| Index: third_party/libaddressinput/chromium/cpp/include/libaddressinput/util/internal/scoped_ptr.h
 | 
| diff --git a/third_party/libaddressinput/chromium/cpp/include/libaddressinput/util/internal/scoped_ptr.h b/third_party/libaddressinput/chromium/cpp/include/libaddressinput/util/internal/scoped_ptr.h
 | 
| deleted file mode 100644
 | 
| index 62d26572dd5decea46642864d4057afa22a992dc..0000000000000000000000000000000000000000
 | 
| --- a/third_party/libaddressinput/chromium/cpp/include/libaddressinput/util/internal/scoped_ptr.h
 | 
| +++ /dev/null
 | 
| @@ -1,597 +0,0 @@
 | 
| -// Copyright 2013 The Chromium Authors. All rights reserved.
 | 
| -// Use of this source code is governed by a BSD-style license that can be
 | 
| -// found in the LICENSE file.
 | 
| -
 | 
| -// Scopers help you manage ownership of a pointer, helping you easily manage the
 | 
| -// a pointer within a scope, and automatically destroying the pointer at the
 | 
| -// end of a scope.  There are two main classes you will use, which correspond
 | 
| -// to the operators new/delete and new[]/delete[].
 | 
| -//
 | 
| -// Example usage (scoped_ptr<T>):
 | 
| -//   {
 | 
| -//     scoped_ptr<Foo> foo(new Foo("wee"));
 | 
| -//   }  // foo goes out of scope, releasing the pointer with it.
 | 
| -//
 | 
| -//   {
 | 
| -//     scoped_ptr<Foo> foo;          // No pointer managed.
 | 
| -//     foo.reset(new Foo("wee"));    // Now a pointer is managed.
 | 
| -//     foo.reset(new Foo("wee2"));   // Foo("wee") was destroyed.
 | 
| -//     foo.reset(new Foo("wee3"));   // Foo("wee2") was destroyed.
 | 
| -//     foo->Method();                // Foo::Method() called.
 | 
| -//     foo.get()->Method();          // Foo::Method() called.
 | 
| -//     SomeFunc(foo.release());      // SomeFunc takes ownership, foo no longer
 | 
| -//                                   // manages a pointer.
 | 
| -//     foo.reset(new Foo("wee4"));   // foo manages a pointer again.
 | 
| -//     foo.reset();                  // Foo("wee4") destroyed, foo no longer
 | 
| -//                                   // manages a pointer.
 | 
| -//   }  // foo wasn't managing a pointer, so nothing was destroyed.
 | 
| -//
 | 
| -// Example usage (scoped_ptr<T[]>):
 | 
| -//   {
 | 
| -//     scoped_ptr<Foo[]> foo(new Foo[100]);
 | 
| -//     foo.get()->Method();  // Foo::Method on the 0th element.
 | 
| -//     foo[10].Method();     // Foo::Method on the 10th element.
 | 
| -//   }
 | 
| -//
 | 
| -// These scopers also implement part of the functionality of C++11 unique_ptr
 | 
| -// in that they are "movable but not copyable."  You can use the scopers in
 | 
| -// the parameter and return types of functions to signify ownership transfer
 | 
| -// in to and out of a function.  When calling a function that has a scoper
 | 
| -// as the argument type, it must be called with the result of an analogous
 | 
| -// scoper's Pass() function or another function that generates a temporary;
 | 
| -// passing by copy will NOT work.  Here is an example using scoped_ptr:
 | 
| -//
 | 
| -//   void TakesOwnership(scoped_ptr<Foo> arg) {
 | 
| -//     // Do something with arg
 | 
| -//   }
 | 
| -//   scoped_ptr<Foo> CreateFoo() {
 | 
| -//     // No need for calling Pass() because we are constructing a temporary
 | 
| -//     // for the return value.
 | 
| -//     return scoped_ptr<Foo>(new Foo("new"));
 | 
| -//   }
 | 
| -//   scoped_ptr<Foo> PassThru(scoped_ptr<Foo> arg) {
 | 
| -//     return arg.Pass();
 | 
| -//   }
 | 
| -//
 | 
| -//   {
 | 
| -//     scoped_ptr<Foo> ptr(new Foo("yay"));  // ptr manages Foo("yay").
