Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(65)

Side by Side Diff: src/IceTargetLoweringX8632.cpp

Issue 390443005: Lower bitmanip intrinsics, assuming absence of BMI/SSE4.2 for now. (Closed) Base URL: https://chromium.googlesource.com/native_client/pnacl-subzero.git@master
Patch Set: stuff Created 6 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 //===- subzero/src/IceTargetLoweringX8632.cpp - x86-32 lowering -----------===// 1 //===- subzero/src/IceTargetLoweringX8632.cpp - x86-32 lowering -----------===//
2 // 2 //
3 // The Subzero Code Generator 3 // The Subzero Code Generator
4 // 4 //
5 // This file is distributed under the University of Illinois Open Source 5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details. 6 // License. See LICENSE.TXT for details.
7 // 7 //
8 //===----------------------------------------------------------------------===// 8 //===----------------------------------------------------------------------===//
9 // 9 //
10 // This file implements the TargetLoweringX8632 class, which 10 // This file implements the TargetLoweringX8632 class, which
(...skipping 21 matching lines...) Expand all
32 // lowerFcmp() describes the lowering template. In the most general case, there 32 // lowerFcmp() describes the lowering template. In the most general case, there
33 // is a compare followed by two conditional branches, because some fcmp 33 // is a compare followed by two conditional branches, because some fcmp
34 // conditions don't map to a single x86 conditional branch. However, in many 34 // conditions don't map to a single x86 conditional branch. However, in many
35 // cases it is possible to swap the operands in the comparison and have a single 35 // cases it is possible to swap the operands in the comparison and have a single
36 // conditional branch. Since it's quite tedious to validate the table by hand, 36 // conditional branch. Since it's quite tedious to validate the table by hand,
37 // good execution tests are helpful. 37 // good execution tests are helpful.
38 38
39 const struct TableFcmp_ { 39 const struct TableFcmp_ {
40 uint32_t Default; 40 uint32_t Default;
41 bool SwapOperands; 41 bool SwapOperands;
42 InstX8632Br::BrCond C1, C2; 42 InstX8632::BrCond C1, C2;
43 } TableFcmp[] = { 43 } TableFcmp[] = {
44 #define X(val, dflt, swap, C1, C2) \ 44 #define X(val, dflt, swap, C1, C2) \
45 { dflt, swap, InstX8632Br::C1, InstX8632Br::C2 } \ 45 { dflt, swap, InstX8632Br::C1, InstX8632Br::C2 } \
46 , 46 ,
47 FCMPX8632_TABLE 47 FCMPX8632_TABLE
48 #undef X 48 #undef X
49 }; 49 };
50 const size_t TableFcmpSize = llvm::array_lengthof(TableFcmp); 50 const size_t TableFcmpSize = llvm::array_lengthof(TableFcmp);
51 51
52 // The following table summarizes the logic for lowering the icmp instruction 52 // The following table summarizes the logic for lowering the icmp instruction
53 // for i32 and narrower types. Each icmp condition has a clear mapping to an 53 // for i32 and narrower types. Each icmp condition has a clear mapping to an
54 // x86 conditional branch instruction. 54 // x86 conditional branch instruction.
55 55
56 const struct TableIcmp32_ { 56 const struct TableIcmp32_ {
57 InstX8632Br::BrCond Mapping; 57 InstX8632::BrCond Mapping;
58 } TableIcmp32[] = { 58 } TableIcmp32[] = {
59 #define X(val, C_32, C1_64, C2_64, C3_64) \ 59 #define X(val, C_32, C1_64, C2_64, C3_64) \
60 { InstX8632Br::C_32 } \ 60 { InstX8632Br::C_32 } \
61 , 61 ,
62 ICMPX8632_TABLE 62 ICMPX8632_TABLE
63 #undef X 63 #undef X
64 }; 64 };
65 const size_t TableIcmp32Size = llvm::array_lengthof(TableIcmp32); 65 const size_t TableIcmp32Size = llvm::array_lengthof(TableIcmp32);
66 66
67 // The following table summarizes the logic for lowering the icmp instruction 67 // The following table summarizes the logic for lowering the icmp instruction
68 // for the i64 type. For Eq and Ne, two separate 32-bit comparisons and 68 // for the i64 type. For Eq and Ne, two separate 32-bit comparisons and
69 // conditional branches are needed. For the other conditions, three separate 69 // conditional branches are needed. For the other conditions, three separate
70 // conditional branches are needed. 70 // conditional branches are needed.
