Chromium Code Reviews| Index: src/utils/SkTextureCompressor.cpp |
| diff --git a/src/utils/SkTextureCompressor.cpp b/src/utils/SkTextureCompressor.cpp |
| index a593b36880e8588fe50a0eb0bfcea68afac2b320..cdf3720d360d43968257694113dd6deadd417e70 100644 |
| --- a/src/utils/SkTextureCompressor.cpp |
| +++ b/src/utils/SkTextureCompressor.cpp |
| @@ -6,6 +6,8 @@ |
| */ |
| #include "SkTextureCompressor.h" |
| +#include "SkTextureCompressor_R11EAC.h" |
| +#include "SkTextureCompressor_LATC.h" |
| #include "SkBitmap.h" |
| #include "SkData.h" |
| @@ -14,848 +16,32 @@ |
| #include "SkTextureCompression_opts.h" |
| //////////////////////////////////////////////////////////////////////////////// |
| -// |
| -// Utility Functions |
| -// |
| -//////////////////////////////////////////////////////////////////////////////// |
| - |
| -// Absolute difference between two values. More correct than SkTAbs(a - b) |
| -// because it works on unsigned values. |
| -template <typename T> inline T abs_diff(const T &a, const T &b) { |
| - return (a > b) ? (a - b) : (b - a); |
| -} |
| - |
| -static bool is_extremal(uint8_t pixel) { |
| - return 0 == pixel || 255 == pixel; |
| -} |
| - |
| -typedef uint64_t (*A84x4To64BitProc)(const uint8_t block[]); |
| - |
| -// This function is used by both R11 EAC and LATC to compress 4x4 blocks |
| -// of 8-bit alpha into 64-bit values that comprise the compressed data. |
| -// For both formats, we need to make sure that the dimensions of the |
| -// src pixels are divisible by 4, and copy 4x4 blocks one at a time |
| -// for compression. |
| -static bool compress_4x4_a8_to_64bit(uint8_t* dst, const uint8_t* src, |
| - int width, int height, int rowBytes, |
| - A84x4To64BitProc proc) { |
| - // Make sure that our data is well-formed enough to be considered for compression |
| - if (0 == width || 0 == height || (width % 4) != 0 || (height % 4) != 0) { |
| - return false; |
| - } |
| - |
| - int blocksX = width >> 2; |
| - int blocksY = height >> 2; |
| - |
| - uint8_t block[16]; |
| - uint64_t* encPtr = reinterpret_cast<uint64_t*>(dst); |
| - for (int y = 0; y < blocksY; ++y) { |
| - for (int x = 0; x < blocksX; ++x) { |
| - // Load block |
| - for (int k = 0; k < 4; ++k) { |
| - memcpy(block + k*4, src + k*rowBytes + 4*x, 4); |
| - } |
| - |
| - // Compress it |
| - *encPtr = proc(block); |
| - ++encPtr; |
| - } |
| - src += 4 * rowBytes; |
| - } |
| - |
| - return true; |
| -} |
| - |
| -//////////////////////////////////////////////////////////////////////////////// |
| -// |
| -// LATC compressor |
| -// |
| -//////////////////////////////////////////////////////////////////////////////// |
| - |
| -// LATC compressed texels down into square 4x4 blocks |
| -static const int kLATCPaletteSize = 8; |
| -static const int kLATCBlockSize = 4; |
| -static const int kLATCPixelsPerBlock = kLATCBlockSize * kLATCBlockSize; |
| - |
| -// Generates an LATC palette. LATC constructs |
| -// a palette of eight colors from LUM0 and LUM1 using the algorithm: |
| -// |
| -// LUM0, if lum0 > lum1 and code(x,y) == 0 |
| -// LUM1, if lum0 > lum1 and code(x,y) == 1 |
| -// (6*LUM0+ LUM1)/7, if lum0 > lum1 and code(x,y) == 2 |
| -// (5*LUM0+2*LUM1)/7, if lum0 > lum1 and code(x,y) == 3 |
| -// (4*LUM0+3*LUM1)/7, if lum0 > lum1 and code(x,y) == 4 |
| -// (3*LUM0+4*LUM1)/7, if lum0 > lum1 and code(x,y) == 5 |
| -// (2*LUM0+5*LUM1)/7, if lum0 > lum1 and code(x,y) == 6 |
| -// ( LUM0+6*LUM1)/7, if lum0 > lum1 and code(x,y) == 7 |
| -// |
| -// LUM0, if lum0 <= lum1 and code(x,y) == 0 |
| -// LUM1, if lum0 <= lum1 and code(x,y) == 1 |
| -// (4*LUM0+ LUM1)/5, if lum0 <= lum1 and code(x,y) == 2 |
| -// (3*LUM0+2*LUM1)/5, if lum0 <= lum1 and code(x,y) == 3 |
| -// (2*LUM0+3*LUM1)/5, if lum0 <= lum1 and code(x,y) == 4 |
| -// ( LUM0+4*LUM1)/5, if lum0 <= lum1 and code(x,y) == 5 |
| -// 0, if lum0 <= lum1 and code(x,y) == 6 |
| -// 255, if lum0 <= lum1 and code(x,y) == 7 |
| - |
| -static void generate_latc_palette(uint8_t palette[], uint8_t lum0, uint8_t lum1) { |
| - palette[0] = lum0; |
| - palette[1] = lum1; |
| - if (lum0 > lum1) { |
| - for (int i = 1; i < 7; i++) { |
| - palette[i+1] = ((7-i)*lum0 + i*lum1) / 7; |
| - } |
| - } else { |
| - for (int i = 1; i < 5; i++) { |
| - palette[i+1] = ((5-i)*lum0 + i*lum1) / 5; |
| - } |
| - palette[6] = 0; |
| - palette[7] = 255; |
| - } |
| -} |
| - |
| -// Compress a block by using the bounding box of the pixels. It is assumed that |
| -// there are no extremal pixels in this block otherwise we would have used |
| -// compressBlockBBIgnoreExtremal. |
| -static uint64_t compress_latc_block_bb(const uint8_t pixels[]) { |
| - uint8_t minVal = 255; |
| - uint8_t maxVal = 0; |
| - for (int i = 0; i < kLATCPixelsPerBlock; ++i) { |
| - minVal = SkTMin(pixels[i], minVal); |
| - maxVal = SkTMax(pixels[i], maxVal); |
| - } |
| - |
| - SkASSERT(!is_extremal(minVal)); |
| - SkASSERT(!is_extremal(maxVal)); |
| - |
| - uint8_t palette[kLATCPaletteSize]; |
| - generate_latc_palette(palette, maxVal, minVal); |
| - |
| - uint64_t indices = 0; |
| - for (int i = kLATCPixelsPerBlock - 1; i >= 0; --i) { |
| - |
| - // Find the best palette index |
| - uint8_t bestError = abs_diff(pixels[i], palette[0]); |
| - uint8_t idx = 0; |
