Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(27)

Unified Diff: tools/relocation_packer/src/elf_file.cc

Issue 404553003: Create builds configured for ARM and AARCH64. (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@master
Patch Set: Rename DT tags to DT_ANDROID_REL_XXX Created 6 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « tools/relocation_packer/src/elf_file.h ('k') | tools/relocation_packer/src/elf_traits.h » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: tools/relocation_packer/src/elf_file.cc
diff --git a/tools/relocation_packer/src/elf_file.cc b/tools/relocation_packer/src/elf_file.cc
index 63990181aaa3ea128d85bfbaab7c509ac318f8a3..86ddd25672361220b8f9ff7825784628d8159ddf 100644
--- a/tools/relocation_packer/src/elf_file.cc
+++ b/tools/relocation_packer/src/elf_file.cc
@@ -2,8 +2,6 @@
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
-// TODO(simonb): Extend for 64-bit target libraries.
-
#include "elf_file.h"
#include <stdlib.h>
@@ -13,18 +11,19 @@
#include <vector>
#include "debug.h"
+#include "elf_traits.h"
#include "libelf.h"
#include "packer.h"
namespace relocation_packer {
// Stub identifier written to 'null out' packed data, "NULL".
-static const Elf32_Word kStubIdentifier = 0x4c4c554eu;
+static const uint32_t kStubIdentifier = 0x4c4c554eu;
// Out-of-band dynamic tags used to indicate the offset and size of the
// .android.rel.dyn section.
-static const Elf32_Sword DT_ANDROID_ARM_REL_OFFSET = DT_LOPROC;
-static const Elf32_Sword DT_ANDROID_ARM_REL_SIZE = DT_LOPROC + 1;
+static const ELF::Sword DT_ANDROID_REL_OFFSET = DT_LOPROC;
+static const ELF::Sword DT_ANDROID_REL_SIZE = DT_LOPROC + 1;
// Alignment to preserve, in bytes. This must be at least as large as the
// largest d_align and sh_addralign values found in the loaded file.
@@ -55,7 +54,7 @@ void RewriteSectionData(Elf_Data* data,
}
// Verbose ELF header logging.
-void VerboseLogElfHeader(const Elf32_Ehdr* elf_header) {
+void VerboseLogElfHeader(const ELF::Ehdr* elf_header) {
VLOG(1) << "e_phoff = " << elf_header->e_phoff;
VLOG(1) << "e_shoff = " << elf_header->e_shoff;
VLOG(1) << "e_ehsize = " << elf_header->e_ehsize;
@@ -67,7 +66,7 @@ void VerboseLogElfHeader(const Elf32_Ehdr* elf_header) {
// Verbose ELF program header logging.
void VerboseLogProgramHeader(size_t program_header_index,
- const Elf32_Phdr* program_header) {
+ const ELF::Phdr* program_header) {
std::string type;
switch (program_header->p_type) {
case PT_NULL: type = "NULL"; break;
@@ -90,7 +89,7 @@ void VerboseLogProgramHeader(size_t program_header_index,
// Verbose ELF section header logging.
void VerboseLogSectionHeader(const std::string& section_name,
- const Elf32_Shdr* section_header) {
+ const ELF::Shdr* section_header) {
VLOG(1) << "section " << section_name;
VLOG(1) << " sh_addr = " << section_header->sh_addr;
VLOG(1) << " sh_offset = " << section_header->sh_offset;
@@ -116,39 +115,43 @@ bool ElfFile::Load() {
if (elf_)
return true;
- elf_ = elf_begin(fd_, ELF_C_RDWR, NULL);
- CHECK(elf_);
+ Elf* elf = elf_begin(fd_, ELF_C_RDWR, NULL);
+ CHECK(elf);
- if (elf_kind(elf_) != ELF_K_ELF) {
+ if (elf_kind(elf) != ELF_K_ELF) {
LOG(ERROR) << "File not in ELF format";
return false;
}
- Elf32_Ehdr* elf_header = elf32_getehdr(elf_);
+ ELF::Ehdr* elf_header = ELF::getehdr(elf);
if (!elf_header) {
- LOG(ERROR) << "Failed to load ELF header";
+ LOG(ERROR) << "Failed to load ELF header: " << elf_errmsg(elf_errno());
return false;
}
- if (elf_header->e_machine != EM_ARM) {
- LOG(ERROR) << "File is not an arm32 ELF file";
+ if (elf_header->e_machine != ELF::kMachine) {
+ LOG(ERROR) << "ELF file architecture is not " << ELF::Machine();
return false;
}
// Require that our endianness matches that of the target, and that both
// are little-endian. Safe for all current build/target combinations.
- const int endian = static_cast<int>(elf_header->e_ident[5]);
+ const int endian = elf_header->e_ident[EI_DATA];
CHECK(endian == ELFDATA2LSB);
CHECK(__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__);
- VLOG(1) << "endian = " << endian;
+ // Also require that the file class is as expected.
+ const int file_class = elf_header->e_ident[EI_CLASS];
+ CHECK(file_class == ELF::kFileClass);
+
+ VLOG(1) << "endian = " << endian << ", file class = " << file_class;
VerboseLogElfHeader(elf_header);
- const Elf32_Phdr* elf_program_header = elf32_getphdr(elf_);
+ const ELF::Phdr* elf_program_header = ELF::getphdr(elf);
CHECK(elf_program_header);
- const Elf32_Phdr* dynamic_program_header = NULL;
+ const ELF::Phdr* dynamic_program_header = NULL;
for (size_t i = 0; i < elf_header->e_phnum; ++i) {
- const Elf32_Phdr* program_header = &elf_program_header[i];
+ const ELF::Phdr* program_header = &elf_program_header[i];
VerboseLogProgramHeader(i, program_header);
if (program_header->p_type == PT_DYNAMIC) {
@@ -159,7 +162,7 @@ bool ElfFile::Load() {
CHECK(dynamic_program_header != NULL);
size_t string_index;
- elf_getshdrstrndx(elf_, &string_index);
+ elf_getshdrstrndx(elf, &string_index);
// Notes of the .rel.dyn, .android.rel.dyn, and .dynamic sections. Found
// while iterating sections, and later stored in class attributes.
