| OLD | NEW |
| (Empty) |
| 1 // Copyright 2013 the V8 project authors. All rights reserved. | |
| 2 // Use of this source code is governed by a BSD-style license that can be | |
| 3 // found in the LICENSE file. | |
| 4 | |
| 5 'use strict'; | |
| 6 | |
| 7 // ES6 draft 09-27-13, section 20.2.2.28. | |
| 8 function MathSign(x) { | |
| 9 x = TO_NUMBER_INLINE(x); | |
| 10 if (x > 0) return 1; | |
| 11 if (x < 0) return -1; | |
| 12 if (x === 0) return x; | |
| 13 return NAN; | |
| 14 } | |
| 15 | |
| 16 | |
| 17 // ES6 draft 09-27-13, section 20.2.2.34. | |
| 18 function MathTrunc(x) { | |
| 19 x = TO_NUMBER_INLINE(x); | |
| 20 if (x > 0) return MathFloor(x); | |
| 21 if (x < 0) return MathCeil(x); | |
| 22 if (x === 0) return x; | |
| 23 return NAN; | |
| 24 } | |
| 25 | |
| 26 | |
| 27 // ES6 draft 09-27-13, section 20.2.2.30. | |
| 28 function MathSinh(x) { | |
| 29 if (!IS_NUMBER(x)) x = NonNumberToNumber(x); | |
| 30 // Idempotent for NaN, +/-0 and +/-Infinity. | |
| 31 if (x === 0 || !NUMBER_IS_FINITE(x)) return x; | |
| 32 return (MathExp(x) - MathExp(-x)) / 2; | |
| 33 } | |
| 34 | |
| 35 | |
| 36 // ES6 draft 09-27-13, section 20.2.2.12. | |
| 37 function MathCosh(x) { | |
| 38 if (!IS_NUMBER(x)) x = NonNumberToNumber(x); | |
| 39 if (!NUMBER_IS_FINITE(x)) return MathAbs(x); | |
| 40 return (MathExp(x) + MathExp(-x)) / 2; | |
| 41 } | |
| 42 | |
| 43 | |
| 44 // ES6 draft 09-27-13, section 20.2.2.33. | |
| 45 function MathTanh(x) { | |
| 46 if (!IS_NUMBER(x)) x = NonNumberToNumber(x); | |
| 47 // Idempotent for +/-0. | |
| 48 if (x === 0) return x; | |
| 49 // Returns +/-1 for +/-Infinity. | |
| 50 if (!NUMBER_IS_FINITE(x)) return MathSign(x); | |
| 51 var exp1 = MathExp(x); | |
| 52 var exp2 = MathExp(-x); | |
| 53 return (exp1 - exp2) / (exp1 + exp2); | |
| 54 } | |
| 55 | |
| 56 | |
| 57 // ES6 draft 09-27-13, section 20.2.2.5. | |
| 58 function MathAsinh(x) { | |
| 59 if (!IS_NUMBER(x)) x = NonNumberToNumber(x); | |
| 60 // Idempotent for NaN, +/-0 and +/-Infinity. | |
| 61 if (x === 0 || !NUMBER_IS_FINITE(x)) return x; | |
| 62 if (x > 0) return MathLog(x + MathSqrt(x * x + 1)); | |
| 63 // This is to prevent numerical errors caused by large negative x. | |
| 64 return -MathLog(-x + MathSqrt(x * x + 1)); | |
| 65 } | |
| 66 | |
| 67 | |
| 68 // ES6 draft 09-27-13, section 20.2.2.3. | |
| 69 function MathAcosh(x) { | |
| 70 if (!IS_NUMBER(x)) x = NonNumberToNumber(x); | |
| 71 if (x < 1) return NAN; | |
| 72 // Idempotent for NaN and +Infinity. | |
| 73 if (!NUMBER_IS_FINITE(x)) return x; | |
| 74 return MathLog(x + MathSqrt(x + 1) * MathSqrt(x - 1)); | |
| 75 } | |
| 76 | |
| 77 | |
| 78 // ES6 draft 09-27-13, section 20.2.2.7. | |
| 79 function MathAtanh(x) { | |
| 80 if (!IS_NUMBER(x)) x = NonNumberToNumber(x); | |
| 81 // Idempotent for +/-0. | |
| 82 if (x === 0) return x; | |
| 83 // Returns NaN for NaN and +/- Infinity. | |
| 84 if (!NUMBER_IS_FINITE(x)) return NAN; | |