| - for (int j = 1; j < kLATCPaletteSize; ++j) { |
| - uint8_t error = abs_diff(pixels[i], palette[j]); |
| - if (error < bestError) { |
| - bestError = error; |
| - idx = j; |
| - } |
| - } |
| - |
| - indices <<= 3; |
| - indices |= idx; |
| - } |
| - |
| - return |
| - SkEndian_SwapLE64( |
| - static_cast<uint64_t>(maxVal) | |
| - (static_cast<uint64_t>(minVal) << 8) | |
| - (indices << 16)); |
| -} |
| - |
| -// Compress a block by using the bounding box of the pixels without taking into |
| -// account the extremal values. The generated palette will contain extremal values |
| -// and fewer points along the line segment to interpolate. |
| -static uint64_t compress_latc_block_bb_ignore_extremal(const uint8_t pixels[]) { |
| - uint8_t minVal = 255; |
| - uint8_t maxVal = 0; |
| - for (int i = 0; i < kLATCPixelsPerBlock; ++i) { |
| - if (is_extremal(pixels[i])) { |
| - continue; |
| - } |
| - |
| - minVal = SkTMin(pixels[i], minVal); |
| - maxVal = SkTMax(pixels[i], maxVal); |
| - } |
| - |
| - SkASSERT(!is_extremal(minVal)); |
| - SkASSERT(!is_extremal(maxVal)); |
| - |
| - uint8_t palette[kLATCPaletteSize]; |
| - generate_latc_palette(palette, minVal, maxVal); |
| - |
| - uint64_t indices = 0; |
| - for (int i = kLATCPixelsPerBlock - 1; i >= 0; --i) { |
| - |
| - // Find the best palette index |
| - uint8_t idx = 0; |
| - if (is_extremal(pixels[i])) { |
| - if (0xFF == pixels[i]) { |
| - idx = 7; |
| - } else if (0 == pixels[i]) { |
| - idx = 6; |
| - } else { |
| - SkFAIL("Pixel is extremal but not really?!"); |
| - } |
| - } else { |
| - uint8_t bestError = abs_diff(pixels[i], palette[0]); |
| - for (int j = 1; j < kLATCPaletteSize - 2; ++j) { |
| - uint8_t error = abs_diff(pixels[i], palette[j]); |
| - if (error < bestError) { |
| - bestError = error; |
| - idx = j; |
| - } |
| - } |
| - } |
| - |
| - indices <<= 3; |
| - indices |= idx; |
| - } |
| - |
| - return |
| - SkEndian_SwapLE64( |
| - static_cast<uint64_t>(minVal) | |
| - (static_cast<uint64_t>(maxVal) << 8) | |
| - (indices << 16)); |
| -} |
| - |
| - |
| -// Compress LATC block. Each 4x4 block of pixels is decompressed by LATC from two |
| -// values LUM0 and LUM1, and an index into the generated palette. Details of how |
| -// the palette is generated can be found in the comments of generatePalette above. |
| -// |
| -// We choose which palette type to use based on whether or not 'pixels' contains |
| -// any extremal values (0 or 255). If there are extremal values, then we use the |
| -// palette that has the extremal values built in. Otherwise, we use the full bounding |
| -// box. |
| - |
| -static uint64_t compress_latc_block(const uint8_t pixels[]) { |
| - // Collect unique pixels |
| - int nUniquePixels = 0; |
| - uint8_t uniquePixels[kLATCPixelsPerBlock]; |
| - for (int i = 0; i < kLATCPixelsPerBlock; ++i) { |
| - bool foundPixel = false; |
| - for (int j = 0; j < nUniquePixels; ++j) { |
| - foundPixel = foundPixel || uniquePixels[j] == pixels[i]; |
| - } |
| - |
| - if (!foundPixel) { |
| - uniquePixels[nUniquePixels] = pixels[i]; |
| - ++nUniquePixels; |
| - } |
| - } |
| - |
| - // If there's only one unique pixel, then our compression is easy. |
| - if (1 == nUniquePixels) { |
| - return SkEndian_SwapLE64(pixels[0] | (pixels[0] << 8)); |
| - |
| - // Similarly, if there are only two unique pixels, then our compression is |
| - // easy again: place the pixels in the block header, and assign the indices |
| - // with one or zero depending on which pixel they belong to. |
| - } else if (2 == nUniquePixels) { |
| - uint64_t outBlock = 0; |
| - for (int i = kLATCPixelsPerBlock - 1; i >= 0; --i) { |
| - int idx = 0; |
| - if (pixels[i] == uniquePixels[1]) { |
| - idx = 1; |
| - } |
| - |
| - outBlock <<= 3; |
| - outBlock |= idx; |
| - } |
| - outBlock <<= 16; |
| - outBlock |= (uniquePixels[0] | (uniquePixels[1] << 8)); |
| - return SkEndian_SwapLE64(outBlock); |
| - } |
| - |
| - // Count non-maximal pixel values |
| - int nonExtremalPixels = 0; |
| - for (int i = 0; i < nUniquePixels; ++i) { |
| - if (!is_extremal(uniquePixels[i])) { |
| - ++nonExtremalPixels; |
| - } |
| - } |
| - |
| - // If all the pixels are nonmaximal then compute the palette using |
| - // the bounding box of all the pixels. |
| - if (nonExtremalPixels == nUniquePixels) { |
| - // This is really just for correctness, in all of my tests we |
| - // never take this step. We don't lose too much perf here because |
| - // most of the processing in this function is worth it for the |
| - // 1 == nUniquePixels optimization. |
| - return compress_latc_block_bb(pixels); |
| - } else { |
| - return compress_latc_block_bb_ignore_extremal(pixels); |
| - } |
| -} |
| - |
| -static inline bool compress_a8_to_latc(uint8_t* dst, const uint8_t* src, |
| - int width, int height, int rowBytes) { |
| - return compress_4x4_a8_to_64bit(dst, src, width, height, rowBytes, compress_latc_block); |
| -} |
| - |
| -//////////////////////////////////////////////////////////////////////////////// |
| -// |
| -// R11 EAC Compressor |
| -// |
| -//////////////////////////////////////////////////////////////////////////////// |
| - |
| -// #define COMPRESS_R11_EAC_SLOW 1 |
| -// #define COMPRESS_R11_EAC_FAST 1 |