@@ -175,9 +178,9 @@ bool ElfFile::Load() {
bool has_debug_section = false;
Elf_Scn* section = NULL;
- while ((section = elf_nextscn(elf_, section)) != NULL) {
- const Elf32_Shdr* section_header = elf32_getshdr(section);
- std::string name = elf_strptr(elf_, string_index, section_header->sh_name);
+ while ((section = elf_nextscn(elf, section)) != NULL) {
+ const ELF::Shdr* section_header = ELF::getshdr(section);
+ std::string name = elf_strptr(elf, string_index, section_header->sh_name);
VerboseLogSectionHeader(name, section_header);
// Note special sections as we encounter them.
@@ -226,6 +229,7 @@ bool ElfFile::Load() {
LOG(WARNING) << "Found .debug section(s), and ignored them";
}
+ elf_ = elf;
rel_dyn_section_ = found_rel_dyn_section;
dynamic_section_ = found_dynamic_section;
android_rel_dyn_section_ = found_android_rel_dyn_section;
@@ -235,9 +239,9 @@ bool ElfFile::Load() {
namespace {
// Helper for ResizeSection(). Adjust the main ELF header for the hole.
-void AdjustElfHeaderForHole(Elf32_Ehdr* elf_header,
- Elf32_Off hole_start,
- int32_t hole_size) {
+void AdjustElfHeaderForHole(ELF::Ehdr* elf_header,
+ ELF::Off hole_start,
+ ssize_t hole_size) {
if (elf_header->e_phoff > hole_start) {
elf_header->e_phoff += hole_size;
VLOG(1) << "e_phoff adjusted to " << elf_header->e_phoff;
@@ -249,12 +253,12 @@ void AdjustElfHeaderForHole(Elf32_Ehdr* elf_header,
}
// Helper for ResizeSection(). Adjust all program headers for the hole.
-void AdjustProgramHeadersForHole(Elf32_Phdr* elf_program_header,
+void AdjustProgramHeadersForHole(ELF::Phdr* elf_program_header,
size_t program_header_count,
- Elf32_Off hole_start,
- int32_t hole_size) {
+ ELF::Off hole_start,
+ ssize_t hole_size) {
for (size_t i = 0; i < program_header_count; ++i) {
- Elf32_Phdr* program_header = &elf_program_header[i];
+ ELF::Phdr* program_header = &elf_program_header[i];
if (program_header->p_offset > hole_start) {
// The hole start is past this segment, so adjust offsets and addrs.
@@ -289,14 +293,14 @@ void AdjustProgramHeadersForHole(Elf32_Phdr* elf_program_header,
// Helper for ResizeSection(). Adjust all section headers for the hole.
void AdjustSectionHeadersForHole(Elf* elf,
- Elf32_Off hole_start,
- int32_t hole_size) {
+ ELF::Off hole_start,
+ ssize_t hole_size) {
size_t string_index;
elf_getshdrstrndx(elf, &string_index);
Elf_Scn* section = NULL;
while ((section = elf_nextscn(elf, section)) != NULL) {
- Elf32_Shdr* section_header = elf32_getshdr(section);
+ ELF::Shdr* section_header = ELF::getshdr(section);
std::string name = elf_strptr(elf, string_index, section_header->sh_name);
if (section_header->sh_offset > hole_start) {
@@ -316,18 +320,18 @@ void AdjustSectionHeadersForHole(Elf* elf,
// Helper for ResizeSection(). Adjust the .dynamic section for the hole.
void AdjustDynamicSectionForHole(Elf_Scn* dynamic_section,
bool is_rel_dyn_resize,
- Elf32_Off hole_start,
- int32_t hole_size) {
+ ELF::Off hole_start,
+ ssize_t hole_size) {
Elf_Data* data = GetSectionData(dynamic_section);
- const Elf32_Dyn* dynamic_base = reinterpret_cast<Elf32_Dyn*>(data->d_buf);
- std::vector<Elf32_Dyn> dynamics(
+ const ELF::Dyn* dynamic_base = reinterpret_cast<ELF::Dyn*>(data->d_buf);
+ std::vector<ELF::Dyn> dynamics(
dynamic_base,
dynamic_base + data->d_size / sizeof(dynamics[0]));
for (size_t i = 0; i < dynamics.size(); ++i) {
- Elf32_Dyn* dynamic = &dynamics[i];
- const Elf32_Sword tag = dynamic->d_tag;
+ ELF::Dyn* dynamic = &dynamics[i];
+ const ELF::Sword tag = dynamic->d_tag;
// Any tags that hold offsets are adjustment candidates.
const bool is_adjustable = (tag == DT_PLTGOT ||
tag == DT_HASH ||
@@ -340,7 +344,7 @@ void AdjustDynamicSectionForHole(Elf_Scn* dynamic_section,
tag == DT_JMPREL ||
tag == DT_INIT_ARRAY ||
tag == DT_FINI_ARRAY ||
- tag == DT_ANDROID_ARM_REL_OFFSET);
+ tag == DT_ANDROID_REL_OFFSET);
if (is_adjustable && dynamic->d_un.d_ptr > hole_start) {
dynamic->d_un.d_ptr += hole_size;
VLOG(1) << "dynamic[" << i << "] " << dynamic->d_tag
@@ -348,32 +352,33 @@ void AdjustDynamicSectionForHole(Elf_Scn* dynamic_section,
}
// If we are specifically resizing .rel.dyn, we need to make some added
- // adjustments to tags that indicate the counts of R_ARM_RELATIVE
+ // adjustments to tags that indicate the counts of ARM relative
// relocations in the shared object.
