| Index: cc/resources/tile_manager.cc
|
| diff --git a/cc/resources/tile_manager.cc b/cc/resources/tile_manager.cc
|
| index bf10d9504150aab4e26657a70055f52fad30f463..dab3f5562823f5eadbdac2e7d7488726dee14f14 100644
|
| --- a/cc/resources/tile_manager.cc
|
| +++ b/cc/resources/tile_manager.cc
|
| @@ -1136,6 +1136,441 @@
|
| return tile;
|
| }
|
|
|
| +void TileManager::GetPairedPictureLayers(
|
| + std::vector<PairedPictureLayer>* paired_layers) const {
|
| + const std::vector<PictureLayerImpl*>& layers = client_->GetPictureLayers();
|
| +
|
| + paired_layers->clear();
|
| + // Reserve a maximum possible paired layers.
|
| + paired_layers->reserve(layers.size());
|
| +
|
| + for (std::vector<PictureLayerImpl*>::const_iterator it = layers.begin();
|
| + it != layers.end();
|
| + ++it) {
|
| + PictureLayerImpl* layer = *it;
|
| +
|
| + // TODO(vmpstr): Iterators and should handle this instead. crbug.com/381704
|
| + if (!layer->HasValidTilePriorities())
|
| + continue;
|
| +
|
| + PictureLayerImpl* twin_layer = layer->GetTwinLayer();
|
| +
|
| + // Ignore the twin layer when tile priorities are invalid.
|
| + // TODO(vmpstr): Iterators should handle this instead. crbug.com/381704
|
| + if (twin_layer && !twin_layer->HasValidTilePriorities())
|
| + twin_layer = NULL;
|
| +
|
| + PairedPictureLayer paired_layer;
|
| + WhichTree tree = layer->GetTree();
|
| +
|
| + // If the current tree is ACTIVE_TREE, then always generate a paired_layer.
|
| + // If current tree is PENDING_TREE, then only generate a paired_layer if
|
| + // there is no twin layer.
|
| + if (tree == ACTIVE_TREE) {
|
| + DCHECK(!twin_layer || twin_layer->GetTree() == PENDING_TREE);
|
| + paired_layer.active_layer = layer;
|
| + paired_layer.pending_layer = twin_layer;
|
| + paired_layers->push_back(paired_layer);
|
| + } else if (!twin_layer) {
|
| + paired_layer.active_layer = NULL;
|
| + paired_layer.pending_layer = layer;
|
| + paired_layers->push_back(paired_layer);
|
| + }
|
| + }
|
| +}
|
| +
|
| +TileManager::PairedPictureLayer::PairedPictureLayer()
|
| + : active_layer(NULL), pending_layer(NULL) {}
|
| +
|
| +TileManager::PairedPictureLayer::~PairedPictureLayer() {}
|
| +
|
| +TileManager::RasterTileIterator::RasterTileIterator(TileManager* tile_manager,
|
| + TreePriority tree_priority)
|
| + : tree_priority_(tree_priority), comparator_(tree_priority) {
|
| + std::vector<TileManager::PairedPictureLayer> paired_layers;
|
| + tile_manager->GetPairedPictureLayers(&paired_layers);
|
| + bool prioritize_low_res = tree_priority_ == SMOOTHNESS_TAKES_PRIORITY;
|
| +
|
| + paired_iterators_.reserve(paired_layers.size());
|
| + iterator_heap_.reserve(paired_layers.size());
|
| + for (std::vector<TileManager::PairedPictureLayer>::iterator it =
|
| + paired_layers.begin();
|
| + it != paired_layers.end();
|
| + ++it) {
|
| + PairedPictureLayerIterator paired_iterator;
|
| + if (it->active_layer) {
|
| + paired_iterator.active_iterator =
|
| + PictureLayerImpl::LayerRasterTileIterator(it->active_layer,
|
| + prioritize_low_res);
|
| + }
|
| +
|
| + if (it->pending_layer) {
|
| + paired_iterator.pending_iterator =
|
| + PictureLayerImpl::LayerRasterTileIterator(it->pending_layer,
|
| + prioritize_low_res);
|
| + }
|
| +
|
| + if (paired_iterator.PeekTile(tree_priority_) != NULL) {
|