| -#define COMPRESS_R11_EAC_FASTEST 1 |
| - |
| -// Blocks compressed into R11 EAC are represented as follows: |
| -// 0000000000000000000000000000000000000000000000000000000000000000 |
| -// |base_cw|mod|mul| ----------------- indices ------------------- |
| -// |
| -// To reconstruct the value of a given pixel, we use the formula: |
| -// clamp[0, 2047](base_cw * 8 + 4 + mod_val*mul*8) |
| -// |
| -// mod_val is chosen from a palette of values based on the index of the |
| -// given pixel. The palette is chosen by the value stored in mod. |
| -// This formula returns a value between 0 and 2047, which is converted |
| -// to a float from 0 to 1 in OpenGL. |
| -// |
| -// If mul is zero, then we set mul = 1/8, so that the formula becomes |
| -// clamp[0, 2047](base_cw * 8 + 4 + mod_val) |
| - |
| -#if COMPRESS_R11_EAC_SLOW |
| - |
| -static const int kNumR11EACPalettes = 16; |
| -static const int kR11EACPaletteSize = 8; |
| -static const int kR11EACModifierPalettes[kNumR11EACPalettes][kR11EACPaletteSize] = { |
| - {-3, -6, -9, -15, 2, 5, 8, 14}, |
| - {-3, -7, -10, -13, 2, 6, 9, 12}, |
| - {-2, -5, -8, -13, 1, 4, 7, 12}, |
| - {-2, -4, -6, -13, 1, 3, 5, 12}, |
| - {-3, -6, -8, -12, 2, 5, 7, 11}, |
| - {-3, -7, -9, -11, 2, 6, 8, 10}, |
| - {-4, -7, -8, -11, 3, 6, 7, 10}, |
| - {-3, -5, -8, -11, 2, 4, 7, 10}, |
| - {-2, -6, -8, -10, 1, 5, 7, 9}, |
| - {-2, -5, -8, -10, 1, 4, 7, 9}, |
| - {-2, -4, -8, -10, 1, 3, 7, 9}, |
| - {-2, -5, -7, -10, 1, 4, 6, 9}, |
| - {-3, -4, -7, -10, 2, 3, 6, 9}, |
| - {-1, -2, -3, -10, 0, 1, 2, 9}, |
| - {-4, -6, -8, -9, 3, 5, 7, 8}, |
| - {-3, -5, -7, -9, 2, 4, 6, 8} |
| -}; |
| - |
| -// Pack the base codeword, palette, and multiplier into the 64 bits necessary |
| -// to decode it. |
| -static uint64_t pack_r11eac_block(uint16_t base_cw, uint16_t palette, uint16_t multiplier, |
| - uint64_t indices) { |
| - SkASSERT(palette < 16); |
| - SkASSERT(multiplier < 16); |
| - SkASSERT(indices < (static_cast<uint64_t>(1) << 48)); |
| - |
| - const uint64_t b = static_cast<uint64_t>(base_cw) << 56; |
| - const uint64_t m = static_cast<uint64_t>(multiplier) << 52; |
| - const uint64_t p = static_cast<uint64_t>(palette) << 48; |
| - return SkEndian_SwapBE64(b | m | p | indices); |
| -} |
| - |
| -// Given a base codeword, a modifier, and a multiplier, compute the proper |
| -// pixel value in the range [0, 2047]. |
| -static uint16_t compute_r11eac_pixel(int base_cw, int modifier, int multiplier) { |
| - int ret = (base_cw * 8 + 4) + (modifier * multiplier * 8); |
| - return (ret > 2047)? 2047 : ((ret < 0)? 0 : ret); |
| -} |
| - |
| -// Compress a block into R11 EAC format. |
| -// The compression works as follows: |
| -// 1. Find the center of the span of the block's values. Use this as the base codeword. |
| -// 2. Choose a multiplier based roughly on the size of the span of block values |
| -// 3. Iterate through each palette and choose the one with the most accurate |
| -// modifiers. |
| -static inline uint64_t compress_heterogeneous_r11eac_block(const uint8_t block[16]) { |
| - // Find the center of the data... |
| - uint16_t bmin = block[0]; |
| - uint16_t bmax = block[0]; |
| - for (int i = 1; i < 16; ++i) { |
| - bmin = SkTMin<uint16_t>(bmin, block[i]); |
| - bmax = SkTMax<uint16_t>(bmax, block[i]); |
| - } |
| - |
| - uint16_t center = (bmax + bmin) >> 1; |
| - SkASSERT(center <= 255); |
| - |
| - // Based on the min and max, we can guesstimate a proper multiplier |
| - // This is kind of a magic choice to start with. |
| - uint16_t multiplier = (bmax - center) / 10; |
| - |
| - // Now convert the block to 11 bits and transpose it to match |
| - // the proper layout |
| - uint16_t cblock[16]; |
| - for (int i = 0; i < 4; ++i) { |
| - for (int j = 0; j < 4; ++j) { |
| - int srcIdx = i*4+j; |
| - int dstIdx = j*4+i; |
| - cblock[dstIdx] = (block[srcIdx] << 3) | (block[srcIdx] >> 5); |
| - } |
| - } |
| - |
| - // Finally, choose the proper palette and indices |
| - uint32_t bestError = 0xFFFFFFFF; |
| - uint64_t bestIndices = 0; |
| - uint16_t bestPalette = 0; |
| - for (uint16_t paletteIdx = 0; paletteIdx < kNumR11EACPalettes; ++paletteIdx) { |
| - const int *palette = kR11EACModifierPalettes[paletteIdx]; |
| - |
| - // Iterate through each pixel to find the best palette index |
| - // and update the indices with the choice. Also store the error |
| - // for this palette to be compared against the best error... |
| - uint32_t error = 0; |
| - uint64_t indices = 0; |
| - for (int pixelIdx = 0; pixelIdx < 16; ++pixelIdx) { |
| - const uint16_t pixel = cblock[pixelIdx]; |
| - |
| - // Iterate through each palette value to find the best index |
| - // for this particular pixel for this particular palette. |
| - uint16_t bestPixelError = |
| - abs_diff(pixel, compute_r11eac_pixel(center, palette[0], multiplier)); |
| - int bestIndex = 0; |
| - for (int i = 1; i < kR11EACPaletteSize; ++i) { |
| - const uint16_t p = compute_r11eac_pixel(center, palette[i], multiplier); |
| - const uint16_t perror = abs_diff(pixel, p); |
| - |
| - // Is this index better? |
| - if (perror < bestPixelError) { |
| - bestIndex = i; |
| - bestPixelError = perror; |
| - } |
| - } |
| - |
| - SkASSERT(bestIndex < 8); |
| - |
| - error += bestPixelError; |