- if (is_rel_dyn_resize) {
- // DT_RELSZ is the overall size of relocations. Adjust by hole size.
- if (tag == DT_RELSZ) {
- dynamic->d_un.d_val += hole_size;
- VLOG(1) << "dynamic[" << i << "] " << dynamic->d_tag
- << " d_val adjusted to " << dynamic->d_un.d_val;
- }
+ if (!is_rel_dyn_resize)
+ continue;
- // DT_RELCOUNT is the count of relative relocations. Packing reduces it
- // to the alignment padding, if any; unpacking restores it to its former
- // value. The crazy linker does not use it, but we update it anyway.
- if (tag == DT_RELCOUNT) {
- // Cast sizeof to a signed type to avoid the division result being
- // promoted into an unsigned size_t.
- const ssize_t sizeof_rel = static_cast<ssize_t>(sizeof(Elf32_Rel));
- dynamic->d_un.d_val += hole_size / sizeof_rel;
- VLOG(1) << "dynamic[" << i << "] " << dynamic->d_tag
- << " d_val adjusted to " << dynamic->d_un.d_val;
- }
+ // DT_RELSZ is the overall size of relocations. Adjust by hole size.
+ if (tag == DT_RELSZ) {
+ dynamic->d_un.d_val += hole_size;
+ VLOG(1) << "dynamic[" << i << "] " << dynamic->d_tag
+ << " d_val adjusted to " << dynamic->d_un.d_val;
+ }
- // DT_RELENT doesn't change, but make sure it is what we expect.
- if (tag == DT_RELENT) {
- CHECK(dynamic->d_un.d_val == sizeof(Elf32_Rel));
- }
+ // DT_RELCOUNT is the count of relative relocations. Packing reduces it
+ // to the alignment padding, if any; unpacking restores it to its former
+ // value. The crazy linker does not use it, but we update it anyway.
+ if (tag == DT_RELCOUNT) {
+ // Cast sizeof to a signed type to avoid the division result being
+ // promoted into an unsigned size_t.
+ const ssize_t sizeof_rel = static_cast<ssize_t>(sizeof(ELF::Rel));
+ dynamic->d_un.d_val += hole_size / sizeof_rel;
+ VLOG(1) << "dynamic[" << i << "] " << dynamic->d_tag
+ << " d_val adjusted to " << dynamic->d_un.d_val;
+ }
+
+ // DT_RELENT doesn't change, but make sure it is what we expect.
+ if (tag == DT_RELENT) {
+ CHECK(dynamic->d_un.d_val == sizeof(ELF::Rel));
}
}
@@ -385,18 +390,18 @@ void AdjustDynamicSectionForHole(Elf_Scn* dynamic_section,
// Helper for ResizeSection(). Adjust the .dynsym section for the hole.
// We need to adjust the values for the symbols represented in it.
void AdjustDynSymSectionForHole(Elf_Scn* dynsym_section,
- Elf32_Off hole_start,
- int32_t hole_size) {
+ ELF::Off hole_start,
+ ssize_t hole_size) {
Elf_Data* data = GetSectionData(dynsym_section);
- const Elf32_Sym* dynsym_base = reinterpret_cast<Elf32_Sym*>(data->d_buf);
- std::vector<Elf32_Sym> dynsyms
+ const ELF::Sym* dynsym_base = reinterpret_cast<ELF::Sym*>(data->d_buf);
+ std::vector<ELF::Sym> dynsyms
(dynsym_base,
dynsym_base + data->d_size / sizeof(dynsyms[0]));
for (size_t i = 0; i < dynsyms.size(); ++i) {
- Elf32_Sym* dynsym = &dynsyms[i];
- const int type = static_cast<int>(ELF32_ST_TYPE(dynsym->st_info));
+ ELF::Sym* dynsym = &dynsyms[i];
+ const int type = static_cast<int>(ELF_ST_TYPE(dynsym->st_info));
const bool is_adjustable = (type == STT_OBJECT ||
type == STT_FUNC ||
type == STT_SECTION ||
@@ -419,17 +424,17 @@ void AdjustDynSymSectionForHole(Elf_Scn* dynsym_section,
// We need to adjust the offset of every relocation inside it that falls
// beyond the hole start.
void AdjustRelPltSectionForHole(Elf_Scn* relplt_section,
- Elf32_Off hole_start,
- int32_t hole_size) {
+ ELF::Off hole_start,
+ ssize_t hole_size) {
Elf_Data* data = GetSectionData(relplt_section);
- const Elf32_Rel* relplt_base = reinterpret_cast<Elf32_Rel*>(data->d_buf);
- std::vector<Elf32_Rel> relplts(
+ const ELF::Rel* relplt_base = reinterpret_cast<ELF::Rel*>(data->d_buf);
+ std::vector<ELF::Rel> relplts(
relplt_base,
relplt_base + data->d_size / sizeof(relplts[0]));
for (size_t i = 0; i < relplts.size(); ++i) {
- Elf32_Rel* relplt = &relplts[i];
+ ELF::Rel* relplt = &relplts[i];
if (relplt->r_offset > hole_start) {
relplt->r_offset += hole_size;
VLOG(1) << "relplt[" << i
@@ -446,17 +451,17 @@ void AdjustRelPltSectionForHole(Elf_Scn* relplt_section,
// We want to adjust the value of every symbol in it that falls beyond
// the hole start.