| 85 return 0.5 * MathLog((1 + x) / (1 - x)); | |
| 86 } | |
| 87 | |
| 88 | |
| 89 // ES6 draft 09-27-13, section 20.2.2.21. | |
| 90 function MathLog10(x) { | |
| 91 return MathLog(x) * 0.434294481903251828; // log10(x) = log(x)/log(10). | |
| 92 } | |
| 93 | |
| 94 | |
| 95 // ES6 draft 09-27-13, section 20.2.2.22. | |
| 96 function MathLog2(x) { | |
| 97 return MathLog(x) * 1.442695040888963407; // log2(x) = log(x)/log(2). | |
| 98 } | |
| 99 | |
| 100 | |
| 101 // ES6 draft 09-27-13, section 20.2.2.17. | |
| 102 function MathHypot(x, y) { // Function length is 2. | |
| 103 // We may want to introduce fast paths for two arguments and when | |
| 104 // normalization to avoid overflow is not necessary. For now, we | |
| 105 // simply assume the general case. | |
| 106 var length = %_ArgumentsLength(); | |
| 107 var args = new InternalArray(length); | |
| 108 var max = 0; | |
| 109 for (var i = 0; i < length; i++) { | |
| 110 var n = %_Arguments(i); | |
| 111 if (!IS_NUMBER(n)) n = NonNumberToNumber(n); | |
| 112 if (n === INFINITY || n === -INFINITY) return INFINITY; | |
| 113 n = MathAbs(n); | |
| 114 if (n > max) max = n; | |
| 115 args[i] = n; | |
| 116 } | |
| 117 | |
| 118 // Kahan summation to avoid rounding errors. | |
| 119 // Normalize the numbers to the largest one to avoid overflow. | |
| 120 if (max === 0) max = 1; | |
| 121 var sum = 0; | |
| 122 var compensation = 0; | |
| 123 for (var i = 0; i < length; i++) { | |
| 124 var n = args[i] / max; | |
| 125 var summand = n * n - compensation; | |
| 126 var preliminary = sum + summand; | |
| 127 compensation = (preliminary - sum) - summand; | |
| 128 sum = preliminary; | |
| 129 } | |
| 130 return MathSqrt(sum) * max; | |
| 131 } | |
| 132 | |
| 133 | |
| 134 // ES6 draft 09-27-13, section 20.2.2.16. | |
| 135 function MathFroundJS(x) { | |
| 136 return %MathFround(TO_NUMBER_INLINE(x)); | |
| 137 } | |
| 138 | |
| 139 | |
| 140 function MathClz32(x) { | |
| 141 x = ToUint32(TO_NUMBER_INLINE(x)); | |
| 142 if (x == 0) return 32; | |
| 143 var result = 0; | |
| 144 // Binary search. | |
| 145 if ((x & 0xFFFF0000) === 0) { x <<= 16; result += 16; }; | |
| 146 if ((x & 0xFF000000) === 0) { x <<= 8; result += 8; }; | |
| 147 if ((x & 0xF0000000) === 0) { x <<= 4; result += 4; }; | |
| 148 if ((x & 0xC0000000) === 0) { x <<= 2; result += 2; }; | |
| 149 if ((x & 0x80000000) === 0) { x <<= 1; result += 1; }; | |
| 150 return result; | |
| 151 } | |
| 152 | |
| 153 | |
| 154 // ES6 draft 09-27-13, section 20.2.2.9. | |
| 155 // Cube root approximation, refer to: http://metamerist.com/cbrt/cbrt.htm | |
| 156 // Using initial approximation adapted from Kahan's cbrt and 4 iterations | |
| 157 // of Newton's method. | |
| 158 function MathCbrt(x) { | |
| 159 if (!IS_NUMBER(x)) x = NonNumberToNumber(x); | |
| 160 if (x == 0 || !NUMBER_IS_FINITE(x)) return x; | |
| 161 return x >= 0 ? CubeRoot(x) : -CubeRoot(-x); | |
| 162 } | |
| 163 | |
| 164 macro NEWTON_ITERATION_CBRT(x, approx) | |