| - indices <<= 3; |
| - indices |= bestIndex; |
| - } |
| - |
| - SkASSERT(indices < (static_cast<uint64_t>(1) << 48)); |
| - |
| - // Is this palette better? |
| - if (error < bestError) { |
| - bestPalette = paletteIdx; |
| - bestIndices = indices; |
| - bestError = error; |
| - } |
| - } |
| - |
| - // Finally, pack everything together... |
| - return pack_r11eac_block(center, bestPalette, multiplier, bestIndices); |
| -} |
| -#endif // COMPRESS_R11_EAC_SLOW |
| - |
| -#if COMPRESS_R11_EAC_FAST |
| -// This function takes into account that most blocks that we compress have a gradation from |
| -// fully opaque to fully transparent. The compression scheme works by selecting the |
| -// palette and multiplier that has the tightest fit to the 0-255 range. This is encoded |
| -// as the block header (0x8490). The indices are then selected by considering the top |
| -// three bits of each alpha value. For alpha masks, this reduces the dynamic range from |
| -// 17 to 8, but the quality is still acceptable. |
| -// |
| -// There are a few caveats that need to be taken care of... |
| -// |
| -// 1. The block is read in as scanlines, so the indices are stored as: |
| -// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
| -// However, the decomrpession routine reads them in column-major order, so they |
| -// need to be packed as: |
| -// 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15 |
| -// So when reading, they must be transposed. |
| -// |
| -// 2. We cannot use the top three bits as an index directly, since the R11 EAC palettes |
| -// above store the modulation values first decreasing and then increasing: |
| -// e.g. {-3, -6, -9, -15, 2, 5, 8, 14} |
| -// Hence, we need to convert the indices with the following mapping: |
| -// From: 0 1 2 3 4 5 6 7 |
| -// To: 3 2 1 0 4 5 6 7 |
| -static inline uint64_t compress_heterogeneous_r11eac_block(const uint8_t block[16]) { |
| - uint64_t retVal = static_cast<uint64_t>(0x8490) << 48; |
| - for(int i = 0; i < 4; ++i) { |
| - for(int j = 0; j < 4; ++j) { |
| - const int shift = 45-3*(j*4+i); |
| - SkASSERT(shift <= 45); |
| - const uint64_t idx = block[i*4+j] >> 5; |
| - SkASSERT(idx < 8); |
| - |
| - // !SPEED! This is slightly faster than having an if-statement. |
| - switch(idx) { |
| - case 0: |
| - case 1: |
| - case 2: |
| - case 3: |
| - retVal |= (3-idx) << shift; |
| - break; |
| - default: |
| - retVal |= idx << shift; |
| - break; |
| - } |
| - } |
| - } |
| - |
| - return SkEndian_SwapBE64(retVal); |
| -} |
| -#endif // COMPRESS_R11_EAC_FAST |
| - |
| -#if (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST) |
| -static uint64_t compress_r11eac_block(const uint8_t block[16]) { |
| - // Are all blocks a solid color? |
| - bool solid = true; |
| - for (int i = 1; i < 16; ++i) { |
| - if (block[i] != block[0]) { |
| - solid = false; |
| - break; |
| - } |
| - } |
| - |
| - if (solid) { |
| - switch(block[0]) { |
| - // Fully transparent? We know the encoding... |
| - case 0: |
| - // (0x0020 << 48) produces the following: |
| - // basw_cw: 0 |
| - // mod: 0, palette: {-3, -6, -9, -15, 2, 5, 8, 14} |
| - // multiplier: 2 |
| - // mod_val: -3 |
| - // |
| - // this gives the following formula: |
| - // clamp[0, 2047](0*8+4+(-3)*2*8) = 0 |
| - // |
| - // Furthermore, it is impervious to endianness: |
| - // 0x0020000000002000ULL |
| - // Will produce one pixel with index 2, which gives: |
| - // clamp[0, 2047](0*8+4+(-9)*2*8) = 0 |
| - return 0x0020000000002000ULL; |
| - |
| - // Fully opaque? We know this encoding too... |
| - case 255: |
| - |
| - // -1 produces the following: |
| - // basw_cw: 255 |
| - // mod: 15, palette: {-3, -5, -7, -9, 2, 4, 6, 8} |
| - // mod_val: 8 |
| - // |
| - // this gives the following formula: |
| - // clamp[0, 2047](255*8+4+8*8*8) = clamp[0, 2047](2556) = 2047 |
| - return 0xFFFFFFFFFFFFFFFFULL; |
| - |
| - default: |
| - // !TODO! krajcevski: |
| - // This will probably never happen, since we're using this format |
| - // primarily for compressing alpha maps. Usually the only |
| - // non-fullly opaque or fully transparent blocks are not a solid |
| - // intermediate color. If we notice that they are, then we can |
| - // add another optimization... |
| - break; |
| - } |
| - } |
| - |
| - return compress_heterogeneous_r11eac_block(block); |
| -} |
| -#endif // (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST) |
| - |
| -#if COMPRESS_R11_EAC_FASTEST |
| -static inline uint64_t interleave6(uint64_t topRows, uint64_t bottomRows) { |
| - // If our 3-bit block indices are laid out as: |
| - // a b c d |
| - // e f g h |
| - // i j k l |
| - // m n o p |
| - // |
| - // This function expects topRows and bottomRows to contain the first two rows |
| - // of indices interleaved in the least significant bits of a and b. In other words... |
| - // |
| - // If the architecture is big endian, then topRows and bottomRows will contain the following: |
| - // Bits 31-0: |
| - // a: 00 a e 00 b f 00 c g 00 d h |
| - // b: 00 i m 00 j n 00 k o 00 l p |
| - // |
| - // If the architecture is little endian, then topRows and bottomRows will contain |
| - // the following: |
| - // Bits 31-0: |
| - // a: 00 d h 00 c g 00 b f 00 a e |