void AdjustSymTabSectionForHole(Elf_Scn* symtab_section,
- Elf32_Off hole_start,
- int32_t hole_size) {
+ ELF::Off hole_start,
+ ssize_t hole_size) {
Elf_Data* data = GetSectionData(symtab_section);
- const Elf32_Sym* symtab_base = reinterpret_cast<Elf32_Sym*>(data->d_buf);
- std::vector<Elf32_Sym> symtab(
+ const ELF::Sym* symtab_base = reinterpret_cast<ELF::Sym*>(data->d_buf);
+ std::vector<ELF::Sym> symtab(
symtab_base,
symtab_base + data->d_size / sizeof(symtab[0]));
for (size_t i = 0; i < symtab.size(); ++i) {
- Elf32_Sym* sym = &symtab[i];
+ ELF::Sym* sym = &symtab[i];
if (sym->st_value > hole_start) {
sym->st_value += hole_size;
VLOG(1) << "symtab[" << i << "] value adjusted to " << sym->st_value;
@@ -472,7 +477,7 @@ void AdjustSymTabSectionForHole(Elf_Scn* symtab_section,
// up a hole by increasing file offsets that come after the hole. If smaller
// than the current size, remove the hole by decreasing those offsets.
void ResizeSection(Elf* elf, Elf_Scn* section, size_t new_size) {
- Elf32_Shdr* section_header = elf32_getshdr(section);
+ ELF::Shdr* section_header = ELF::getshdr(section);
if (section_header->sh_size == new_size)
return;
@@ -494,8 +499,8 @@ void ResizeSection(Elf* elf, Elf_Scn* section, size_t new_size) {
// data that we can validly expand).
CHECK(data->d_size && data->d_buf);
- const Elf32_Off hole_start = section_header->sh_offset;
- const int32_t hole_size = new_size - data->d_size;
+ const ELF::Off hole_start = section_header->sh_offset;
+ const ssize_t hole_size = new_size - data->d_size;
VLOG_IF(1, (hole_size > 0)) << "expand section size = " << data->d_size;
VLOG_IF(1, (hole_size < 0)) << "shrink section size = " << data->d_size;
@@ -504,8 +509,8 @@ void ResizeSection(Elf* elf, Elf_Scn* section, size_t new_size) {
data->d_size += hole_size;
section_header->sh_size += hole_size;
- Elf32_Ehdr* elf_header = elf32_getehdr(elf);
- Elf32_Phdr* elf_program_header = elf32_getphdr(elf);
+ ELF::Ehdr* elf_header = ELF::getehdr(elf);
+ ELF::Phdr* elf_program_header = ELF::getphdr(elf);
// Add the hole size to all offsets in the ELF file that are after the
// start of the hole. If the hole size is positive we are expanding the
@@ -524,11 +529,11 @@ void ResizeSection(Elf* elf, Elf_Scn* section, size_t new_size) {
AdjustSectionHeadersForHole(elf, hole_start, hole_size);
// We use the dynamic program header entry to locate the dynamic section.
- const Elf32_Phdr* dynamic_program_header = NULL;
+ const ELF::Phdr* dynamic_program_header = NULL;
// Find the dynamic program header entry.
for (size_t i = 0; i < elf_header->e_phnum; ++i) {
- Elf32_Phdr* program_header = &elf_program_header[i];
+ ELF::Phdr* program_header = &elf_program_header[i];
if (program_header->p_type == PT_DYNAMIC) {
dynamic_program_header = program_header;
@@ -541,12 +546,12 @@ void ResizeSection(Elf* elf, Elf_Scn* section, size_t new_size) {
Elf_Scn* dynsym_section = NULL;
Elf_Scn* relplt_section = NULL;
Elf_Scn* symtab_section = NULL;
- Elf32_Off android_rel_dyn_offset = 0;
+ ELF::Off android_rel_dyn_offset = 0;
// Find these sections, and the .android.rel.dyn offset.
section = NULL;
while ((section = elf_nextscn(elf, section)) != NULL) {
- Elf32_Shdr* section_header = elf32_getshdr(section);
+ ELF::Shdr* section_header = ELF::getshdr(section);
std::string name = elf_strptr(elf, string_index, section_header->sh_name);
if (section_header->sh_offset == dynamic_program_header->p_offset) {
@@ -592,63 +597,70 @@ void ResizeSection(Elf* elf, Elf_Scn* section, size_t new_size) {
AdjustSymTabSectionForHole(symtab_section, hole_start, hole_size);
}
+// Find the first slot in a dynamics array with the given tag. The array
+// always ends with a free (unused) element, and which we exclude from the
+// search. Returns dynamics->size() if not found.
+size_t FindDynamicEntry(ELF::Sword tag,
+ std::vector<ELF::Dyn>* dynamics) {
+ // Loop until the penultimate entry. We exclude the end sentinel.
+ for (size_t i = 0; i < dynamics->size() - 1; ++i) {
+ if (dynamics->at(i).d_tag == tag)
+ return i;
+ }
+
+ // The tag was not found.
+ return dynamics->size();
+}
+
// Replace the first free (unused) slot in a dynamics vector with the given
// value. The vector always ends with a free (unused) element, so the slot
// found cannot be the last one in the vector.
-void AddDynamicEntry(Elf32_Dyn dyn,
- std::vector<Elf32_Dyn>* dynamics) {
- // Loop until the penultimate entry. We cannot replace the end sentinel.
- for (size_t i = 0; i < dynamics->size() - 1; ++i) {
- Elf32_Dyn &slot = dynamics->at(i);
- if (slot.d_tag == DT_NULL) {
- slot = dyn;
- VLOG(1) << "dynamic[" << i << "] overwritten with " << dyn.d_tag;
- return;
- }
+void AddDynamicEntry(const ELF::Dyn& dyn,
+ std::vector<ELF::Dyn>* dynamics) {
+ const size_t slot = FindDynamicEntry(DT_NULL, dynamics);
+ if (slot == dynamics->size()) {
+ LOG(FATAL) << "No spare dynamic array slots found "
+ << "(to fix, increase gold's --spare-dynamic-tags value)";
}
- // No free dynamics vector slot was found.
