Chromium Code Reviews| OLD | NEW |
|---|---|
| (Empty) | |
| 1 /* | |
| 2 * Copyright 2014 Google Inc. | |
| 3 * | |
| 4 * Use of this source code is governed by a BSD-style license that can be | |
| 5 * found in the LICENSE file. | |
| 6 */ | |
| 7 | |
| 8 #include "SkPatch.h" | |
| 9 | |
| 10 #include "SkGeometry.h" | |
| 11 #include "SkGr.h" | |
| 12 | |
| 13 //////////////////////////////////////////////////////////////////////////////// | |
| 14 | |
| 15 /** | |
| 16 * Evaluator to sample the values of a cubic bezier using forward differences. | |
| 17 * Forward differences is a method for evaluating a nth degree polynomial at a u niform step by only | |
| 18 * adding precalculated values. | |
| 19 * For a linear example we have the function f(t) = m*t+b, then the value of tha t function at t+h | |
| 20 * would be f(t+h) = m*(t+h)+b. If we want to know the uniform step that we must add to the first | |
| 21 * evaluation f(t) then we need to substract f(t+h) - f(t) = m*t + m*h + b - m*t + b = mh. After | |
| 22 * obtaining this value (mh) we could just add this constant step to our first s ampled point | |
| 23 * to compute the next one. | |
| 24 * | |
| 25 * For the cubic case the first difference gives as a result a quadratic polynom ial to which we can | |
| 26 * apply again forward differences and get linear function to which we can apply again forward | |
| 27 * differences to get a constant difference. This is why we keep an array of siz e 4, the 0th | |
| 28 * position keeps the sampled value while the next ones keep the quadratic, line ar and constant | |
| 29 * difference values. | |
| 30 */ | |
| 31 | |
| 32 class FwDCubicEvaluator { | |
| 33 | |
| 34 public: | |
| 35 FwDCubicEvaluator() { } | |
| 36 | |
| 37 /** | |
| 38 * Receives the 4 control points of the cubic bezier. | |
| 39 */ | |
| 40 FwDCubicEvaluator(SkPoint a, SkPoint b, SkPoint c, SkPoint d) { | |
| 41 fPoints[0] = a; | |
| 42 fPoints[1] = b; | |
| 43 fPoints[2] = c; | |
| 44 fPoints[3] = d; | |
| 45 | |
| 46 SkScalar cx[4], cy[4]; | |
| 47 SkGetCubicCoeff(fPoints, cx, cy); | |
| 48 fCoefs[0].set(cx[0], cy[0]); | |
| 49 fCoefs[1].set(cx[1], cy[1]); | |
| 50 fCoefs[2].set(cx[2], cy[2]); | |
| 51 fCoefs[3].set(cx[3], cy[3]); | |
| 52 | |
| 53 this->restart(1); | |
| 54 } | |
| 55 | |
| 56 /** | |
| 57 * Restarts the forward differences evaluator to the first value of t = 0. | |
| 58 */ | |
| 59 void restart(int divisions) { | |
| 60 fDivisions = divisions; | |
| 61 SkScalar h = 1.f/fDivisions; | |
| 62 fCurrent = 0; | |
| 63 fMax = fDivisions + 1; | |
| 64 fFwDiff[0] = fCoefs[3]; | |
| 65 SkScalar h2 = h*h; | |
| 66 SkScalar h3 = h2*h; | |
| 67 | |
| 68 fFwDiff[3].set(6.f*fCoefs[0].x()*h3, 6.f*fCoefs[0].y()*h3); //6ah^3 | |
| 69 fFwDiff[2].set(fFwDiff[3].x() + 2.f*fCoefs[1].x()*h2, //6ah^3 + 2bh^2 | |
| 70 fFwDiff[3].y() + 2.f*fCoefs[1].y()*h2); | |
| 71 fFwDiff[1].set(fCoefs[0].x()*h3 + fCoefs[1].x()*h2 + fCoefs[2].x()*h, // ah^3 + bh^2 + ch | |
| 72 fCoefs[0].y()*h3 + fCoefs[1].y()*h2 + fCoefs[2].y()*h); | |
| 73 } | |
| 74 | |
| 75 /** | |
| 76 * Check if the evaluator is still within the range of 0<=t<=1 | |
| 77 */ | |
| 78 inline const bool done() { | |
|
bsalomon
2014/07/25 14:16:37
bool done() const {
inline is implied by the fac
dandov
2014/07/25 15:07:09
Done. Also made getCtrlPoints const.