| 165 (1.0 / 3.0) * (x / (approx * approx) + 2 * approx); | |
| 166 endmacro | |
| 167 | |
| 168 function CubeRoot(x) { | |
| 169 var approx_hi = MathFloor(%_DoubleHi(x) / 3) + 0x2A9F7893; | |
| 170 var approx = %_ConstructDouble(approx_hi, 0); | |
| 171 approx = NEWTON_ITERATION_CBRT(x, approx); | |
| 172 approx = NEWTON_ITERATION_CBRT(x, approx); | |
| 173 approx = NEWTON_ITERATION_CBRT(x, approx); | |
| 174 return NEWTON_ITERATION_CBRT(x, approx); | |
| 175 } | |
| 176 | |
| 177 | |
| 178 | |
| 179 // ES6 draft 09-27-13, section 20.2.2.14. | |
| 180 // Use Taylor series to approximate. | |
| 181 // exp(x) - 1 at 0 == -1 + exp(0) + exp'(0)*x/1! + exp''(0)*x^2/2! + ... | |
| 182 // == x/1! + x^2/2! + x^3/3! + ... | |
| 183 // The closer x is to 0, the fewer terms are required. | |
| 184 function MathExpm1(x) { | |
| 185 if (!IS_NUMBER(x)) x = NonNumberToNumber(x); | |
| 186 var xabs = MathAbs(x); | |
| 187 if (xabs < 2E-7) { | |
| 188 return x * (1 + x * (1/2)); | |
| 189 } else if (xabs < 6E-5) { | |
| 190 return x * (1 + x * (1/2 + x * (1/6))); | |
| 191 } else if (xabs < 2E-2) { | |
| 192 return x * (1 + x * (1/2 + x * (1/6 + | |
| 193 x * (1/24 + x * (1/120 + x * (1/720)))))); | |
| 194 } else { // Use regular exp if not close enough to 0. | |
| 195 return MathExp(x) - 1; | |
| 196 } | |
| 197 } | |
| 198 | |
| 199 | |
| 200 // ES6 draft 09-27-13, section 20.2.2.20. | |
| 201 // Use Taylor series to approximate. With y = x + 1; | |
| 202 // log(y) at 1 == log(1) + log'(1)(y-1)/1! + log''(1)(y-1)^2/2! + ... | |
| 203 // == 0 + x - x^2/2 + x^3/3 ... | |
| 204 // The closer x is to 0, the fewer terms are required. | |
| 205 function MathLog1p(x) { | |
| 206 if (!IS_NUMBER(x)) x = NonNumberToNumber(x); | |
| 207 var xabs = MathAbs(x); | |
| 208 if (xabs < 1E-7) { | |
| 209 return x * (1 - x * (1/2)); | |
| 210 } else if (xabs < 3E-5) { | |
| 211 return x * (1 - x * (1/2 - x * (1/3))); | |
| 212 } else if (xabs < 7E-3) { | |
| 213 return x * (1 - x * (1/2 - x * (1/3 - x * (1/4 - | |
| 214 x * (1/5 - x * (1/6 - x * (1/7))))))); | |
| 215 } else { // Use regular log if not close enough to 0. | |
| 216 return MathLog(1 + x); | |
| 217 } | |
| 218 } | |
| 219 | |
| 220 | |
| 221 function ExtendMath() { | |
| 222 %CheckIsBootstrapping(); | |
| 223 | |
| 224 // Set up the non-enumerable functions on the Math object. | |
| 225 InstallFunctions($Math, DONT_ENUM, $Array( | |
| 226 "sign", MathSign, | |
| 227 "trunc", MathTrunc, | |
| 228 "sinh", MathSinh, | |
| 229 "cosh", MathCosh, | |
| 230 "tanh", MathTanh, | |
| 231 "asinh", MathAsinh, | |
| 232 "acosh", MathAcosh, | |
| 233 "atanh", MathAtanh, | |
| 234 "log10", MathLog10, | |
| 235 "log2", MathLog2, | |
| 236 "hypot", MathHypot, | |
| 237 "fround", MathFroundJS, | |
| 238 "clz32", MathClz32, | |
| 239 "cbrt", MathCbrt, | |
| 240 "log1p", MathLog1p, | |
| 241 "expm1", MathExpm1 | |
| 242 )); | |
| 243 } | |
| 244 | |
| 245 | |
| 246 ExtendMath(); | |
| OLD | NEW |