- LOG(FATAL) << "No spare dynamic vector slots found "
- << "(to fix, increase gold's --spare-dynamic-tags value)";
+ // Replace this entry with the one supplied.
+ dynamics->at(slot) = dyn;
+ VLOG(1) << "dynamic[" << slot << "] overwritten with " << dyn.d_tag;
}
// Remove the element in the dynamics vector that matches the given tag with
// unused slot data. Shuffle the following elements up, and ensure that the
// last is the null sentinel.
-void RemoveDynamicEntry(Elf32_Sword tag,
- std::vector<Elf32_Dyn>* dynamics) {
- // Loop until the penultimate entry, and never match the end sentinel.
- for (size_t i = 0; i < dynamics->size() - 1; ++i) {
- Elf32_Dyn &slot = dynamics->at(i);
- if (slot.d_tag == tag) {
- for ( ; i < dynamics->size() - 1; ++i) {
- dynamics->at(i) = dynamics->at(i + 1);
- VLOG(1) << "dynamic[" << i
- << "] overwritten with dynamic[" << i + 1 << "]";
- }
- CHECK(dynamics->at(i).d_tag == DT_NULL);
- return;
- }
+void RemoveDynamicEntry(ELF::Sword tag,
+ std::vector<ELF::Dyn>* dynamics) {
+ const size_t slot = FindDynamicEntry(tag, dynamics);
+ CHECK(slot != dynamics->size());
+
+ // Remove this entry by shuffling up everything that follows.
+ for (size_t i = slot; i < dynamics->size() - 1; ++i) {
+ dynamics->at(i) = dynamics->at(i + 1);
+ VLOG(1) << "dynamic[" << i
+ << "] overwritten with dynamic[" << i + 1 << "]";
}
- // No matching dynamics vector entry was found.
- NOTREACHED();
+ // Ensure that the end sentinel is still present.
+ CHECK(dynamics->at(dynamics->size() - 1).d_tag == DT_NULL);
}
-// Apply R_ARM_RELATIVE relocations to the file data to which they refer.
+// Apply ARM relative relocations to the file data to which they refer.
// This relocates data into the area it will occupy after the hole in
// .rel.dyn is added or removed.
void AdjustRelocationTargets(Elf* elf,
- Elf32_Off hole_start,
+ ELF::Off hole_start,
size_t hole_size,
- const std::vector<Elf32_Rel>& relocations) {
+ const std::vector<ELF::Rel>& relocations) {
Elf_Scn* section = NULL;
while ((section = elf_nextscn(elf, section)) != NULL) {
- const Elf32_Shdr* section_header = elf32_getshdr(section);
+ const ELF::Shdr* section_header = ELF::getshdr(section);
// Identify this section's start and end addresses.
- const Elf32_Addr section_start = section_header->sh_addr;
- const Elf32_Addr section_end = section_start + section_header->sh_size;
+ const ELF::Addr section_start = section_header->sh_addr;
+ const ELF::Addr section_end = section_start + section_header->sh_size;
Elf_Data* data = GetSectionData(section);
@@ -660,14 +672,14 @@ void AdjustRelocationTargets(Elf* elf,
uint8_t* area = reinterpret_cast<uint8_t*>(data->d_buf);
for (size_t i = 0; i < relocations.size(); ++i) {
- const Elf32_Rel* relocation = &relocations[i];
- CHECK(ELF32_R_TYPE(relocation->r_info) == R_ARM_RELATIVE);
+ const ELF::Rel* relocation = &relocations[i];
+ CHECK(ELF_R_TYPE(relocation->r_info) == ELF::kRelativeRelocationCode);
// See if this relocation points into the current section.
if (relocation->r_offset >= section_start &&
relocation->r_offset < section_end) {
- Elf32_Addr byte_offset = relocation->r_offset - section_start;
- Elf32_Off* target = reinterpret_cast<Elf32_Off*>(area + byte_offset);
+ ELF::Addr byte_offset = relocation->r_offset - section_start;
+ ELF::Off* target = reinterpret_cast<ELF::Off*>(area + byte_offset);
// Is the relocation's target after the hole's start?
if (*target > hole_start) {
@@ -676,7 +688,7 @@ void AdjustRelocationTargets(Elf* elf,
if (area == data->d_buf) {
area = new uint8_t[data->d_size];
memcpy(area, data->d_buf, data->d_size);
- target = reinterpret_cast<Elf32_Off*>(area + byte_offset);
+ target = reinterpret_cast<ELF::Off*>(area + byte_offset);
}
*target += hole_size;
@@ -693,22 +705,24 @@ void AdjustRelocationTargets(Elf* elf,
}
}
-// Pad relocations with a given number of R_ARM_NONE relocations.
+// Pad relocations with a given number of null relocations.
void PadRelocations(size_t count,
- std::vector<Elf32_Rel>* relocations) {
- const Elf32_Rel r_arm_none = {R_ARM_NONE, 0};
- std::vector<Elf32_Rel> padding(count, r_arm_none);
+ std::vector<ELF::Rel>* relocations) {
+ ELF::Rel null_relocation;
+ null_relocation.r_offset = 0;
+ null_relocation.r_info = ELF_R_INFO(0, ELF::kNoRelocationCode);
+ std::vector<ELF::Rel> padding(count, null_relocation);
relocations->insert(relocations->end(), padding.begin(), padding.end());
}
// Adjust relocations so that the offset that they indicate will be correct
// after the hole in .rel.dyn is added or removed (in effect, relocate the
// relocations).
