TileManager* tile_manager, |
+ TreePriority tree_priority) |
+ : tree_priority_(tree_priority), comparator_(tree_priority) { |
+ std::vector<TileManager::PairedPictureLayer> paired_layers; |
+ tile_manager->GetPairedPictureLayers(&paired_layers); |
+ bool prioritize_low_res = tree_priority_ == SMOOTHNESS_TAKES_PRIORITY; |
+ |
+ paired_iterators_.reserve(paired_layers.size()); |
+ iterator_heap_.reserve(paired_layers.size()); |
+ for (std::vector<TileManager::PairedPictureLayer>::iterator it = |
+ paired_layers.begin(); |
+ it != paired_layers.end(); |
+ ++it) { |
+ PairedPictureLayerIterator paired_iterator; |
+ if (it->active_layer) { |
+ paired_iterator.active_iterator = |
+ PictureLayerImpl::LayerRasterTileIterator(it->active_layer, |
+ prioritize_low_res); |
+ } |
+ |
+ if (it->pending_layer) { |
+ paired_iterator.pending_iterator = |
+ PictureLayerImpl::LayerRasterTileIterator(it->pending_layer, |
+ prioritize_low_res); |
+ } |
+ |
+ if (paired_iterator.PeekTile(tree_priority_) != NULL) { |
+ paired_iterators_.push_back(paired_iterator); |
+ iterator_heap_.push_back(&paired_iterators_.back()); |
+ } |
+ } |
+ |
+ std::make_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_); |
+} |
+ |
+TileManager::RasterTileIterator::~RasterTileIterator() {} |
+ |
+TileManager::RasterTileIterator& TileManager::RasterTileIterator::operator++() { |
+ DCHECK(*this); |
+ |
+ std::pop_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_); |
+ PairedPictureLayerIterator* paired_iterator = iterator_heap_.back(); |
+ iterator_heap_.pop_back(); |
+ |
+ paired_iterator->PopTile(tree_priority_); |
+ if (paired_iterator->PeekTile(tree_priority_) != NULL) { |
+ iterator_heap_.push_back(paired_iterator); |
+ std::push_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_); |
+ } |
+ return *this; |
+} |
+ |
+TileManager::RasterTileIterator::operator bool() const { |
+ return !iterator_heap_.empty(); |
+} |
+ |
+Tile* TileManager::RasterTileIterator::operator*() { |
+ DCHECK(*this); |
+ return iterator_heap_.front()->PeekTile(tree_priority_); |
+} |
+ |
+TileManager::RasterTileIterator::PairedPictureLayerIterator:: |
+ PairedPictureLayerIterator() {} |
+ |
+TileManager::RasterTileIterator::PairedPictureLayerIterator:: |
+ ~PairedPictureLayerIterator() {} |
+ |
+Tile* TileManager::RasterTileIterator::PairedPictureLayerIterator::PeekTile( |
+ TreePriority tree_priority) { |
+ PictureLayerImpl::LayerRasterTileIterator* next_iterator = |
+ NextTileIterator(tree_priority).first; |
+ if (!next_iterator) |
+ return NULL; |
+ |
+ DCHECK(*next_iterator); |
+ DCHECK(std::find(returned_shared_tiles.begin(), |
+ returned_shared_tiles.end(), |
+ **next_iterator) == returned_shared_tiles.end()); |
+ return **next_iterator; |
+} |
+ |
+void TileManager::RasterTileIterator::PairedPictureLayerIterator::PopTile( |
+ TreePriority tree_priority) { |
+ PictureLayerImpl::LayerRasterTileIterator* next_iterator = |
+ NextTileIterator(tree_priority).first; |
+ DCHECK(next_iterator); |
+ DCHECK(*next_iterator); |
+ returned_shared_tiles.push_back(**next_iterator); |
+ ++(*next_iterator); |
+ |
+ next_iterator = NextTileIterator(tree_priority).first; |
+ while (next_iterator && |
+ std::find(returned_shared_tiles.begin(), |
+ returned_shared_tiles.end(), |
+ **next_iterator) != returned_shared_tiles.end()) { |
+ ++(*next_iterator); |
+ next_iterator = NextTileIterator(tree_priority).first; |
+ } |
+} |
+ |
+std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree> |