| |
| 79 return fCurrent > fMax; | |
| 80 } | |
| 81 | |
| 82 /** | |
| 83 * Call next to obtain the SkPoint sampled and move to the next one. | |
| 84 */ | |
| 85 inline const SkPoint next() { | |
| 86 SkPoint point = fFwDiff[0]; | |
| 87 fFwDiff[0] += fFwDiff[1]; | |
| 88 fFwDiff[1] += fFwDiff[2]; | |
| 89 fFwDiff[2] += fFwDiff[3]; | |
| 90 fCurrent++; | |
| 91 return point; | |
| 92 } | |
| 93 | |
| 94 inline const SkPoint* getCtrlPoints() { | |
| 95 return fPoints; | |
| 96 } | |
| 97 | |
| 98 private: | |
| 99 int fMax, fCurrent, fDivisions; | |
| 100 SkPoint fFwDiff[4], fCoefs[4], fPoints[4]; | |
| 101 }; | |
| 102 | |
| 103 //////////////////////////////////////////////////////////////////////////////// | |
| 104 | |
| 105 SkPatch::SkPatch(SkPoint points[12], SkColor colors[4]) { | |
| 106 | |
| 107 for (int i = 0; i<12; i++) { | |
| 108 fCtrlPoints[i] = points[i]; | |
| 109 } | |
| 110 | |
| 111 fCornerColors[0] = SkPreMultiplyColor(colors[0]); | |
| 112 fCornerColors[1] = SkPreMultiplyColor(colors[1]); | |
| 113 fCornerColors[2] = SkPreMultiplyColor(colors[2]); | |
| 114 fCornerColors[3] = SkPreMultiplyColor(colors[3]); | |
| 115 } | |
| 116 | |
| 117 uint8_t bilinear(SkScalar tx, SkScalar ty, SkScalar c00, SkScalar c10, SkScalar c01, SkScalar c11) { | |
| 118 SkScalar a = c00 * (1.f - tx) + c10 * tx; | |
| 119 SkScalar b = c01 * (1.f - tx) + c11 * tx; | |
| 120 return uint8_t(a * (1.f - ty) + b * ty); | |
| 121 } | |
| 122 | |
| 123 bool SkPatch::getVertexData(SkPatch::PatchData* data, int divisions) { | |
| 124 | |
| 125 if (divisions < 1) { | |
| 126 return false; | |
| 127 } | |
| 128 | |
| 129 int divX = divisions, divY = divisions; | |
| 130 | |
| 131 data->fVertexCount = (divX + 1) * (divY + 1); | |
| 132 data->fIndexCount = divX * divY * 6; | |
| 133 | |
| 134 data->fPoints = SkNEW_ARRAY(SkPoint, data->fVertexCount); | |
| 135 data->fColors = SkNEW_ARRAY(uint32_t, data->fVertexCount); | |
| 136 data->fTexCoords = SkNEW_ARRAY(SkPoint, data->fVertexCount); | |
| 137 data->fIndices = SkNEW_ARRAY(uint16_t, data->fIndexCount); | |
| 138 | |
| 139 FwDCubicEvaluator fBottom(fCtrlPoints[kBottomP0_CubicCtrlPts], | |
| 140 fCtrlPoints[kBottomP1_CubicCtrlPts], | |
| 141 fCtrlPoints[kBottomP2_CubicCtrlPts], | |
| 142 fCtrlPoints[kBottomP3_CubicCtrlPts]), | |
| 143 fTop(fCtrlPoints[kTopP0_CubicCtrlPts], | |
| 144 fCtrlPoints[kTopP1_CubicCtrlPts], | |
| 145 fCtrlPoints[kTopP2_CubicCtrlPts], | |
| 146 fCtrlPoints[kTopP2_CubicCtrlPts]), | |
| 147 fLeft(fCtrlPoints[kLeftP0_CubicCtrlPts], | |
| 148 fCtrlPoints[kLeftP1_CubicCtrlPts], | |
| 149 fCtrlPoints[kLeftP2_CubicCtrlPts], | |
| 150 fCtrlPoints[kLeftP3_CubicCtrlPts]), | |
| 151 fRight(fCtrlPoints[kRightP0_CubicCtrlPts], | |
| 152 fCtrlPoints[kRightP1_CubicCtrlPts], | |
| 153 fCtrlPoints[kRightP2_CubicCtrlPts], | |
| 154 fCtrlPoints[kRightP3_CubicCtrlPts]); | |
| 155 | |
| 156 fBottom.restart(divX); | |
| 157 fTop.restart(divX); | |
| 158 | |
| 159 SkScalar u = 0.0f; | |
| 160 int stride = divY+1; | |
|
egdaniel
2014/07/25 14:49:27
annoying nit: add space around + (and all other op
dandov
2014/07/25 15:07:09
Done.