| - // b: 00 l p 00 k o 00 j n 00 i m |
| - // |
| - // This function returns a 48-bit packing of the form: |
| - // a e i m b f j n c g k o d h l p |
| - // |
| - // !SPEED! this function might be even faster if certain SIMD intrinsics are |
| - // used.. |
| - |
| - // For both architectures, we can figure out a packing of the bits by |
| - // using a shuffle and a few shift-rotates... |
| - uint64_t x = (static_cast<uint64_t>(topRows) << 32) | static_cast<uint64_t>(bottomRows); |
| - |
| - // x: 00 a e 00 b f 00 c g 00 d h 00 i m 00 j n 00 k o 00 l p |
| - |
| - uint64_t t = (x ^ (x >> 10)) & 0x3FC0003FC00000ULL; |
| - x = x ^ t ^ (t << 10); |
| - |
| - // x: b f 00 00 00 a e c g i m 00 00 00 d h j n 00 k o 00 l p |
| - |
| - x = (x | ((x << 52) & (0x3FULL << 52)) | ((x << 20) & (0x3FULL << 28))) >> 16; |
| - |
| - // x: 00 00 00 00 00 00 00 00 b f l p a e c g i m k o d h j n |
| - |
| - t = (x ^ (x >> 6)) & 0xFC0000ULL; |
| - x = x ^ t ^ (t << 6); |
| - |
| -#if defined (SK_CPU_BENDIAN) |
| - // x: 00 00 00 00 00 00 00 00 b f l p a e i m c g k o d h j n |
| - |
| - t = (x ^ (x >> 36)) & 0x3FULL; |
| - x = x ^ t ^ (t << 36); |
| - |
| - // x: 00 00 00 00 00 00 00 00 b f j n a e i m c g k o d h l p |
| - |
| - t = (x ^ (x >> 12)) & 0xFFF000000ULL; |
| - x = x ^ t ^ (t << 12); |
| - |
| - // x: 00 00 00 00 00 00 00 00 a e i m b f j n c g k o d h l p |
| - return x; |
| -#else |
| - // If our CPU is little endian, then the above logic will |
| - // produce the following indices: |
| - // x: 00 00 00 00 00 00 00 00 c g i m d h l p b f j n a e k o |
| - |
| - t = (x ^ (x >> 36)) & 0xFC0ULL; |
| - x = x ^ t ^ (t << 36); |
| - |
| - // x: 00 00 00 00 00 00 00 00 a e i m d h l p b f j n c g k o |
| - |
| - x = (x & (0xFFFULL << 36)) | ((x & 0xFFFFFFULL) << 12) | ((x >> 24) & 0xFFFULL); |
| - |
| - // x: 00 00 00 00 00 00 00 00 a e i m b f j n c g k o d h l p |
| - |
| - return x; |
| -#endif |
| -} |
| - |
| -// This function converts an integer containing four bytes of alpha |
| -// values into an integer containing four bytes of indices into R11 EAC. |
| -// Note, there needs to be a mapping of indices: |
| -// 0 1 2 3 4 5 6 7 |
| -// 3 2 1 0 4 5 6 7 |
| -// |
| -// To compute this, we first negate each byte, and then add three, which |
| -// gives the mapping |
| -// 3 2 1 0 -1 -2 -3 -4 |
| -// |
| -// Then we mask out the negative values, take their absolute value, and |
| -// add three. |
| -// |
| -// Most of the voodoo in this function comes from Hacker's Delight, section 2-18 |
| -static inline uint32_t convert_indices(uint32_t x) { |
| - // Take the top three bits... |
| - x = (x & 0xE0E0E0E0) >> 5; |
| - |
| - // Negate... |
| - x = ~((0x80808080 - x) ^ 0x7F7F7F7F); |
| - |
| - // Add three |
| - const uint32_t s = (x & 0x7F7F7F7F) + 0x03030303; |
| - x = ((x ^ 0x03030303) & 0x80808080) ^ s; |
| - |
| - // Absolute value |
| - const uint32_t a = x & 0x80808080; |
| - const uint32_t b = a >> 7; |
| - |
| - // Aside: mask negatives (m is three if the byte was negative) |
| - const uint32_t m = (a >> 6) | b; |
| - |
| - // .. continue absolute value |
| - x = (x ^ ((a - b) | a)) + b; |
| - |
| - // Add three |
| - return x + m; |
| -} |
| - |
| -// This function follows the same basic procedure as compress_heterogeneous_r11eac_block |
| -// above when COMPRESS_R11_EAC_FAST is defined, but it avoids a few loads/stores and |
| -// tries to optimize where it can using SIMD. |
| -static uint64_t compress_r11eac_block_fast(const uint8_t* src, int rowBytes) { |
| - // Store each row of alpha values in an integer |
| - const uint32_t alphaRow1 = *(reinterpret_cast<const uint32_t*>(src)); |
| - const uint32_t alphaRow2 = *(reinterpret_cast<const uint32_t*>(src + rowBytes)); |
| - const uint32_t alphaRow3 = *(reinterpret_cast<const uint32_t*>(src + 2*rowBytes)); |
| - const uint32_t alphaRow4 = *(reinterpret_cast<const uint32_t*>(src + 3*rowBytes)); |
| - |
| - // Check for solid blocks. The explanations for these values |
| - // can be found in the comments of compress_r11eac_block above |
| - if (alphaRow1 == alphaRow2 && alphaRow1 == alphaRow3 && alphaRow1 == alphaRow4) { |
| - if (0 == alphaRow1) { |
| - // Fully transparent block |
| - return 0x0020000000002000ULL; |
| - } else if (0xFFFFFFFF == alphaRow1) { |
| - // Fully opaque block |
| - return 0xFFFFFFFFFFFFFFFFULL; |
| - } |
| - } |
| - |
| - // Convert each integer of alpha values into an integer of indices |
| - const uint32_t indexRow1 = convert_indices(alphaRow1); |
| - const uint32_t indexRow2 = convert_indices(alphaRow2); |
| - const uint32_t indexRow3 = convert_indices(alphaRow3); |
| - const uint32_t indexRow4 = convert_indices(alphaRow4); |
| - |
| - // Interleave the indices from the top two rows and bottom two rows |
| - // prior to passing them to interleave6. Since each index is at most |
| - // three bits, then each byte can hold two indices... The way that the |
| - // compression scheme expects the packing allows us to efficiently pack |
| - // the top two rows and bottom two rows. Interleaving each 6-bit sequence |
| - // and tightly packing it into a uint64_t is a little trickier, which is |
| - // taken care of in interleave6. |
| - const uint32_t r1r2 = (indexRow1 << 3) | indexRow2; |