+TileManager::RasterTileIterator::PairedPictureLayerIterator::NextTileIterator( |
+ TreePriority tree_priority) { |
+ // If both iterators are out of tiles, return NULL. |
+ if (!active_iterator && !pending_iterator) { |
+ return std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree>( |
+ NULL, ACTIVE_TREE); |
+ } |
+ |
+ // If we only have one iterator with tiles, return it. |
+ if (!active_iterator) |
+ return std::make_pair(&pending_iterator, PENDING_TREE); |
+ if (!pending_iterator) |
+ return std::make_pair(&active_iterator, ACTIVE_TREE); |
+ |
+ // Now both iterators have tiles, so we have to decide based on tree priority. |
+ switch (tree_priority) { |
+ case SMOOTHNESS_TAKES_PRIORITY: |
+ return std::make_pair(&active_iterator, ACTIVE_TREE); |
+ case NEW_CONTENT_TAKES_PRIORITY: |
+ return std::make_pair(&pending_iterator, ACTIVE_TREE); |
+ case SAME_PRIORITY_FOR_BOTH_TREES: { |
+ Tile* active_tile = *active_iterator; |
+ Tile* pending_tile = *pending_iterator; |
+ if (active_tile == pending_tile) |
+ return std::make_pair(&active_iterator, ACTIVE_TREE); |
+ |
+ const TilePriority& active_priority = active_tile->priority(ACTIVE_TREE); |
+ const TilePriority& pending_priority = |
+ pending_tile->priority(PENDING_TREE); |
+ |
+ if (active_priority.IsHigherPriorityThan(pending_priority)) |
+ return std::make_pair(&active_iterator, ACTIVE_TREE); |
+ return std::make_pair(&pending_iterator, PENDING_TREE); |
+ } |
+ default: |
+ NOTREACHED(); |
+ } |
+ |
+ NOTREACHED(); |
+ // Keep the compiler happy. |
+ return std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree>( |
+ NULL, ACTIVE_TREE); |
+} |
+ |
+TileManager::RasterTileIterator::RasterOrderComparator::RasterOrderComparator( |
+ TreePriority tree_priority) |
+ : tree_priority_(tree_priority) {} |
+ |
+bool TileManager::RasterTileIterator::RasterOrderComparator::operator()( |
+ PairedPictureLayerIterator* a, |
+ PairedPictureLayerIterator* b) const { |
+ std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree> a_pair = |
+ a->NextTileIterator(tree_priority_); |
+ DCHECK(a_pair.first); |
+ DCHECK(*a_pair.first); |
+ |
+ std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree> b_pair = |
+ b->NextTileIterator(tree_priority_); |
+ DCHECK(b_pair.first); |
+ DCHECK(*b_pair.first); |
+ |
+ Tile* a_tile = **a_pair.first; |
+ Tile* b_tile = **b_pair.first; |
+ |
+ const TilePriority& a_priority = |
+ a_tile->priority_for_tree_priority(tree_priority_); |
+ const TilePriority& b_priority = |
+ b_tile->priority_for_tree_priority(tree_priority_); |
+ bool prioritize_low_res = tree_priority_ == SMOOTHNESS_TAKES_PRIORITY; |
+ |
+ // Now we have to return true iff b is higher priority than a. |
+ |
+ // If the bin is the same but the resolution is not, then the order will be |
+ // determined by whether we prioritize low res or not. |
+ // TODO(vmpstr): Remove this when TilePriority is no longer a member of Tile |
+ // class but instead produced by the iterators. |
+ if (b_priority.priority_bin == a_priority.priority_bin && |
+ b_priority.resolution != a_priority.resolution) { |
+ // Non ideal resolution should be sorted lower than other resolutions. |
+ if (a_priority.resolution == NON_IDEAL_RESOLUTION) |
+ return true; |
+ |
+ if (b_priority.resolution == NON_IDEAL_RESOLUTION) |
+ return false; |
+ |
+ if (prioritize_low_res) |
+ return b_priority.resolution == LOW_RESOLUTION; |
+ |
+ return b_priority.resolution == HIGH_RESOLUTION; |
+ } |
+ |
+ return b_priority.IsHigherPriorityThan(a_priority); |