71 const struct TableIcmp64_ { 71 const struct TableIcmp64_ {
72 InstX8632Br::BrCond C1, C2, C3; 72 InstX8632::BrCond C1, C2, C3;
73 } TableIcmp64[] = { 73 } TableIcmp64[] = {
74 #define X(val, C_32, C1_64, C2_64, C3_64) \ 74 #define X(val, C_32, C1_64, C2_64, C3_64) \
75 { InstX8632Br::C1_64, InstX8632Br::C2_64, InstX8632Br::C3_64 } \ 75 { InstX8632Br::C1_64, InstX8632Br::C2_64, InstX8632Br::C3_64 } \
76 , 76 ,
77 ICMPX8632_TABLE 77 ICMPX8632_TABLE
78 #undef X 78 #undef X
79 }; 79 };
80 const size_t TableIcmp64Size = llvm::array_lengthof(TableIcmp64); 80 const size_t TableIcmp64Size = llvm::array_lengthof(TableIcmp64);
81 81
82 InstX8632Br::BrCond getIcmp32Mapping(InstIcmp::ICond Cond) { 82 InstX8632::BrCond getIcmp32Mapping(InstIcmp::ICond Cond) {
83 size_t Index = static_cast<size_t>(Cond); 83 size_t Index = static_cast<size_t>(Cond);
84 assert(Index < TableIcmp32Size); 84 assert(Index < TableIcmp32Size);
85 return TableIcmp32[Index].Mapping; 85 return TableIcmp32[Index].Mapping;
86 } 86 }
87 87
88 // The maximum number of arguments to pass in XMM registers 88 // The maximum number of arguments to pass in XMM registers
89 const unsigned X86_MAX_XMM_ARGS = 4; 89 const unsigned X86_MAX_XMM_ARGS = 4;
90 90
91 // In some cases, there are x-macros tables for both high-level and 91 // In some cases, there are x-macros tables for both high-level and
92 // low-level instructions/operands that use the same enum key value. 92 // low-level instructions/operands that use the same enum key value.
(...skipping 2008 matching lines...) Expand 10 before | Expand all | Expand 10 after
2101 _storeq(T, Addr); 2101 _storeq(T, Addr);
2102 _mfence(); 2102 _mfence();
2103 return; 2103 return;
2104 } 2104 }
2105 InstStore *Store = InstStore::create(Func, Value, Ptr); 2105 InstStore *Store = InstStore::create(Func, Value, Ptr);
2106 lowerStore(Store); 2106 lowerStore(Store);
2107 _mfence(); 2107 _mfence();
2108 return; 2108 return;
2109 } 2109 }
2110 case Intrinsics::Bswap: 2110 case Intrinsics::Bswap:
2111 Func->setError("Unhandled intrinsic");
2112 return;
2113 case Intrinsics::Ctpop: {
2114 Variable *Dest = Instr->getDest();
2115 Operand *Val = Instr->getArg(0);
2116 InstCall *Call = makeHelperCall(Val->getType() == IceType_i32 ?
2117 "__popcountsi2" : "__popcountdi2", Dest, 1);
2118 Call->addArg(Val);
2119 lowerCall(Call);
2120 // The popcount helpers always return 32-bit values, while the intrinsic's
2121 // signature matches the native POPCNT instruction and fills a 64-bit reg
2122 // (in 64-bit mode). Thus, clear the upper bits of the dest just in case
2123 // the user doesn't do that in the IR. If the user does that in the IR,
2124 // then this zero'ing instruction is dead and gets optimized out.
2125 if (Val->getType() == IceType_i64) {
2126 Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest));
2127 Constant *Zero = Ctx->getConstantZero(IceType_i32);
2128 _mov(DestHi, Zero);
2129 }
2130 return;
2131 }
2111 case Intrinsics::Ctlz: 2132 case Intrinsics::Ctlz:
2112 case Intrinsics::Ctpop: 2133 // The "is zero undef" parameter is ignored and we always return
2134 // a well-defined value.