-void AdjustRelocations(Elf32_Off hole_start,
+void AdjustRelocations(ELF::Off hole_start,
size_t hole_size,
- std::vector<Elf32_Rel>* relocations) {
+ std::vector<ELF::Rel>* relocations) {
for (size_t i = 0; i < relocations->size(); ++i) {
- Elf32_Rel* relocation = &relocations->at(i);
+ ELF::Rel* relocation = &relocations->at(i);
if (relocation->r_offset > hole_start) {
relocation->r_offset += hole_size;
VLOG(1) << "relocation[" << i
@@ -719,12 +733,12 @@ void AdjustRelocations(Elf32_Off hole_start,
} // namespace
-// Remove R_ARM_RELATIVE entries from .rel.dyn and write as packed data
+// Remove ARM relative entries from .rel.dyn and write as packed data
// into .android.rel.dyn.
bool ElfFile::PackRelocations() {
// Load the ELF file into libelf.
if (!Load()) {
- LOG(ERROR) << "Failed to load as ELF (elf_error=" << elf_errno() << ")";
+ LOG(ERROR) << "Failed to load as ELF";
return false;
}
@@ -732,42 +746,42 @@ bool ElfFile::PackRelocations() {
Elf_Data* data = GetSectionData(rel_dyn_section_);
// Convert data to a vector of Elf32 relocations.
- const Elf32_Rel* relocations_base = reinterpret_cast<Elf32_Rel*>(data->d_buf);
- std::vector<Elf32_Rel> relocations(
+ const ELF::Rel* relocations_base = reinterpret_cast<ELF::Rel*>(data->d_buf);
+ std::vector<ELF::Rel> relocations(
relocations_base,
relocations_base + data->d_size / sizeof(relocations[0]));
- std::vector<Elf32_Rel> relative_relocations;
- std::vector<Elf32_Rel> other_relocations;
+ std::vector<ELF::Rel> relative_relocations;
+ std::vector<ELF::Rel> other_relocations;
- // Filter relocations into those that are R_ARM_RELATIVE and others.
+ // Filter relocations into those that are ARM relative and others.
for (size_t i = 0; i < relocations.size(); ++i) {
- const Elf32_Rel& relocation = relocations[i];
- if (ELF32_R_TYPE(relocation.r_info) == R_ARM_RELATIVE) {
- CHECK(ELF32_R_SYM(relocation.r_info) == 0);
+ const ELF::Rel& relocation = relocations[i];
+ if (ELF_R_TYPE(relocation.r_info) == ELF::kRelativeRelocationCode) {
+ CHECK(ELF_R_SYM(relocation.r_info) == 0);
relative_relocations.push_back(relocation);
} else {
other_relocations.push_back(relocation);
}
}
- LOG(INFO) << "R_ARM_RELATIVE: " << relative_relocations.size() << " entries";
+ LOG(INFO) << "Relative : " << relative_relocations.size() << " entries";
LOG(INFO) << "Other : " << other_relocations.size() << " entries";
LOG(INFO) << "Total : " << relocations.size() << " entries";
// If no relative relocations then we have nothing packable. Perhaps
// the shared object has already been packed?
if (relative_relocations.empty()) {
- LOG(ERROR) << "No R_ARM_RELATIVE relocations found (already packed?)";
+ LOG(ERROR) << "No relative relocations found (already packed?)";
return false;
}
- // Unless padding, pre-apply R_ARM_RELATIVE relocations to account for the
+ // Unless padding, pre-apply ARM relative relocations to account for the
// hole, and pre-adjust all relocation offsets accordingly.
if (!is_padding_rel_dyn_) {
// Pre-calculate the size of the hole we will close up when we rewrite
// .rel.dyn. We have to adjust relocation addresses to account for this.
- Elf32_Shdr* section_header = elf32_getshdr(rel_dyn_section_);
- const Elf32_Off hole_start = section_header->sh_offset;
+ ELF::Shdr* section_header = ELF::getshdr(rel_dyn_section_);
+ const ELF::Off hole_start = section_header->sh_offset;
size_t hole_size =
relative_relocations.size() * sizeof(relative_relocations[0]);
const size_t unaligned_hole_size = hole_size;
@@ -778,66 +792,64 @@ bool ElfFile::PackRelocations() {
// Adjusting for alignment may have removed any packing benefit.
if (hole_size == 0) {
- LOG(INFO) << "Too few R_ARM_RELATIVE relocations to pack after alignment";
+ LOG(INFO) << "Too few relative relocations to pack after alignment";
return false;
}
- // Add R_ARM_NONE relocations to other_relocations to preserve alignment.
+ // Add null relocations to other_relocations to preserve alignment.
const size_t padding_bytes = unaligned_hole_size - hole_size;
CHECK(padding_bytes % sizeof(other_relocations[0]) == 0);
const size_t required = padding_bytes / sizeof(other_relocations[0]);
PadRelocations(required, &other_relocations);
LOG(INFO) << "Alignment pad : " << required << " relocations";
- // Apply relocations to all R_ARM_RELATIVE data to relocate it into the
+ // Apply relocations to all ARM relative data to relocate it into the
// area it will occupy once the hole in .rel.dyn is removed.
AdjustRelocationTargets(elf_, hole_start, -hole_size, relative_relocations);
// Relocate the relocations.
AdjustRelocations(hole_start, -hole_size, &relative_relocations);
AdjustRelocations(hole_start, -hole_size, &other_relocations);
} else {
- // If padding, add R_ARM_NONE relocations to other_relocations to make it
+ // If padding, add NONE-type relocations to other_relocations to make it
// the same size as the the original relocations we read in. This makes
// the ResizeSection() below a no-op.
const size_t required = relocations.size() - other_relocations.size();
PadRelocations(required, &other_relocations);
}
-
- // Pack R_ARM_RELATIVE relocations.