| + paired_iterators_.push_back(paired_iterator);
|
| + iterator_heap_.push_back(&paired_iterators_.back());
|
| + }
|
| + }
|
| +
|
| + std::make_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_);
|
| +}
|
| +
|
| +TileManager::RasterTileIterator::~RasterTileIterator() {}
|
| +
|
| +TileManager::RasterTileIterator& TileManager::RasterTileIterator::operator++() {
|
| + DCHECK(*this);
|
| +
|
| + std::pop_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_);
|
| + PairedPictureLayerIterator* paired_iterator = iterator_heap_.back();
|
| + iterator_heap_.pop_back();
|
| +
|
| + paired_iterator->PopTile(tree_priority_);
|
| + if (paired_iterator->PeekTile(tree_priority_) != NULL) {
|
| + iterator_heap_.push_back(paired_iterator);
|
| + std::push_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_);
|
| + }
|
| + return *this;
|
| +}
|
| +
|
| +TileManager::RasterTileIterator::operator bool() const {
|
| + return !iterator_heap_.empty();
|
| +}
|
| +
|
| +Tile* TileManager::RasterTileIterator::operator*() {
|
| + DCHECK(*this);
|
| + return iterator_heap_.front()->PeekTile(tree_priority_);
|
| +}
|
| +
|
| +TileManager::RasterTileIterator::PairedPictureLayerIterator::
|
| + PairedPictureLayerIterator() {}
|
| +
|
| +TileManager::RasterTileIterator::PairedPictureLayerIterator::
|
| + ~PairedPictureLayerIterator() {}
|
| +
|
| +Tile* TileManager::RasterTileIterator::PairedPictureLayerIterator::PeekTile(
|
| + TreePriority tree_priority) {
|
| + PictureLayerImpl::LayerRasterTileIterator* next_iterator =
|
| + NextTileIterator(tree_priority).first;
|
| + if (!next_iterator)
|
| + return NULL;
|
| +
|
| + DCHECK(*next_iterator);
|
| + DCHECK(std::find(returned_shared_tiles.begin(),
|
| + returned_shared_tiles.end(),
|
| + **next_iterator) == returned_shared_tiles.end());
|
| + return **next_iterator;
|
| +}
|
| +
|
| +void TileManager::RasterTileIterator::PairedPictureLayerIterator::PopTile(
|
| + TreePriority tree_priority) {
|
| + PictureLayerImpl::LayerRasterTileIterator* next_iterator =
|
| + NextTileIterator(tree_priority).first;
|
| + DCHECK(next_iterator);
|
| + DCHECK(*next_iterator);
|
| + returned_shared_tiles.push_back(**next_iterator);
|
| + ++(*next_iterator);
|
| +
|
| + next_iterator = NextTileIterator(tree_priority).first;
|
| + while (next_iterator &&
|
| + std::find(returned_shared_tiles.begin(),
|
| + returned_shared_tiles.end(),
|
| + **next_iterator) != returned_shared_tiles.end()) {
|
| + ++(*next_iterator);
|
| + next_iterator = NextTileIterator(tree_priority).first;
|
| + }
|
| +}
|
| +
|
| +std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree>
|
| +TileManager::RasterTileIterator::PairedPictureLayerIterator::NextTileIterator(
|
| + TreePriority tree_priority) {
|
| + // If both iterators are out of tiles, return NULL.
|
| + if (!active_iterator && !pending_iterator) {
|
| + return std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree>(
|
| + NULL, ACTIVE_TREE);
|
| + }
|
| +
|
| + // If we only have one iterator with tiles, return it.
|
| + if (!active_iterator)
|
| + return std::make_pair(&pending_iterator, PENDING_TREE);
|
| + if (!pending_iterator)
|
| + return std::make_pair(&active_iterator, ACTIVE_TREE);
|
| +
|
| + // Now both iterators have tiles, so we have to decide based on tree priority.
