OLD | NEW |
---|---|
(Empty) | |
1 /* | |
2 * Copyright 2014 Google Inc. | |
3 * | |
4 * Use of this source code is governed by a BSD-style license that can be | |
5 * found in the LICENSE file. | |
6 */ | |
7 | |
8 #include "SkPatch.h" | |
9 | |
10 #include "SkGeometry.h" | |
11 #include "SkGr.h" | |
12 | |
13 //////////////////////////////////////////////////////////////////////////////// | |
14 | |
15 /** | |
16 * Evaluator to sample the values of a cubic bezier using forward differences. | |
17 * Forward differences is a method for evaluating a nth degree polynomial at a u niform step by only | |
18 * adding precalculated values. | |
19 * For a linear example we have the function f(t) = m*t+b, then the value of tha t function at t+h | |
20 * would be f(t+h) = m*(t+h)+b. If we want to know the uniform step that we must add to the first | |
21 * evaluation f(t) then we need to substract f(t+h) - f(t) = m*t + m*h + b - m*t + b = mh. After | |
22 * obtaining this value (mh) we could just add this constant step to our first s ampled point | |
23 * to compute the next one. | |
24 * | |
25 * For the cubic case the first difference gives as a result a quadratic polynom ial to which we can | |
26 * apply again forward differences and get linear function to which we can apply again forward | |
27 * differences to get a constant difference. This is why we keep an array of siz e 4, the 0th | |
28 * position keeps the sampled value while the next ones keep the quadratic, line ar and constant | |
29 * difference values. | |
30 */ | |
31 | |
32 class FwDCubicEvaluator { | |
33 | |
34 public: | |
35 FwDCubicEvaluator(){ } | |
36 | |
37 /** | |
38 * Receives the 4 control points of the cubic bezier. | |
39 */ | |
40 FwDCubicEvaluator(SkPoint a, SkPoint b, SkPoint c, SkPoint d){ | |
bsalomon
2014/07/25 13:14:35
tiny nit here and a few other places, space betwee
dandov
2014/07/25 14:08:14
Done.
| |
41 fPoints[0] = a; | |
42 fPoints[1] = b; | |
43 fPoints[2] = c; | |
44 fPoints[3] = d; | |
45 | |
46 SkScalar cx[4], cy[4]; | |
47 SkGetCubicCoeff(fPoints, cx, cy); | |
48 fCoefs[0].set(cx[0], cy[0]); | |
49 fCoefs[1].set(cx[1], cy[1]); | |
50 fCoefs[2].set(cx[2], cy[2]); | |
51 fCoefs[3].set(cx[3], cy[3]); | |
52 | |
53 this->restart(1); | |
54 } | |
55 | |
56 /** | |
57 * Restarts the forward differences evaluator to the first value of t = 0. | |
58 */ | |
59 void restart(int divisions){ | |
60 fDivisions = divisions; | |
61 SkScalar h = 1.f/fDivisions; | |
62 fCurrent = 0; | |
63 fMax = fDivisions + 1; | |
64 fFwDiff[0] = fCoefs[3]; | |
65 SkScalar h2 = h*h; | |
66 SkScalar h3 = h2*h; | |
67 | |
68 fFwDiff[3].set(6.f*fCoefs[0].x()*h3, 6.f*fCoefs[0].y()*h3); //6ah^3 | |
69 fFwDiff[2].set(fFwDiff[3].x() + 2.f*fCoefs[1].x()*h2, //6ah^3 + 2bh^2 | |
70 fFwDiff[3].y() + 2.f*fCoefs[1].y()*h2); | |
71 fFwDiff[1].set(fCoefs[0].x()*h3 + fCoefs[1].x()*h2 + fCoefs[2].x()*h, // ah^3 + bh^2 + ch | |
72 fCoefs[0].y()*h3 + fCoefs[1].y()*h2 + fCoefs[2].y()*h); | |
73 } | |
74 | |
75 /** | |
76 * Check if the evaluator is still within the range of 0<=t<=1 | |
77 */ | |
78 inline bool done() { | |
bsalomon
2014/07/25 13:14:35
const?