| - const uint32_t r3r4 = (indexRow3 << 3) | indexRow4; |
| - const uint64_t indices = interleave6(r1r2, r3r4); |
| - |
| - // Return the packed incdices in the least significant bits with the magic header |
| - return SkEndian_SwapBE64(0x8490000000000000ULL | indices); |
| -} |
| - |
| -static bool compress_a8_to_r11eac_fast(uint8_t* dst, const uint8_t* src, |
| - int width, int height, int rowBytes) { |
| - // Make sure that our data is well-formed enough to be considered for compression |
| - if (0 == width || 0 == height || (width % 4) != 0 || (height % 4) != 0) { |
| - return false; |
| - } |
| - |
| - const int blocksX = width >> 2; |
| - const int blocksY = height >> 2; |
| - |
| - uint64_t* encPtr = reinterpret_cast<uint64_t*>(dst); |
| - for (int y = 0; y < blocksY; ++y) { |
| - for (int x = 0; x < blocksX; ++x) { |
| - // Compress it |
| - *encPtr = compress_r11eac_block_fast(src + 4*x, rowBytes); |
| - ++encPtr; |
| - } |
| - src += 4 * rowBytes; |
| - } |
| - return true; |
| -} |
| -#endif // COMPRESS_R11_EAC_FASTEST |
| - |
| -// The R11 EAC format expects that indices are given in column-major order. Since |
| -// we receive alpha values in raster order, this usually means that we have to use |
| -// pack6 above to properly pack our indices. However, if our indices come from the |
| -// blitter, then each integer will be a column of indices, and hence can be efficiently |
| -// packed. This function takes the bottom three bits of each byte and places them in |
| -// the least significant 12 bits of the resulting integer. |
| -static inline uint32_t pack_indices_vertical(uint32_t x) { |
| -#if defined (SK_CPU_BENDIAN) |
| - return |
| - (x & 7) | |
| - ((x >> 5) & (7 << 3)) | |
| - ((x >> 10) & (7 << 6)) | |
| - ((x >> 15) & (7 << 9)); |
| -#else |
| - return |
| - ((x >> 24) & 7) | |
| - ((x >> 13) & (7 << 3)) | |
| - ((x >> 2) & (7 << 6)) | |
| - ((x << 9) & (7 << 9)); |
| -#endif |
| -} |
| - |
| -// This function returns the compressed format of a block given as four columns of |
| -// alpha values. Each column is assumed to be loaded from top to bottom, and hence |
| -// must first be converted to indices and then packed into the resulting 64-bit |
| -// integer. |
| -static inline uint64_t compress_block_vertical(const uint32_t alphaColumn0, |
| - const uint32_t alphaColumn1, |
| - const uint32_t alphaColumn2, |
| - const uint32_t alphaColumn3) { |
| - |
| - if (alphaColumn0 == alphaColumn1 && |
| - alphaColumn2 == alphaColumn3 && |
| - alphaColumn0 == alphaColumn2) { |
| - |
| - if (0 == alphaColumn0) { |
| - // Transparent |
| - return 0x0020000000002000ULL; |
| - } |
| - else if (0xFFFFFFFF == alphaColumn0) { |
| - // Opaque |
| - return 0xFFFFFFFFFFFFFFFFULL; |
| - } |
| - } |
| - |
| - const uint32_t indexColumn0 = convert_indices(alphaColumn0); |
| - const uint32_t indexColumn1 = convert_indices(alphaColumn1); |
| - const uint32_t indexColumn2 = convert_indices(alphaColumn2); |
| - const uint32_t indexColumn3 = convert_indices(alphaColumn3); |
| - |
| - const uint32_t packedIndexColumn0 = pack_indices_vertical(indexColumn0); |
| - const uint32_t packedIndexColumn1 = pack_indices_vertical(indexColumn1); |
| - const uint32_t packedIndexColumn2 = pack_indices_vertical(indexColumn2); |
| - const uint32_t packedIndexColumn3 = pack_indices_vertical(indexColumn3); |
| - |
| - return SkEndian_SwapBE64(0x8490000000000000ULL | |
| - (static_cast<uint64_t>(packedIndexColumn0) << 36) | |
| - (static_cast<uint64_t>(packedIndexColumn1) << 24) | |
| - static_cast<uint64_t>(packedIndexColumn2 << 12) | |
| - static_cast<uint64_t>(packedIndexColumn3)); |
| - |
| -} |
| - |
| -static inline bool compress_a8_to_r11eac(uint8_t* dst, const uint8_t* src, |
| - int width, int height, int rowBytes) { |
| -#if (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST) |
| - return compress_4x4_a8_to_64bit(dst, src, width, height, rowBytes, compress_r11eac_block); |
| -#elif COMPRESS_R11_EAC_FASTEST |
| - return compress_a8_to_r11eac_fast(dst, src, width, height, rowBytes); |
| -#else |
| -#error "Must choose R11 EAC algorithm" |
| -#endif |
| -} |
| - |
| -// Updates the block whose columns are stored in blockColN. curAlphai is expected |
| -// to store, as an integer, the four alpha values that will be placed within each |
| -// of the columns in the range [col, col+colsLeft). |
| -static inline void update_block_columns( |
| - uint32_t* blockCol1, uint32_t* blockCol2, uint32_t* blockCol3, uint32_t* blockCol4, |
| - const int col, const int colsLeft, const uint32_t curAlphai) { |
| - SkASSERT(NULL != blockCol1); |
| - SkASSERT(NULL != blockCol2); |
| - SkASSERT(NULL != blockCol3); |
| - SkASSERT(NULL != blockCol4); |
| - SkASSERT(col + colsLeft <= 4); |
| - for (int i = col; i < (col + colsLeft); ++i) { |
| - switch(i) { |
| - case 0: |
| - *blockCol1 = curAlphai; |
| - break; |
| - case 1: |
| - *blockCol2 = curAlphai; |
| - break; |
| - case 2: |
| - *blockCol3 = curAlphai; |
| - break; |
| - case 3: |
| - *blockCol4 = curAlphai; |
| - break; |
| - } |
| - } |
| -} |
| - |
| -//////////////////////////////////////////////////////////////////////////////// |
| namespace SkTextureCompressor { |