| |
| 161 for (int x = 0; x <= divX; x++) { | |
| 162 SkPoint bottom = fBottom.next(), top = fTop.next(); | |
| 163 fLeft.restart(divY); | |
| 164 fRight.restart(divY); | |
| 165 SkScalar v = 0.f; | |
| 166 for (int y = 0; y <= divY; y++) { | |
| 167 int dataIndex = x*(divX + 1) + y; | |
| 168 | |
| 169 SkPoint left = fLeft.next(), right = fRight.next(); | |
| 170 | |
| 171 SkPoint s0 = SkPoint::Make((1.0f - v)*top.x() + v*bottom.x(), | |
| 172 (1.0f - v)*top.y() + v*bottom.y()); | |
| 173 SkPoint s1 = SkPoint::Make((1.0f - u)*left.x() + u*right.x(), | |
| 174 (1.0f - u)*left.y() + u*right.y()); | |
| 175 SkPoint s2 = SkPoint::Make( | |
| 176 (1.0f - v)*((1.0f - u)*fTop.getCtrlPoints ()[0].x() | |
| 177 + u*fTop.getCtrlPoints()[3].x()) | |
| 178 + v*((1.0f - u)*fBottom.getCtrlPoints()[ 0].x() | |
| 179 + u*fBottom.getCtrlPoints()[3].x()), | |
| 180 (1.0f - v)*((1.0f - u)*fTop.getCtrlPoints ()[0].y() | |
| 181 + u*fTop.getCtrlPoints()[3].y()) | |
| 182 + v*((1.0f - u)*fBottom.getCtrlPoints()[ 0].y() | |
| 183 + u*fBottom.getCtrlPoints()[3].y())); | |
| 184 data->fPoints[dataIndex] = s0 + s1 - s2; | |
| 185 | |
| 186 uint8_t a = bilinear(u, v, | |
| 187 SkScalar(SkColorGetA(fCornerColors[0])), | |
| 188 SkScalar(SkColorGetA(fCornerColors[1])), | |
| 189 SkScalar(SkColorGetA(fCornerColors[2])), | |
| 190 SkScalar(SkColorGetA(fCornerColors[3]))); | |
| 191 uint8_t r = bilinear(u, v, | |
| 192 SkScalar(SkColorGetR(fCornerColors[0])), | |
| 193 SkScalar(SkColorGetR(fCornerColors[1])), | |
| 194 SkScalar(SkColorGetR(fCornerColors[2])), | |
| 195 SkScalar(SkColorGetR(fCornerColors[3]))); | |
| 196 uint8_t g = bilinear(u, v, | |
| 197 SkScalar(SkColorGetG(fCornerColors[0])), | |
| 198 SkScalar(SkColorGetG(fCornerColors[1])), | |
| 199 SkScalar(SkColorGetG(fCornerColors[2])), | |
| 200 SkScalar(SkColorGetG(fCornerColors[3]))); | |
| 201 uint8_t b = bilinear(u, v, | |
| 202 SkScalar(SkColorGetB(fCornerColors[0])), | |
| 203 SkScalar(SkColorGetB(fCornerColors[1])), | |
| 204 SkScalar(SkColorGetB(fCornerColors[2])), | |
| 205 SkScalar(SkColorGetB(fCornerColors[3]))); | |
| 206 data->fColors[dataIndex] = SkPackARGB32(a,r,g,b); | |
| 207 | |
| 208 data->fTexCoords[dataIndex] = SkPoint::Make(u, v); | |
| 209 | |
| 210 if(x < divX && y < divY) { | |
| 211 int i = 6*(x*divY + y); | |
| 212 data->fIndices[i] = x*stride+y; | |
| 213 data->fIndices[i+1] = x*stride+1+y; | |
| 214 data->fIndices[i+2] = (x+1)*stride+1+y; | |
| 215 data->fIndices[i+3] = data->fIndices[i]; | |
| 216 data->fIndices[i+4] = data->fIndices[i+2]; | |
| 217 data->fIndices[i+5] = (x+1)*stride+y; | |
| 218 } | |
| 219 v+=1.f/divY; | |
| 220 } | |
| 221 u+=1.f/divX; | |
| 222 } | |
| 223 return true; | |
| 224 } | |
| OLD | NEW |