+} |
+ |
+TileManager::EvictionTileIterator::EvictionTileIterator() |
+ : comparator_(SAME_PRIORITY_FOR_BOTH_TREES) {} |
+ |
+TileManager::EvictionTileIterator::EvictionTileIterator( |
+ TileManager* tile_manager, |
+ TreePriority tree_priority) |
+ : tree_priority_(tree_priority), comparator_(tree_priority) { |
+ std::vector<TileManager::PairedPictureLayer> paired_layers; |
+ |
+ tile_manager->GetPairedPictureLayers(&paired_layers); |
+ |
+ paired_iterators_.reserve(paired_layers.size()); |
+ iterator_heap_.reserve(paired_layers.size()); |
+ for (std::vector<TileManager::PairedPictureLayer>::iterator it = |
+ paired_layers.begin(); |
+ it != paired_layers.end(); |
+ ++it) { |
+ PairedPictureLayerIterator paired_iterator; |
+ if (it->active_layer) { |
+ paired_iterator.active_iterator = |
+ PictureLayerImpl::LayerEvictionTileIterator(it->active_layer, |
+ tree_priority_); |
+ } |
+ |
+ if (it->pending_layer) { |
+ paired_iterator.pending_iterator = |
+ PictureLayerImpl::LayerEvictionTileIterator(it->pending_layer, |
+ tree_priority_); |
+ } |
+ |
+ if (paired_iterator.PeekTile(tree_priority_) != NULL) { |
+ paired_iterators_.push_back(paired_iterator); |
+ iterator_heap_.push_back(&paired_iterators_.back()); |
+ } |
+ } |
+ |
+ std::make_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_); |
+} |
+ |
+TileManager::EvictionTileIterator::~EvictionTileIterator() {} |
+ |
+TileManager::EvictionTileIterator& TileManager::EvictionTileIterator:: |
+operator++() { |
+ std::pop_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_); |
+ PairedPictureLayerIterator* paired_iterator = iterator_heap_.back(); |
+ iterator_heap_.pop_back(); |
+ |
+ paired_iterator->PopTile(tree_priority_); |
+ if (paired_iterator->PeekTile(tree_priority_) != NULL) { |
+ iterator_heap_.push_back(paired_iterator); |
+ std::push_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_); |
+ } |
+ return *this; |
+} |
+ |
+TileManager::EvictionTileIterator::operator bool() const { |
+ return !iterator_heap_.empty(); |
+} |
+ |
+Tile* TileManager::EvictionTileIterator::operator*() { |
+ DCHECK(*this); |
+ return iterator_heap_.front()->PeekTile(tree_priority_); |
+} |
+ |
+TileManager::EvictionTileIterator::PairedPictureLayerIterator:: |
+ PairedPictureLayerIterator() {} |
+ |
+TileManager::EvictionTileIterator::PairedPictureLayerIterator:: |
+ ~PairedPictureLayerIterator() {} |
+ |
+Tile* TileManager::EvictionTileIterator::PairedPictureLayerIterator::PeekTile( |
+ TreePriority tree_priority) { |
+ PictureLayerImpl::LayerEvictionTileIterator* next_iterator = |
+ NextTileIterator(tree_priority); |
+ if (!next_iterator) |
+ return NULL; |
+ |
+ DCHECK(*next_iterator); |
+ DCHECK(std::find(returned_shared_tiles.begin(), |
+ returned_shared_tiles.end(), |
+ **next_iterator) == returned_shared_tiles.end()); |
+ return **next_iterator; |
+} |
+ |
+void TileManager::EvictionTileIterator::PairedPictureLayerIterator::PopTile( |
+ TreePriority tree_priority) { |
+ PictureLayerImpl::LayerEvictionTileIterator* next_iterator = |
+ NextTileIterator(tree_priority); |
+ DCHECK(next_iterator); |
+ DCHECK(*next_iterator); |
+ returned_shared_tiles.push_back(**next_iterator); |
+ ++(*next_iterator); |
+ |
+ next_iterator = NextTileIterator(tree_priority); |
+ while (next_iterator && |
+ std::find(returned_shared_tiles.begin(), |
+ returned_shared_tiles.end(), |
+ **next_iterator) != returned_shared_tiles.end()) { |
+ ++(*next_iterator); |
+ next_iterator = NextTileIterator(tree_priority); |
+ } |