|
| + switch (tree_priority) {
|
| + case SMOOTHNESS_TAKES_PRIORITY:
|
| + return std::make_pair(&active_iterator, ACTIVE_TREE);
|
| + case NEW_CONTENT_TAKES_PRIORITY:
|
| + return std::make_pair(&pending_iterator, ACTIVE_TREE);
|
| + case SAME_PRIORITY_FOR_BOTH_TREES: {
|
| + Tile* active_tile = *active_iterator;
|
| + Tile* pending_tile = *pending_iterator;
|
| + if (active_tile == pending_tile)
|
| + return std::make_pair(&active_iterator, ACTIVE_TREE);
|
| +
|
| + const TilePriority& active_priority = active_tile->priority(ACTIVE_TREE);
|
| + const TilePriority& pending_priority =
|
| + pending_tile->priority(PENDING_TREE);
|
| +
|
| + if (active_priority.IsHigherPriorityThan(pending_priority))
|
| + return std::make_pair(&active_iterator, ACTIVE_TREE);
|
| + return std::make_pair(&pending_iterator, PENDING_TREE);
|
| + }
|
| + default:
|
| + NOTREACHED();
|
| + }
|
| +
|
| + NOTREACHED();
|
| + // Keep the compiler happy.
|
| + return std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree>(
|
| + NULL, ACTIVE_TREE);
|
| +}
|
| +
|
| +TileManager::RasterTileIterator::RasterOrderComparator::RasterOrderComparator(
|
| + TreePriority tree_priority)
|
| + : tree_priority_(tree_priority) {}
|
| +
|
| +bool TileManager::RasterTileIterator::RasterOrderComparator::operator()(
|
| + PairedPictureLayerIterator* a,
|
| + PairedPictureLayerIterator* b) const {
|
| + std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree> a_pair =
|
| + a->NextTileIterator(tree_priority_);
|
| + DCHECK(a_pair.first);
|
| + DCHECK(*a_pair.first);
|
| +
|
| + std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree> b_pair =
|
| + b->NextTileIterator(tree_priority_);
|
| + DCHECK(b_pair.first);
|
| + DCHECK(*b_pair.first);
|
| +
|
| + Tile* a_tile = **a_pair.first;
|
| + Tile* b_tile = **b_pair.first;
|
| +
|
| + const TilePriority& a_priority =
|
| + a_tile->priority_for_tree_priority(tree_priority_);
|
| + const TilePriority& b_priority =
|
| + b_tile->priority_for_tree_priority(tree_priority_);
|
| + bool prioritize_low_res = tree_priority_ == SMOOTHNESS_TAKES_PRIORITY;
|
| +
|
| + // Now we have to return true iff b is higher priority than a.
|
| +
|
| + // If the bin is the same but the resolution is not, then the order will be
|
| + // determined by whether we prioritize low res or not.
|
| + // TODO(vmpstr): Remove this when TilePriority is no longer a member of Tile
|
| + // class but instead produced by the iterators.
|
| + if (b_priority.priority_bin == a_priority.priority_bin &&
|
| + b_priority.resolution != a_priority.resolution) {
|
| + // Non ideal resolution should be sorted lower than other resolutions.
|
| + if (a_priority.resolution == NON_IDEAL_RESOLUTION)
|
| + return true;
|
| +
|
| + if (b_priority.resolution == NON_IDEAL_RESOLUTION)
|
| + return false;
|
| +
|
| + if (prioritize_low_res)
|
| + return b_priority.resolution == LOW_RESOLUTION;
|
| +
|
| + return b_priority.resolution == HIGH_RESOLUTION;
|
| + }
|
| +
|
| + return b_priority.IsHigherPriorityThan(a_priority);
|
| +}
|
| +
|
| +TileManager::EvictionTileIterator::EvictionTileIterator()
|
| + : comparator_(SAME_PRIORITY_FOR_BOTH_TREES) {}
|
| +
|
| +TileManager::EvictionTileIterator::EvictionTileIterator(
|
| + TileManager* tile_manager,
|
| + TreePriority tree_priority)
|
| + : tree_priority_(tree_priority), comparator_(tree_priority) {
|
| + std::vector<TileManager::PairedPictureLayer> paired_layers;
|
| +
|
| + tile_manager->GetPairedPictureLayers(&paired_layers);