dandov
2014/07/25 14:08:14
Done. Also set to const the return value of the ne
| |
79 return fCurrent <= fMax; | |
80 } | |
81 | |
82 /** | |
83 * Call next to obtain the SkPoint sampled and move to the next one. | |
84 */ | |
85 inline SkPoint next() { | |
86 SkPoint point = fFwDiff[0]; | |
87 fFwDiff[0] += fFwDiff[1]; | |
88 fFwDiff[1] += fFwDiff[2]; | |
89 fFwDiff[2] += fFwDiff[3]; | |
90 fCurrent++; | |
91 return point; | |
92 } | |
93 | |
94 const SkPoint* getCtrlPoints() { | |
95 return fPoints; | |
96 } | |
97 | |
98 private: | |
99 int fMax, fCurrent, fDivisions; | |
100 SkPoint fFwDiff[4], fCoefs[4], fPoints[4]; | |
101 }; | |
102 | |
103 //////////////////////////////////////////////////////////////////////////////// | |
104 | |
105 SkPatch::SkPatch(SkPoint points[12], SkColor colors[4], int divisions) | |
106 : fDivX(divisions) | |
bsalomon
2014/07/25 13:14:34
Maybe SkPatch shouldn't store the divisions but sh
dandov
2014/07/25 14:08:14
Yeah I think it makes more sense that way.
| |
107 , fDivY(divisions) { | |
108 | |
109 for (int i = 0; i<12; i++) { | |
110 fCtrlPoints[i] = points[i]; | |
111 } | |
112 | |
113 fCornerColors[0] = SkPreMultiplyColor(colors[0]); | |
114 fCornerColors[1] = SkPreMultiplyColor(colors[1]); | |
115 fCornerColors[2] = SkPreMultiplyColor(colors[2]); | |
116 fCornerColors[3] = SkPreMultiplyColor(colors[3]); | |
117 } | |
118 | |
119 uint8_t bilinear(SkScalar tx, SkScalar ty, SkScalar c00, SkScalar c10, SkScalar c01, SkScalar c11) { | |
120 SkScalar a = c00 * (1.f - tx) + c10 * tx; | |
121 SkScalar b = c01 * (1.f - tx) + c11 * tx; | |
122 return uint8_t(a * (1.f - ty) + b * ty); | |
123 } | |
124 | |
125 void SkPatch::getVertexData(SkPatch::PatchData* data) { | |
126 | |
127 data->fVertCount = (fDivX + 1) * (fDivY + 1); | |
128 data->fIndexCount = fDivX * fDivY * 6; | |
129 | |
130 data->fPoints = SkNEW_ARRAY(SkPoint, data->fVertCount); | |
131 data->fColors = SkNEW_ARRAY(uint32_t, data->fVertCount); | |
132 data->fTexCoords = SkNEW_ARRAY(SkPoint, data->fVertCount); | |
133 data->fIndices = SkNEW_ARRAY(uint16_t, data->fIndexCount); | |
134 | |
135 FwDCubicEvaluator fBottom(fCtrlPoints[0], fCtrlPoints[1], fCtrlPoints[2], fC trlPoints[3]), | |
136 fTop(fCtrlPoints[9], fCtrlPoints[8], fCtrlPoints[7], fCtrlPoints[6]), | |
137 fLeft(fCtrlPoints[0], fCtrlPoints[11], fCtrlPoints[10], fCtrlPoints[9]), | |
138 fRight(fCtrlPoints[3], fCtrlPoints[4], fCtrlPoints[5], fCtrlPoints[6]); | |
139 | |
140 fBottom.restart(fDivX); | |
141 fTop.restart(fDivX); | |
142 | |
143 SkScalar u = 0.0f; | |
144 int stride = fDivY+1; | |