+ // Pack ARM relative relocations.
const size_t initial_bytes =
relative_relocations.size() * sizeof(relative_relocations[0]);
- LOG(INFO) << "Unpacked R_ARM_RELATIVE: " << initial_bytes << " bytes";
+ LOG(INFO) << "Unpacked relative: " << initial_bytes << " bytes";
std::vector<uint8_t> packed;
RelocationPacker packer;
packer.PackRelativeRelocations(relative_relocations, &packed);
const void* packed_data = &packed[0];
const size_t packed_bytes = packed.size() * sizeof(packed[0]);
- LOG(INFO) << "Packed R_ARM_RELATIVE: " << packed_bytes << " bytes";
+ LOG(INFO) << "Packed relative: " << packed_bytes << " bytes";
- // If we have insufficient R_ARM_RELATIVE relocations to form a run then
+ // If we have insufficient ARM relative relocations to form a run then
// packing fails.
if (packed.empty()) {
- LOG(INFO) << "Too few R_ARM_RELATIVE relocations to pack";
+ LOG(INFO) << "Too few relative relocations to pack";
return false;
}
// Run a loopback self-test as a check that packing is lossless.
- std::vector<Elf32_Rel> unpacked;
+ std::vector<ELF::Rel> unpacked;
packer.UnpackRelativeRelocations(packed, &unpacked);
CHECK(unpacked.size() == relative_relocations.size());
- for (size_t i = 0; i < unpacked.size(); ++i) {
- CHECK(unpacked[i].r_offset == relative_relocations[i].r_offset);
- CHECK(unpacked[i].r_info == relative_relocations[i].r_info);
- }
+ CHECK(!memcmp(&unpacked[0],
+ &relative_relocations[0],
+ unpacked.size() * sizeof(unpacked[0])));
// Make sure packing saved some space.
if (packed_bytes >= initial_bytes) {
- LOG(INFO) << "Packing R_ARM_RELATIVE relocations saves no space";
+ LOG(INFO) << "Packing relative relocations saves no space";
return false;
}
- // Rewrite the current .rel.dyn section to be only the non-R_ARM_RELATIVE
+ // Rewrite the current .rel.dyn section to be only the ARM non-relative
// relocations, then shrink it to size.
const void* section_data = &other_relocations[0];
const size_t bytes = other_relocations.size() * sizeof(other_relocations[0]);
@@ -845,24 +857,24 @@ bool ElfFile::PackRelocations() {
RewriteSectionData(data, section_data, bytes);
// Rewrite the current .android.rel.dyn section to hold the packed
- // R_ARM_RELATIVE relocations.
+ // ARM relative relocations.
data = GetSectionData(android_rel_dyn_section_);
ResizeSection(elf_, android_rel_dyn_section_, packed_bytes);
RewriteSectionData(data, packed_data, packed_bytes);
// Rewrite .dynamic to include two new tags describing .android.rel.dyn.
data = GetSectionData(dynamic_section_);
- const Elf32_Dyn* dynamic_base = reinterpret_cast<Elf32_Dyn*>(data->d_buf);
- std::vector<Elf32_Dyn> dynamics(
+ const ELF::Dyn* dynamic_base = reinterpret_cast<ELF::Dyn*>(data->d_buf);
+ std::vector<ELF::Dyn> dynamics(
dynamic_base,
dynamic_base + data->d_size / sizeof(dynamics[0]));
- Elf32_Shdr* section_header = elf32_getshdr(android_rel_dyn_section_);
// Use two of the spare slots to describe the .android.rel.dyn section.
- const Elf32_Dyn offset_dyn
- = {DT_ANDROID_ARM_REL_OFFSET, {section_header->sh_offset}};
+ ELF::Shdr* section_header = ELF::getshdr(android_rel_dyn_section_);
+ const ELF::Dyn offset_dyn
+ = {DT_ANDROID_REL_OFFSET, {section_header->sh_offset}};
AddDynamicEntry(offset_dyn, &dynamics);
- const Elf32_Dyn size_dyn
- = {DT_ANDROID_ARM_REL_SIZE, {section_header->sh_size}};
+ const ELF::Dyn size_dyn
+ = {DT_ANDROID_REL_SIZE, {section_header->sh_size}};
AddDynamicEntry(size_dyn, &dynamics);
const void* dynamics_data = &dynamics[0];
const size_t dynamics_bytes = dynamics.size() * sizeof(dynamics[0]);
@@ -872,12 +884,12 @@ bool ElfFile::PackRelocations() {
return true;
}
-// Find packed R_ARM_RELATIVE relocations in .android.rel.dyn, unpack them,
+// Find packed ARM relative relocations in .android.rel.dyn, unpack them,
// and rewrite the .rel.dyn section in so_file to contain unpacked data.
bool ElfFile::UnpackRelocations() {
// Load the ELF file into libelf.
if (!Load()) {
- LOG(ERROR) << "Failed to load as ELF (elf_error=" << elf_errno() << ")";
+ LOG(ERROR) << "Failed to load as ELF";
return false;
}
@@ -894,56 +906,56 @@ bool ElfFile::UnpackRelocations() {
if (packed.empty() ||
packed[0] != 'A' || packed[1] != 'P' ||
packed[2] != 'R' || packed[3] != '1') {
- LOG(ERROR) << "Packed R_ARM_RELATIVE relocations not found (not packed?)";
+ LOG(ERROR) << "Packed relative relocations not found (not packed?)";
return false;
}
- // Unpack the data to re-materialize the R_ARM_RELATIVE relocations.