| -static inline size_t get_compressed_data_size(Format fmt, int width, int height) { |
| +int GetCompressedDataSize(Format fmt, int width, int height) { |
| switch (fmt) { |
| // These formats are 64 bits per 4x4 block. |
| case kR11_EAC_Format: |
| case kLATC_Format: |
| { |
| - static const int kLATCEncodedBlockSize = 8; |
| + static const int kBlockDimension = 4; |
| + static const int kEncodedBlockSize = 8; |
| - const int blocksX = width / kLATCBlockSize; |
| - const int blocksY = height / kLATCBlockSize; |
| + if(((width % kBlockDimension) == 0) && ((height % kBlockDimension) == 0)) { |
| - return blocksX * blocksY * kLATCEncodedBlockSize; |
| + const int blocksX = width / kBlockDimension; |
| + const int blocksY = height / kBlockDimension; |
| + |
| + return blocksX * blocksY * kEncodedBlockSize; |
| + } |
| + |
| + return -1; |
| } |
| default: |
| SkFAIL("Unknown compressed format!"); |
| - return 0; |
| + return -1; |
| } |
| } |
| @@ -872,10 +58,10 @@ bool CompressBufferToFormat(uint8_t* dst, const uint8_t* src, SkColorType srcCol |
| { |
| switch (format) { |
| case kLATC_Format: |
| - proc = compress_a8_to_latc; |
| + proc = CompressA8ToLATC; |
| break; |
| case kR11_EAC_Format: |
| - proc = compress_a8_to_r11eac; |
| + proc = CompressA8ToR11EAC; |
| break; |
| default: |
| // Do nothing... |
| @@ -900,9 +86,11 @@ bool CompressBufferToFormat(uint8_t* dst, const uint8_t* src, SkColorType srcCol |
| SkData *CompressBitmapToFormat(const SkBitmap &bitmap, Format format) { |
| SkAutoLockPixels alp(bitmap); |
| - int compressedDataSize = get_compressed_data_size(format, bitmap.width(), bitmap.height()); |
| + int compressedDataSize = GetCompressedDataSize(format, bitmap.width(), bitmap.height()); |
| + |
| const uint8_t* src = reinterpret_cast<const uint8_t*>(bitmap.getPixels()); |
| uint8_t* dst = reinterpret_cast<uint8_t*>(sk_malloc_throw(compressedDataSize)); |
| + |
| if (CompressBufferToFormat(dst, src, bitmap.colorType(), bitmap.width(), bitmap.height(), |
| bitmap.rowBytes(), format)) { |
| return SkData::NewFromMalloc(dst, compressedDataSize); |
| @@ -912,221 +100,19 @@ SkData *CompressBitmapToFormat(const SkBitmap &bitmap, Format format) { |
| return NULL; |
| } |
| -R11_EACBlitter::R11_EACBlitter(int width, int height, void *latcBuffer) |
| - // 0x7FFE is one minus the largest positive 16-bit int. We use it for |
| - // debugging to make sure that we're properly setting the nextX distance |
| - // in flushRuns(). |
| - : kLongestRun(0x7FFE), kZeroAlpha(0) |
| - , fNextRun(0) |
| - , fWidth(width) |
| - , fHeight(height) |
| - , fBuffer(reinterpret_cast<uint64_t*const>(latcBuffer)) |
| -{ |
| - SkASSERT((width % kR11_EACBlockSz) == 0); |
| - SkASSERT((height % kR11_EACBlockSz) == 0); |
| -} |
| - |
| -void R11_EACBlitter::blitAntiH(int x, int y, |
| - const SkAlpha* antialias, |
| - const int16_t* runs) { |
| - // Make sure that the new row to blit is either the first |
| - // row that we're blitting, or it's exactly the next scan row |
| - // since the last row that we blit. This is to ensure that when |
| - // we go to flush the runs, that they are all the same four |
| - // runs. |
| - if (fNextRun > 0 && |
| - ((x != fBufferedRuns[fNextRun-1].fX) || |
| - (y-1 != fBufferedRuns[fNextRun-1].fY))) { |
| - this->flushRuns(); |
| - } |
| - |
| - // Align the rows to a block boundary. If we receive rows that |
| - // are not on a block boundary, then fill in the preceding runs |
| - // with zeros. We do this by producing a single RLE that says |
| - // that we have 0x7FFE pixels of zero (0x7FFE = 32766). |
| - const int row = y & ~3; |
| - while ((row + fNextRun) < y) { |
| - fBufferedRuns[fNextRun].fAlphas = &kZeroAlpha; |
| - fBufferedRuns[fNextRun].fRuns = &kLongestRun; |
| - fBufferedRuns[fNextRun].fX = 0; |
| - fBufferedRuns[fNextRun].fY = row + fNextRun; |
| - ++fNextRun; |
| - } |
| - |
| - // Make sure that our assumptions aren't violated... |
| - SkASSERT(fNextRun == (y & 3)); |
| - SkASSERT(fNextRun == 0 || fBufferedRuns[fNextRun - 1].fY < y); |
| - |
| - // Set the values of the next run |
| - fBufferedRuns[fNextRun].fAlphas = antialias; |
| - fBufferedRuns[fNextRun].fRuns = runs; |
| - fBufferedRuns[fNextRun].fX = x; |
| - fBufferedRuns[fNextRun].fY = y; |
| - |
| - // If we've output four scanlines in a row that don't violate our |
| - // assumptions, then it's time to flush them... |
| - if (4 == ++fNextRun) { |
| - this->flushRuns(); |
| - } |
| -} |
| - |
| -void R11_EACBlitter::flushRuns() { |
| - |
| - // If we don't have any runs, then just return. |
| - if (0 == fNextRun) { |
| - return; |
| - } |
| - |
| -#ifndef NDEBUG |
| - // Make sure that if we have any runs, they all match |
| - for (int i = 1; i < fNextRun; ++i) { |
| - SkASSERT(fBufferedRuns[i].fY == fBufferedRuns[i-1].fY + 1); |
| - SkASSERT(fBufferedRuns[i].fX == fBufferedRuns[i-1].fX); |
| - } |
| -#endif |
| - |
| - // If we dont have as many runs as we have rows, fill in the remaining |
| - // runs with constant zeros. |
| - for (int i = fNextRun; i < kR11_EACBlockSz; ++i) { |
| - fBufferedRuns[i].fY = fBufferedRuns[0].fY + i; |
| - fBufferedRuns[i].fX = fBufferedRuns[0].fX; |
| - fBufferedRuns[i].fAlphas = &kZeroAlpha; |
| - fBufferedRuns[i].fRuns = &kLongestRun; |
| - } |
| - |