145 for (int x = 0; x <= fDivX; x++) { | |
146 SkPoint bottom = fBottom.next(), top = fTop.next(); | |
147 fLeft.restart(fDivY); | |
148 fRight.restart(fDivY); | |
149 SkScalar v = 0.f; | |
150 for (int y = 0; y <= fDivY; y++) { | |
151 int dataIndex = x*(fDivX + 1) + y; | |
152 | |
153 SkPoint left = fLeft.next(), right = fRight.next(); | |
154 | |
155 SkPoint s0 = SkPoint::Make((1.0f - v)*bottom.x() + v*top.x(), | |
156 (1.0f - v)*bottom.y() + v*top.y()); | |
157 SkPoint s1 = SkPoint::Make((1.0f - u)*left.x() + u*right.x(), | |
158 (1.0f - u)*left.y() + u*right.y()); | |
159 SkPoint s2 = SkPoint::Make( | |
160 (1.0f - v)*((1.0f - u)*fBottom.getCtrlPoints()[0].x() | |
161 + u*fBottom.getCtrlPoints()[3].x()) | |
162 + v*((1.0f - u)*fTop.getCtrlPoints()[0].x() + u*fTop .getCtrlPoints()[3].x()), | |
163 (1.0f - v)*((1.0f - u)*fBottom.getCtrlPoints()[0].y() | |
164 + u*fBottom.getCtrlPoints()[3].y()) | |
165 + v*((1.0f - u)*fTop.getCtrlPoints()[0].y() + u*fTop .getCtrlPoints()[3].y())); | |
166 data->fPoints[dataIndex] = s0 + s1 - s2; | |
167 | |
168 uint8_t a = bilinear(u, v, | |
169 SkScalar(SkColorGetA(fCornerColors[0])), | |
170 SkScalar(SkColorGetA(fCornerColors[1])), | |
171 SkScalar(SkColorGetA(fCornerColors[2])), | |
172 SkScalar(SkColorGetA(fCornerColors[3]))); | |
173 uint8_t r = bilinear(u, v, | |
174 SkScalar(SkColorGetR(fCornerColors[0])), | |
175 SkScalar(SkColorGetR(fCornerColors[1])), | |
176 SkScalar(SkColorGetR(fCornerColors[2])), | |
177 SkScalar(SkColorGetR(fCornerColors[3]))); | |
178 uint8_t g = bilinear(u, v, | |
179 SkScalar(SkColorGetG(fCornerColors[0])), | |
180 SkScalar(SkColorGetG(fCornerColors[1])), | |
181 SkScalar(SkColorGetG(fCornerColors[2])), | |
182 SkScalar(SkColorGetG(fCornerColors[3]))); | |
183 uint8_t b = bilinear(u, v, | |
184 SkScalar(SkColorGetB(fCornerColors[0])), | |
185 SkScalar(SkColorGetB(fCornerColors[1])), | |
186 SkScalar(SkColorGetB(fCornerColors[2])), | |
187 SkScalar(SkColorGetB(fCornerColors[3]))); | |
188 data->fColors[dataIndex] = SkPackARGB32(a,r,g,b); | |
189 | |
190 | |
191 data->fTexCoords[dataIndex] = SkPoint::Make(u, v); | |
192 | |
193 if(x < fDivX && y < fDivY) { | |
194 int i = 6*(x*fDivY + y); | |
195 data->fIndices[i] = x*stride+y; | |
196 data->fIndices[i+1] = x*stride+1+y; | |
197 data->fIndices[i+2] = (x+1)*stride+1+y; | |
198 data->fIndices[i+3] = data->fIndices[i]; | |
199 data->fIndices[i+4] = data->fIndices[i+2]; | |
200 data->fIndices[i+5] = (x+1)*stride+y; | |
201 } | |
202 v+=1.f/fDivY; | |
203 } | |
204 u+=1.f/fDivX; | |
205 } | |
206 } | |
OLD | NEW |