+ // Unpack the data to re-materialize the ARM relative relocations.
const size_t packed_bytes = packed.size() * sizeof(packed[0]);
- LOG(INFO) << "Packed R_ARM_RELATIVE: " << packed_bytes << " bytes";
- std::vector<Elf32_Rel> relative_relocations;
+ LOG(INFO) << "Packed relative: " << packed_bytes << " bytes";
+ std::vector<ELF::Rel> relative_relocations;
RelocationPacker packer;
packer.UnpackRelativeRelocations(packed, &relative_relocations);
const size_t unpacked_bytes =
relative_relocations.size() * sizeof(relative_relocations[0]);
- LOG(INFO) << "Unpacked R_ARM_RELATIVE: " << unpacked_bytes << " bytes";
+ LOG(INFO) << "Unpacked relative: " << unpacked_bytes << " bytes";
// Retrieve the current .rel.dyn section data.
data = GetSectionData(rel_dyn_section_);
// Interpret data as Elf32 relocations.
- const Elf32_Rel* relocations_base = reinterpret_cast<Elf32_Rel*>(data->d_buf);
- std::vector<Elf32_Rel> relocations(
+ const ELF::Rel* relocations_base = reinterpret_cast<ELF::Rel*>(data->d_buf);
+ std::vector<ELF::Rel> relocations(
relocations_base,
relocations_base + data->d_size / sizeof(relocations[0]));
- std::vector<Elf32_Rel> other_relocations;
+ std::vector<ELF::Rel> other_relocations;
size_t padding = 0;
- // Filter relocations to locate any that are R_ARM_NONE. These will occur
+ // Filter relocations to locate any that are NONE-type. These will occur
// if padding was turned on for packing.
for (size_t i = 0; i < relocations.size(); ++i) {
- const Elf32_Rel& relocation = relocations[i];
- if (ELF32_R_TYPE(relocation.r_info) != R_ARM_NONE) {
+ const ELF::Rel& relocation = relocations[i];
+ if (ELF_R_TYPE(relocation.r_info) != ELF::kNoRelocationCode) {
other_relocations.push_back(relocation);
} else {
++padding;
}
}
- LOG(INFO) << "R_ARM_RELATIVE: " << relative_relocations.size() << " entries";
+ LOG(INFO) << "Relative : " << relative_relocations.size() << " entries";
LOG(INFO) << "Other : " << other_relocations.size() << " entries";
- // If we found the same number of R_ARM_NONE entries in .rel.dyn as we
+ // If we found the same number of null relocation entries in .rel.dyn as we
// hold as unpacked relative relocations, then this is a padded file.
const bool is_padded = padding == relative_relocations.size();
- // Unless padded, pre-apply R_ARM_RELATIVE relocations to account for the
+ // Unless padded, pre-apply ARM relative relocations to account for the
// hole, and pre-adjust all relocation offsets accordingly.
if (!is_padded) {
// Pre-calculate the size of the hole we will open up when we rewrite
// .rel.dyn. We have to adjust relocation addresses to account for this.
- Elf32_Shdr* section_header = elf32_getshdr(rel_dyn_section_);
- const Elf32_Off hole_start = section_header->sh_offset;
+ ELF::Shdr* section_header = ELF::getshdr(rel_dyn_section_);
+ const ELF::Off hole_start = section_header->sh_offset;
size_t hole_size =
relative_relocations.size() * sizeof(relative_relocations[0]);
@@ -951,7 +963,7 @@ bool ElfFile::UnpackRelocations() {
hole_size -= padding * sizeof(other_relocations[0]);
LOG(INFO) << "Expansion : " << hole_size << " bytes";
- // Apply relocations to all R_ARM_RELATIVE data to relocate it into the
+ // Apply relocations to all ARM relative data to relocate it into the
// area it will occupy once the hole in .rel.dyn is opened.
AdjustRelocationTargets(elf_, hole_start, hole_size, relative_relocations);
// Relocate the relocations.
@@ -959,7 +971,7 @@ bool ElfFile::UnpackRelocations() {
AdjustRelocations(hole_start, hole_size, &other_relocations);
}
- // Rewrite the current .rel.dyn section to be the R_ARM_RELATIVE relocations
+ // Rewrite the current .rel.dyn section to be the ARM relative relocations
// followed by other relocations. This is the usual order in which we find
// them after linking, so this action will normally put the entire .rel.dyn
// section back to its pre-split-and-packed state.
@@ -983,12 +995,12 @@ bool ElfFile::UnpackRelocations() {
// Rewrite .dynamic to remove two tags describing .android.rel.dyn.
data = GetSectionData(dynamic_section_);
- const Elf32_Dyn* dynamic_base = reinterpret_cast<Elf32_Dyn*>(data->d_buf);
- std::vector<Elf32_Dyn> dynamics(
+ const ELF::Dyn* dynamic_base = reinterpret_cast<ELF::Dyn*>(data->d_buf);
+ std::vector<ELF::Dyn> dynamics(
dynamic_base,
dynamic_base + data->d_size / sizeof(dynamics[0]));
- RemoveDynamicEntry(DT_ANDROID_ARM_REL_SIZE, &dynamics);
- RemoveDynamicEntry(DT_ANDROID_ARM_REL_OFFSET, &dynamics);
+ RemoveDynamicEntry(DT_ANDROID_REL_OFFSET, &dynamics);
+ RemoveDynamicEntry(DT_ANDROID_REL_SIZE, &dynamics);
const void* dynamics_data = &dynamics[0];
const size_t dynamics_bytes = dynamics.size() * sizeof(dynamics[0]);
RewriteSectionData(data, dynamics_data, dynamics_bytes);
« no previous file with comments | « tools/relocation_packer/src/elf_file.h ('k') | tools/relocation_packer/src/elf_traits.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698