 | 
| -//     TakesOwnership(ptr.Pass());           // ptr no longer owns Foo("yay").
 | 
| -//     scoped_ptr<Foo> ptr2 = CreateFoo();   // ptr2 owns the return Foo.
 | 
| -//     scoped_ptr<Foo> ptr3 =                // ptr3 now owns what was in ptr2.
 | 
| -//         PassThru(ptr2.Pass());            // ptr2 is correspondingly NULL.
 | 
| -//   }
 | 
| -//
 | 
| -// Notice that if you do not call Pass() when returning from PassThru(), or
 | 
| -// when invoking TakesOwnership(), the code will not compile because scopers
 | 
| -// are not copyable; they only implement move semantics which require calling
 | 
| -// the Pass() function to signify a destructive transfer of state. CreateFoo()
 | 
| -// is different though because we are constructing a temporary on the return
 | 
| -// line and thus can avoid needing to call Pass().
 | 
| -//
 | 
| -// Pass() properly handles upcast in initialization, i.e. you can use a
 | 
| -// scoped_ptr<Child> to initialize a scoped_ptr<Parent>:
 | 
| -//
 | 
| -//   scoped_ptr<Foo> foo(new Foo());
 | 
| -//   scoped_ptr<FooParent> parent(foo.Pass());
 | 
| -//
 | 
| -// PassAs<>() should be used to upcast return value in return statement:
 | 
| -//
 | 
| -//   scoped_ptr<Foo> CreateFoo() {
 | 
| -//     scoped_ptr<FooChild> result(new FooChild());
 | 
| -//     return result.PassAs<Foo>();
 | 
| -//   }
 | 
| -//
 | 
| -// Note that PassAs<>() is implemented only for scoped_ptr<T>, but not for
 | 
| -// scoped_ptr<T[]>. This is because casting array pointers may not be safe.
 | 
| -
 | 
| -// The original source code is from:
 | 
| -// http://src.chromium.org/chrome/trunk/src/base/memory/scoped_ptr.h?p=227789
 | 
| -// Differences:
 | 
| -// - no scoped_ptr_malloc
 | 
| -// - no compiler_specific.h include
 | 
| -// - namespaces are slightly rearranged
 | 
| -
 | 
| -#ifndef I18N_ADDRESSINPUT_UTIL_INTERNAL_SCOPED_PTR_H_
 | 
| -#define I18N_ADDRESSINPUT_UTIL_INTERNAL_SCOPED_PTR_H_
 | 
| -
 | 
| -// This is an implementation designed to match the anticipated future TR2
 | 
| -// implementation of the scoped_ptr class and scoped_ptr_malloc (deprecated).
 | 
| -
 | 
| -#include <assert.h>
 | 
| -#include <stddef.h>
 | 
| -#include <stdlib.h>
 | 
| -
 | 
| -#include <algorithm>  // For std::swap().
 | 
| -
 | 
| -#include "basictypes.h"
 | 
| -#include "move.h"
 | 
| -#include "template_util.h"
 | 
| -
 | 
| -// NOTE: In Chromium, this is defined in base/compiler_specific.h. Here we
 | 
| -// just compile it out.
 | 
| -#define WARN_UNUSED_RESULT
 | 
| -
 | 
| -namespace i18n {
 | 
| -namespace addressinput {
 | 
| -
 | 
| -namespace subtle {
 | 
| -class RefCountedBase;
 | 
| -class RefCountedThreadSafeBase;
 | 
| -}  // namespace subtle
 | 
| -
 | 
| -// Function object which deletes its parameter, which must be a pointer.
 | 
| -// If C is an array type, invokes 'delete[]' on the parameter; otherwise,
 | 
| -// invokes 'delete'. The default deleter for scoped_ptr<T>.
 | 
| -template <class T>
 | 
| -struct DefaultDeleter {
 | 
| -  DefaultDeleter() {}
 | 
| -  template <typename U> DefaultDeleter(const DefaultDeleter<U>& other) {
 | 
| -    // IMPLEMENTATION NOTE: C++11 20.7.1.1.2p2 only provides this constructor
 | 
| -    // if U* is implicitly convertible to T* and U is not an array type.