2135 lowerCtlz(Instr->getDest(), Instr->getArg(0));
2136 return;
2113 case Intrinsics::Cttz: 2137 case Intrinsics::Cttz:
2114 // TODO(jvoung): fill it in. 2138 // The "is zero undef" parameter is ignored and we always return
2115 Func->setError("Unhandled intrinsic"); 2139 // a well-defined value.
2140 lowerCttz(Instr->getDest(), Instr->getArg(0));
2116 return; 2141 return;
2117 case Intrinsics::Longjmp: { 2142 case Intrinsics::Longjmp: {
2118 InstCall *Call = makeHelperCall("longjmp", NULL, 2); 2143 InstCall *Call = makeHelperCall("longjmp", NULL, 2);
2119 Call->addArg(Instr->getArg(0)); 2144 Call->addArg(Instr->getArg(0));
2120 Call->addArg(Instr->getArg(1)); 2145 Call->addArg(Instr->getArg(1));
2121 lowerCall(Call); 2146 lowerCall(Call);
2122 return; 2147 return;
2123 } 2148 }
2124 case Intrinsics::Memcpy: { 2149 case Intrinsics::Memcpy: {
2125 // In the future, we could potentially emit an inline memcpy/memset, etc. 2150 // In the future, we could potentially emit an inline memcpy/memset, etc.
(...skipping 274 matching lines...) Expand 10 before | Expand all | Expand 10 after
2400 // If Val is a variable, model the extended live range of Val through 2425 // If Val is a variable, model the extended live range of Val through
2401 // the end of the loop, since it will be re-used by the loop. 2426 // the end of the loop, since it will be re-used by the loop.
2402 if (Variable *ValVar = llvm::dyn_cast<Variable>(Val)) { 2427 if (Variable *ValVar = llvm::dyn_cast<Variable>(Val)) {
2403 Context.insert(InstFakeUse::create(Func, ValVar)); 2428 Context.insert(InstFakeUse::create(Func, ValVar));
2404 } 2429 }
2405 // The address base is also reused in the loop. 2430 // The address base is also reused in the loop.
2406 Context.insert(InstFakeUse::create(Func, Addr->getBase())); 2431 Context.insert(InstFakeUse::create(Func, Addr->getBase()));
2407 _mov(Dest, T_eax); 2432 _mov(Dest, T_eax);
2408 } 2433 }
2409 2434
2435 // We could do constant folding here, but that should have
2436 // been done by the front-end/middle-end optimizations.
2437 void TargetX8632::lowerCtlz(Variable *Dest, Operand *Val) {
2438 // TODO(jvoung): Determine if the user CPU supports LZCNT (BMI).
2439 // Then the instructions will handle the Val == 0 case much more simply
2440 // and won't require conversion from bit position to number of zeros.
2441 //
2442 // Otherwise:
2443 // bsr IF_NOT_ZERO, Val
2444 // mov DEST, 63
2445 // cmovne DEST, IF_NOT_ZERO
Jim Stichnoth 2014/07/14 23:20:45 Might want to document that the cmov instruction r
jvoung (off chromium) 2014/07/15 21:30:23 Done. I think the cvt instructions and some/most
2446 // xor DEST, 31
2447 //
2448 // The xor DEST, 31 converts a bit position to # of leading zeroes.
2449 // E.g., for 000... 00001100, bsr will say that the most significant bit
2450 // set is at position 3, while the number of leading zeros is 28. Xor is
2451 // like (31 - N) for N <= 31, and converts 63 to 32 (for the all-zeros case).
2452 //
2453 // Similar for 64-bit, but start w/ speculating that the upper 32 bits
2454 // are all zero, and compute the result for that case (checking the lower
2455 // 32 bits). Then actually compute the result for the upper bits and
2456 // cmov in the result from the lower computation if the earlier speculation
2457 // was correct.
2458 Type Ty = Val->getType();
2459 assert(Ty == IceType_i32 || Ty == IceType_i64);
2460 Val = legalize(Val);
2461 Operand *FirstVal = Ty == IceType_i32 ? Val : loOperand(Val);
2462 Variable *T = makeReg(IceType_i32);
2463 _bsr(T, FirstVal);
2464 Variable *T_Dest = makeReg(IceType_i32);
2465 Constant *SixtyThree = Ctx->getConstantInt(IceType_i32, 63);
2466 Constant *ThirtyOne = Ctx->getConstantInt(IceType_i32, 31);
2467 _mov(T_Dest, SixtyThree);
2468 _cmov(T_Dest, T, InstX8632::Br_ne);
2469 _xor(T_Dest, ThirtyOne);
2470 if (Ty == IceType_i32) {
2471 _mov(Dest, T_Dest);
2472 return;
2473 }
2474 Constant *ThirtyTwo = Ctx->getConstantInt(IceType_i32, 32);
2475 _add(T_Dest, ThirtyTwo);
2476 Variable *DestLo = llvm::cast<Variable>(loOperand(Dest));
2477 Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest));
2478 // Will be using "test" on this, so we need a registerized version.