+} |
+ |
+PictureLayerImpl::LayerEvictionTileIterator* |
+TileManager::EvictionTileIterator::PairedPictureLayerIterator::NextTileIterator( |
+ TreePriority tree_priority) { |
+ // If both iterators are out of tiles, return NULL. |
+ if (!active_iterator && !pending_iterator) |
+ return NULL; |
+ |
+ // If we only have one iterator with tiles, return it. |
+ if (!active_iterator) |
+ return &pending_iterator; |
+ if (!pending_iterator) |
+ return &active_iterator; |
+ |
+ Tile* active_tile = *active_iterator; |
+ Tile* pending_tile = *pending_iterator; |
+ if (active_tile == pending_tile) |
+ return &active_iterator; |
+ |
+ const TilePriority& active_priority = |
+ active_tile->priority_for_tree_priority(tree_priority); |
+ const TilePriority& pending_priority = |
+ pending_tile->priority_for_tree_priority(tree_priority); |
+ |
+ if (pending_priority.IsHigherPriorityThan(active_priority)) |
+ return &active_iterator; |
+ return &pending_iterator; |
+} |
+ |
+TileManager::EvictionTileIterator::EvictionOrderComparator:: |
+ EvictionOrderComparator(TreePriority tree_priority) |
+ : tree_priority_(tree_priority) {} |
+ |
+bool TileManager::EvictionTileIterator::EvictionOrderComparator::operator()( |
+ PairedPictureLayerIterator* a, |
+ PairedPictureLayerIterator* b) const { |
+ PictureLayerImpl::LayerEvictionTileIterator* a_iterator = |
+ a->NextTileIterator(tree_priority_); |
+ DCHECK(a_iterator); |
+ DCHECK(*a_iterator); |
+ |
+ PictureLayerImpl::LayerEvictionTileIterator* b_iterator = |
+ b->NextTileIterator(tree_priority_); |
+ DCHECK(b_iterator); |
+ DCHECK(*b_iterator); |
+ |
+ Tile* a_tile = **a_iterator; |
+ Tile* b_tile = **b_iterator; |
+ |
+ const TilePriority& a_priority = |
+ a_tile->priority_for_tree_priority(tree_priority_); |
+ const TilePriority& b_priority = |
+ b_tile->priority_for_tree_priority(tree_priority_); |
+ bool prioritize_low_res = tree_priority_ == SMOOTHNESS_TAKES_PRIORITY; |
+ |
+ // Now we have to return true iff b is lower priority than a. |
+ |
+ // If the priority bin differs, b is lower priority if it has the higher |
+ // priority bin. |
+ if (a_priority.priority_bin != b_priority.priority_bin) |
+ return b_priority.priority_bin > a_priority.priority_bin; |
+ |
+ // Otherwise if the resolution differs, then the order will be determined by |
+ // whether we prioritize low res or not. |
+ // TODO(vmpstr): Remove this when TilePriority is no longer a member of Tile |
+ // class but instead produced by the iterators. |
+ if (b_priority.resolution != a_priority.resolution) { |
+ // Non ideal resolution should be sorted higher than other resolutions. |
+ if (a_priority.resolution == NON_IDEAL_RESOLUTION) |
+ return false; |
+ |
+ if (b_priority.resolution == NON_IDEAL_RESOLUTION) |
+ return true; |
+ |
+ if (prioritize_low_res) |
+ return a_priority.resolution == LOW_RESOLUTION; |
+ |
+ return a_priority.resolution == HIGH_RESOLUTION; |
+ } |
+ |
+ // Otherwise if the occlusion differs, b is lower priority if it is occluded. |
+ bool a_is_occluded = a_tile->is_occluded_for_tree_priority(tree_priority_); |
+ bool b_is_occluded = b_tile->is_occluded_for_tree_priority(tree_priority_); |
+ if (a_is_occluded != b_is_occluded) |
+ return b_is_occluded; |
+ |
+ // b is lower priorty if it is farther from visible. |
+ return b_priority.distance_to_visible > a_priority.distance_to_visible; |
+} |
+ |
void TileManager::SetRasterizerForTesting(Rasterizer* rasterizer) { |
rasterizer_ = rasterizer; |
rasterizer_->SetClient(this); |