 | 
| -    //
 | 
| -    // Correct implementation should use SFINAE to disable this
 | 
| -    // constructor. However, since there are no other 1-argument constructors,
 | 
| -    // using a COMPILE_ASSERT() based on is_convertible<> and requiring
 | 
| -    // complete types is simpler and will cause compile failures for equivalent
 | 
| -    // misuses.
 | 
| -    //
 | 
| -    // Note, the is_convertible<U*, T*> check also ensures that U is not an
 | 
| -    // array. T is guaranteed to be a non-array, so any U* where U is an array
 | 
| -    // cannot convert to T*.
 | 
| -    enum { T_must_be_complete = sizeof(T) };
 | 
| -    enum { U_must_be_complete = sizeof(U) };
 | 
| -    COMPILE_ASSERT((is_convertible<U*, T*>::value),
 | 
| -                   U_ptr_must_implicitly_convert_to_T_ptr);
 | 
| -  }
 | 
| -  inline void operator()(T* ptr) const {
 | 
| -    enum { type_must_be_complete = sizeof(T) };
 | 
| -    delete ptr;
 | 
| -  }
 | 
| -};
 | 
| -
 | 
| -// Specialization of DefaultDeleter for array types.
 | 
| -template <class T>
 | 
| -struct DefaultDeleter<T[]> {
 | 
| -  inline void operator()(T* ptr) const {
 | 
| -    enum { type_must_be_complete = sizeof(T) };
 | 
| -    delete[] ptr;
 | 
| -  }
 | 
| -
 | 
| - private:
 | 
| -  // Disable this operator for any U != T because it is undefined to execute
 | 
| -  // an array delete when the static type of the array mismatches the dynamic
 | 
| -  // type.
 | 
| -  //
 | 
| -  // References:
 | 
| -  //   C++98 [expr.delete]p3
 | 
| -  //   http://cplusplus.github.com/LWG/lwg-defects.html#938
 | 
| -  template <typename U> void operator()(U* array) const;
 | 
| -};
 | 
| -
 | 
| -template <class T, int n>
 | 
| -struct DefaultDeleter<T[n]> {
 | 
| -  // Never allow someone to declare something like scoped_ptr<int[10]>.
 | 
| -  COMPILE_ASSERT(sizeof(T) == -1, do_not_use_array_with_size_as_type);
 | 
| -};
 | 
| -
 | 
| -// Function object which invokes 'free' on its parameter, which must be
 | 
| -// a pointer. Can be used to store malloc-allocated pointers in scoped_ptr:
 | 
| -//
 | 
| -// scoped_ptr<int, i18n::addressinput::FreeDeleter> foo_ptr(
 | 
| -//     static_cast<int*>(malloc(sizeof(int))));
 | 
| -struct FreeDeleter {
 | 
| -  inline void operator()(void* ptr) const {
 | 
| -    free(ptr);
 | 
| -  }
 | 
| -};
 | 
| -
 | 
| -namespace internal {
 | 
| -
 | 
| -template <typename T> struct IsNotRefCounted {
 | 
| -  enum {
 | 
| -    value = !is_convertible<T*, subtle::RefCountedBase*>::value &&
 | 
| -        !is_convertible<T*, subtle::RefCountedThreadSafeBase*>::
 | 
| -            value
 | 
| -  };
 | 
| -};
 | 
| -
 | 
| -// Minimal implementation of the core logic of scoped_ptr, suitable for
 | 
| -// reuse in both scoped_ptr and its specializations.
 | 
| -template <class T, class D>
 | 
| -class scoped_ptr_impl {
 | 
| - public:
 | 
| -  explicit scoped_ptr_impl(T* p) : data_(p) { }
 | 
| -
 | 
| -  // Initializer for deleters that have data parameters.
 | 
| -  scoped_ptr_impl(T* p, const D& d) : data_(p, d) {}
 | 
| -
 | 
| -  // Templated constructor that destructively takes the value from another
 | 
| -  // scoped_ptr_impl.