|
| +
|
| + paired_iterators_.reserve(paired_layers.size());
|
| + iterator_heap_.reserve(paired_layers.size());
|
| + for (std::vector<TileManager::PairedPictureLayer>::iterator it =
|
| + paired_layers.begin();
|
| + it != paired_layers.end();
|
| + ++it) {
|
| + PairedPictureLayerIterator paired_iterator;
|
| + if (it->active_layer) {
|
| + paired_iterator.active_iterator =
|
| + PictureLayerImpl::LayerEvictionTileIterator(it->active_layer,
|
| + tree_priority_);
|
| + }
|
| +
|
| + if (it->pending_layer) {
|
| + paired_iterator.pending_iterator =
|
| + PictureLayerImpl::LayerEvictionTileIterator(it->pending_layer,
|
| + tree_priority_);
|
| + }
|
| +
|
| + if (paired_iterator.PeekTile(tree_priority_) != NULL) {
|
| + paired_iterators_.push_back(paired_iterator);
|
| + iterator_heap_.push_back(&paired_iterators_.back());
|
| + }
|
| + }
|
| +
|
| + std::make_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_);
|
| +}
|
| +
|
| +TileManager::EvictionTileIterator::~EvictionTileIterator() {}
|
| +
|
| +TileManager::EvictionTileIterator& TileManager::EvictionTileIterator::
|
| +operator++() {
|
| + std::pop_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_);
|
| + PairedPictureLayerIterator* paired_iterator = iterator_heap_.back();
|
| + iterator_heap_.pop_back();
|
| +
|
| + paired_iterator->PopTile(tree_priority_);
|
| + if (paired_iterator->PeekTile(tree_priority_) != NULL) {
|
| + iterator_heap_.push_back(paired_iterator);
|
| + std::push_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_);
|
| + }
|
| + return *this;
|
| +}
|
| +
|
| +TileManager::EvictionTileIterator::operator bool() const {
|
| + return !iterator_heap_.empty();
|
| +}
|
| +
|
| +Tile* TileManager::EvictionTileIterator::operator*() {
|
| + DCHECK(*this);
|
| + return iterator_heap_.front()->PeekTile(tree_priority_);
|
| +}
|
| +
|
| +TileManager::EvictionTileIterator::PairedPictureLayerIterator::
|
| + PairedPictureLayerIterator() {}
|
| +
|
| +TileManager::EvictionTileIterator::PairedPictureLayerIterator::
|
| + ~PairedPictureLayerIterator() {}
|
| +
|
| +Tile* TileManager::EvictionTileIterator::PairedPictureLayerIterator::PeekTile(
|
| + TreePriority tree_priority) {
|
| + PictureLayerImpl::LayerEvictionTileIterator* next_iterator =
|
| + NextTileIterator(tree_priority);
|
| + if (!next_iterator)
|
| + return NULL;
|
| +
|
| + DCHECK(*next_iterator);
|
| + DCHECK(std::find(returned_shared_tiles.begin(),
|
| + returned_shared_tiles.end(),
|
| + **next_iterator) == returned_shared_tiles.end());
|
| + return **next_iterator;
|
| +}
|
| +
|
| +void TileManager::EvictionTileIterator::PairedPictureLayerIterator::PopTile(
|
| + TreePriority tree_priority) {
|
| + PictureLayerImpl::LayerEvictionTileIterator* next_iterator =
|
| + NextTileIterator(tree_priority);
|
| + DCHECK(next_iterator);
|
| + DCHECK(*next_iterator);
|
| + returned_shared_tiles.push_back(**next_iterator);
|
| + ++(*next_iterator);
|
| +
|
| + next_iterator = NextTileIterator(tree_priority);
|
| + while (next_iterator &&
|
| + std::find(returned_shared_tiles.begin(),
|
| + returned_shared_tiles.end(),
|
| + **next_iterator) != returned_shared_tiles.end()) {
|
| + ++(*next_iterator);
|
| + next_iterator = NextTileIterator(tree_priority);
|
| + }
|
| +}
|
| +
|
| +PictureLayerImpl::LayerEvictionTileIterator*
|
| +TileManager::EvictionTileIterator::PairedPictureLayerIterator::NextTileIterator(
|
| + TreePriority tree_priority) {
|
| + // If both iterators are out of tiles, return NULL.