| - // Make sure that our assumptions aren't violated. |
| - SkASSERT(fNextRun > 0 && fNextRun <= 4); |
| - SkASSERT((fBufferedRuns[0].fY & 3) == 0); |
| - |
| - // The following logic walks four rows at a time and outputs compressed |
| - // blocks to the buffer passed into the constructor. |
| - // We do the following: |
| - // |
| - // c1 c2 c3 c4 |
| - // ----------------------------------------------------------------------- |
| - // ... | | | | | ----> fBufferedRuns[0] |
| - // ----------------------------------------------------------------------- |
| - // ... | | | | | ----> fBufferedRuns[1] |
| - // ----------------------------------------------------------------------- |
| - // ... | | | | | ----> fBufferedRuns[2] |
| - // ----------------------------------------------------------------------- |
| - // ... | | | | | ----> fBufferedRuns[3] |
| - // ----------------------------------------------------------------------- |
| - // |
| - // curX -- the macro X value that we've gotten to. |
| - // c1, c2, c3, c4 -- the integers that represent the columns of the current block |
| - // that we're operating on |
| - // curAlphaColumn -- integer containing the column of alpha values from fBufferedRuns. |
| - // nextX -- for each run, the next point at which we need to update curAlphaColumn |
| - // after the value of curX. |
| - // finalX -- the minimum of all the nextX values. |
| - // |
| - // curX advances to finalX outputting any blocks that it passes along |
| - // the way. Since finalX will not change when we reach the end of a |
| - // run, the termination criteria will be whenever curX == finalX at the |
| - // end of a loop. |
| - |
| - // Setup: |
| - uint32_t c1 = 0; |
| - uint32_t c2 = 0; |
| - uint32_t c3 = 0; |
| - uint32_t c4 = 0; |
| - |
| - uint32_t curAlphaColumn = 0; |
| - SkAlpha *curAlpha = reinterpret_cast<SkAlpha*>(&curAlphaColumn); |
| - |
| - int nextX[kR11_EACBlockSz]; |
| - for (int i = 0; i < kR11_EACBlockSz; ++i) { |
| - nextX[i] = 0x7FFFFF; |
| - } |
| - |
| - uint64_t* outPtr = this->getBlock(fBufferedRuns[0].fX, fBufferedRuns[0].fY); |
| - |
| - // Populate the first set of runs and figure out how far we need to |
| - // advance on the first step |
| - int curX = 0; |
| - int finalX = 0xFFFFF; |
| - for (int i = 0; i < kR11_EACBlockSz; ++i) { |
| - nextX[i] = *(fBufferedRuns[i].fRuns); |
| - curAlpha[i] = *(fBufferedRuns[i].fAlphas); |
| - |
| - finalX = SkMin32(nextX[i], finalX); |
| - } |
| - |
| - // Make sure that we have a valid right-bound X value |
| - SkASSERT(finalX < 0xFFFFF); |
| - |
| - // Run the blitter... |
| - while (curX != finalX) { |
| - SkASSERT(finalX >= curX); |
| - |
| - // Do we need to populate the rest of the block? |
| - if ((finalX - (curX & ~3)) >= kR11_EACBlockSz) { |
| - const int col = curX & 3; |
| - const int colsLeft = 4 - col; |
| - SkASSERT(curX + colsLeft <= finalX); |
| - |
| - update_block_columns(&c1, &c2, &c3, &c4, col, colsLeft, curAlphaColumn); |
| - |
| - // Write this block |
| - *outPtr = compress_block_vertical(c1, c2, c3, c4); |
| - ++outPtr; |
| - curX += colsLeft; |
| - } |
| - |
| - // If we can advance even further, then just keep memsetting the block |
| - if ((finalX - curX) >= kR11_EACBlockSz) { |
| - SkASSERT((curX & 3) == 0); |
| - |
| - const int col = 0; |
| - const int colsLeft = kR11_EACBlockSz; |
| - |
| - update_block_columns(&c1, &c2, &c3, &c4, col, colsLeft, curAlphaColumn); |
| - |
| - // While we can keep advancing, just keep writing the block. |
| - uint64_t lastBlock = compress_block_vertical(c1, c2, c3, c4); |
| - while((finalX - curX) >= kR11_EACBlockSz) { |
| - *outPtr = lastBlock; |
| - ++outPtr; |
| - curX += kR11_EACBlockSz; |
| - } |
| - } |
| - |
| - // If we haven't advanced within the block then do so. |
| - if (curX < finalX) { |
| - const int col = curX & 3; |
| - const int colsLeft = finalX - curX; |
| - |
| - update_block_columns(&c1, &c2, &c3, &c4, col, colsLeft, curAlphaColumn); |
| - |
| - curX += colsLeft; |
| - } |
| - |
| - SkASSERT(curX == finalX); |
| - |
| - // Figure out what the next advancement is... |
| - for (int i = 0; i < kR11_EACBlockSz; ++i) { |
| - if (nextX[i] == finalX) { |
| - const int16_t run = *(fBufferedRuns[i].fRuns); |
| - fBufferedRuns[i].fRuns += run; |
| - fBufferedRuns[i].fAlphas += run; |
| - curAlpha[i] = *(fBufferedRuns[i].fAlphas); |
| - nextX[i] += *(fBufferedRuns[i].fRuns); |
| - } |
| - } |
| +SkBlitter* CreateBlitterForFormat(int width, int height, void* compressedBuffer, Format format) { |
| + switch(format) { |
|
robertphillips
2014/07/21 21:56:57
default at bottom ?
krajcevski
2014/07/21 22:03:55
Done.
|
| + default: |
| + return NULL; |
| - finalX = 0xFFFFF; |
| - for (int i = 0; i < kR11_EACBlockSz; ++i) { |
| - finalX = SkMin32(nextX[i], finalX); |
| - } |
| - } |
| + case kLATC_Format: |
| + return CreateLATCBlitter(width, height, compressedBuffer); |
| - // If we didn't land on a block boundary, output the block... |
| - if ((curX & 3) > 1) { |
| - *outPtr = compress_block_vertical(c1, c2, c3, c4); |
| + case kR11_EAC_Format: |
| + return CreateR11EACBlitter(width, height, compressedBuffer); |
| } |
| - fNextRun = 0; |
| + return NULL; |
| } |
| } // namespace SkTextureCompressor |