2479 Variable *HigherVar = legalizeToVar(hiOperand(Val));
2480 Variable *T_Dest2 = makeReg(IceType_i32);
2481 _bsr(T_Dest2, HigherVar);
2482 _xor(T_Dest2, ThirtyOne);
2483 _test(HigherVar, HigherVar);
2484 _cmov(T_Dest2, T_Dest, InstX8632::Br_e);
2485 _mov(DestLo, T_Dest2);
2486 _mov(DestHi, Ctx->getConstantZero(IceType_i32));
2487 }
2488
2489 void TargetX8632::lowerCttz(Variable *Dest, Operand *Val) {
2490 // TODO(jvoung): Determine if the user CPU supports TZCNT (BMI).
Jim Stichnoth 2014/07/14 23:20:45 Would it make sense to refactor this and lowerCtlz
jvoung (off chromium) 2014/07/15 21:30:23 Hmm, I tried that in the new patch set. There are
2491 // Then the instructions will handle the Val == 0 case much more simply.
2492 //
2493 // Otherwise:
2494 // bsf IF_NOT_ZERO, Val
2495 // mov IF_ZERO, 32
2496 // cmovne IF_ZERO, IF_NOT_ZERO
2497 //
2498 // Similar for 64-bit, but start w/ speculating that the bottom 32 bits
2499 // are all zero.
2500 Type Ty = Val->getType();
2501 assert(Ty == IceType_i32 || Ty == IceType_i64);
2502 Val = legalize(Val);
2503 Operand *FirstVal = Ty == IceType_i32 ? Val : hiOperand(Val);
2504 Variable *T = makeReg(IceType_i32);
2505 _bsf(T, FirstVal);
2506 Variable *T_Dest = makeReg(IceType_i32);
2507 Constant *ThirtyTwo = Ctx->getConstantInt(IceType_i32, 32);
2508 _mov(T_Dest, ThirtyTwo);
2509 _cmov(T_Dest, T, InstX8632::Br_ne);
2510 if (Ty == IceType_i32) {
2511 _mov(Dest, T_Dest);
2512 return;
2513 }
2514 _add(T_Dest, ThirtyTwo);
2515 Variable *DestLo = llvm::cast<Variable>(loOperand(Dest));
2516 Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest));
2517 // Will be using "test" on this, so we need a registerized version.
2518 Variable *LowerVar = legalizeToVar(loOperand(Val));
2519 Variable *T_Dest2 = makeReg(IceType_i32);
2520 _bsf(T_Dest2, LowerVar);
2521 _test(LowerVar, LowerVar);
2522 _cmov(T_Dest2, T_Dest, InstX8632::Br_e);
2523 _mov(DestLo, T_Dest2);
2524 _mov(DestHi, Ctx->getConstantZero(IceType_i32));
2525 }
2526
2410 namespace { 2527 namespace {
2411 2528
2412 bool isAdd(const Inst *Inst) { 2529 bool isAdd(const Inst *Inst) {
2413 if (const InstArithmetic *Arith = 2530 if (const InstArithmetic *Arith =
2414 llvm::dyn_cast_or_null<const InstArithmetic>(Inst)) { 2531 llvm::dyn_cast_or_null<const InstArithmetic>(Inst)) {
2415 return (Arith->getOp() == InstArithmetic::Add); 2532 return (Arith->getOp() == InstArithmetic::Add);
2416 } 2533 }
2417 return false; 2534 return false;
2418 } 2535 }
2419 2536
(...skipping 649 matching lines...) Expand 10 before | Expand all | Expand 10 after
3069 for (SizeT i = 0; i < Size; ++i) { 3186 for (SizeT i = 0; i < Size; ++i) {
3070 Str << "\t.byte\t" << (((unsigned)Data[i]) & 0xff) << "\n"; 3187 Str << "\t.byte\t" << (((unsigned)Data[i]) & 0xff) << "\n";
3071 } 3188 }
3072 Str << "\t.size\t" << MangledName << ", " << Size << "\n"; 3189 Str << "\t.size\t" << MangledName << ", " << Size << "\n";
3073 } 3190 }
3074 Str << "\t" << (IsInternal ? ".local" : ".global") << "\t" << MangledName 3191 Str << "\t" << (IsInternal ? ".local" : ".global") << "\t" << MangledName
3075 << "\n"; 3192 << "\n";
3076 } 3193 }
3077 3194
3078 } // end of namespace Ice 3195 } // end of namespace Ice
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698