|
| + if (!active_iterator && !pending_iterator)
|
| + return NULL;
|
| +
|
| + // If we only have one iterator with tiles, return it.
|
| + if (!active_iterator)
|
| + return &pending_iterator;
|
| + if (!pending_iterator)
|
| + return &active_iterator;
|
| +
|
| + Tile* active_tile = *active_iterator;
|
| + Tile* pending_tile = *pending_iterator;
|
| + if (active_tile == pending_tile)
|
| + return &active_iterator;
|
| +
|
| + const TilePriority& active_priority =
|
| + active_tile->priority_for_tree_priority(tree_priority);
|
| + const TilePriority& pending_priority =
|
| + pending_tile->priority_for_tree_priority(tree_priority);
|
| +
|
| + if (pending_priority.IsHigherPriorityThan(active_priority))
|
| + return &active_iterator;
|
| + return &pending_iterator;
|
| +}
|
| +
|
| +TileManager::EvictionTileIterator::EvictionOrderComparator::
|
| + EvictionOrderComparator(TreePriority tree_priority)
|
| + : tree_priority_(tree_priority) {}
|
| +
|
| +bool TileManager::EvictionTileIterator::EvictionOrderComparator::operator()(
|
| + PairedPictureLayerIterator* a,
|
| + PairedPictureLayerIterator* b) const {
|
| + PictureLayerImpl::LayerEvictionTileIterator* a_iterator =
|
| + a->NextTileIterator(tree_priority_);
|
| + DCHECK(a_iterator);
|
| + DCHECK(*a_iterator);
|
| +
|
| + PictureLayerImpl::LayerEvictionTileIterator* b_iterator =
|
| + b->NextTileIterator(tree_priority_);
|
| + DCHECK(b_iterator);
|
| + DCHECK(*b_iterator);
|
| +
|
| + Tile* a_tile = **a_iterator;
|
| + Tile* b_tile = **b_iterator;
|
| +
|
| + const TilePriority& a_priority =
|
| + a_tile->priority_for_tree_priority(tree_priority_);
|
| + const TilePriority& b_priority =
|
| + b_tile->priority_for_tree_priority(tree_priority_);
|
| + bool prioritize_low_res = tree_priority_ == SMOOTHNESS_TAKES_PRIORITY;
|
| +
|
| + // Now we have to return true iff b is lower priority than a.
|
| +
|
| + // If the priority bin differs, b is lower priority if it has the higher
|
| + // priority bin.
|
| + if (a_priority.priority_bin != b_priority.priority_bin)
|
| + return b_priority.priority_bin > a_priority.priority_bin;
|
| +
|
| + // Otherwise if the resolution differs, then the order will be determined by
|
| + // whether we prioritize low res or not.
|
| + // TODO(vmpstr): Remove this when TilePriority is no longer a member of Tile
|
| + // class but instead produced by the iterators.
|
| + if (b_priority.resolution != a_priority.resolution) {
|
| + // Non ideal resolution should be sorted higher than other resolutions.
|
| + if (a_priority.resolution == NON_IDEAL_RESOLUTION)
|
| + return false;
|
| +
|
| + if (b_priority.resolution == NON_IDEAL_RESOLUTION)
|
| + return true;
|
| +
|
| + if (prioritize_low_res)
|
| + return a_priority.resolution == LOW_RESOLUTION;
|
| +
|
| + return a_priority.resolution == HIGH_RESOLUTION;
|
| + }
|
| +
|
| + // Otherwise if the occlusion differs, b is lower priority if it is occluded.
|
| + bool a_is_occluded = a_tile->is_occluded_for_tree_priority(tree_priority_);
|
| + bool b_is_occluded = b_tile->is_occluded_for_tree_priority(tree_priority_);
|
| + if (a_is_occluded != b_is_occluded)
|
| + return b_is_occluded;
|
| +
|
| + // b is lower priorty if it is farther from visible.
|
| + return b_priority.distance_to_visible > a_priority.distance_to_visible;
|
| +}
|
| +
|
| void TileManager::SetRasterizerForTesting(Rasterizer* rasterizer) {
|
| rasterizer_ = rasterizer;
|
| rasterizer_->SetClient(this);
|
|
|