 | 
| -  template <typename U, typename V>
 | 
| -  scoped_ptr_impl(scoped_ptr_impl<U, V>* other)
 | 
| -      : data_(other->release(), other->get_deleter()) {
 | 
| -    // We do not support move-only deleters.  We could modify our move
 | 
| -    // emulation to have subtle::move() and subtle::forward()
 | 
| -    // functions that are imperfect emulations of their C++11 equivalents,
 | 
| -    // but until there's a requirement, just assume deleters are copyable.
 | 
| -  }
 | 
| -
 | 
| -  template <typename U, typename V>
 | 
| -  void TakeState(scoped_ptr_impl<U, V>* other) {
 | 
| -    // See comment in templated constructor above regarding lack of support
 | 
| -    // for move-only deleters.
 | 
| -    reset(other->release());
 | 
| -    get_deleter() = other->get_deleter();
 | 
| -  }
 | 
| -
 | 
| -  ~scoped_ptr_impl() {
 | 
| -    if (data_.ptr != NULL) {
 | 
| -      // Not using get_deleter() saves one function call in non-optimized
 | 
| -      // builds.
 | 
| -      static_cast<D&>(data_)(data_.ptr);
 | 
| -    }
 | 
| -  }
 | 
| -
 | 
| -  void reset(T* p) {
 | 
| -    // This is a self-reset, which is no longer allowed: http://crbug.com/162971
 | 
| -    if (p != NULL && p == data_.ptr)
 | 
| -      abort();
 | 
| -
 | 
| -    // Note that running data_.ptr = p can lead to undefined behavior if
 | 
| -    // get_deleter()(get()) deletes this. In order to pevent this, reset()
 | 
| -    // should update the stored pointer before deleting its old value.
 | 
| -    //
 | 
| -    // However, changing reset() to use that behavior may cause current code to
 | 
| -    // break in unexpected ways. If the destruction of the owned object
 | 
| -    // dereferences the scoped_ptr when it is destroyed by a call to reset(),
 | 
| -    // then it will incorrectly dispatch calls to |p| rather than the original
 | 
| -    // value of |data_.ptr|.
 | 
| -    //
 | 
| -    // During the transition period, set the stored pointer to NULL while
 | 
| -    // deleting the object. Eventually, this safety check will be removed to
 | 
| -    // prevent the scenario initially described from occuring and
 | 
| -    // http://crbug.com/176091 can be closed.
 | 
| -    T* old = data_.ptr;
 | 
| -    data_.ptr = NULL;
 | 
| -    if (old != NULL)
 | 
| -      static_cast<D&>(data_)(old);
 | 
| -    data_.ptr = p;
 | 
| -  }
 | 
| -
 | 
| -  T* get() const { return data_.ptr; }
 | 
| -
 | 
| -  D& get_deleter() { return data_; }
 | 
| -  const D& get_deleter() const { return data_; }
 | 
| -
 | 
| -  void swap(scoped_ptr_impl& p2) {
 | 
| -    // Standard swap idiom: 'using std::swap' ensures that std::swap is
 | 
| -    // present in the overload set, but we call swap unqualified so that
 | 
| -    // any more-specific overloads can be used, if available.
 | 
| -    using std::swap;
 | 
| -    swap(static_cast<D&>(data_), static_cast<D&>(p2.data_));
 | 
| -    swap(data_.ptr, p2.data_.ptr);
 | 
| -  }
 | 
| -
 | 
| -  T* release() {
 | 
| -    T* old_ptr = data_.ptr;
 | 
| -    data_.ptr = NULL;
 | 
| -    return old_ptr;
 | 
| -  }
 | 
| -
 | 
| - private:
 | 
| -  // Needed to allow type-converting constructor.
 | 
| -  template <typename U, typename V> friend class scoped_ptr_impl;
 | 
| -
 | 
| -  // Use the empty base class optimization to allow us to have a D
 | 
| -  // member, while avoiding any space overhead for it when D is an
 | 
| -  // empty class.  See e.g. http://www.cantrip.org/emptyopt.html for a good
 | 
| -  // discussion of this technique.
 | 
| -  struct Data : public D {
 | 
| -    explicit Data(T* ptr_in) : ptr(ptr_in) {}
 | 
| -    Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {}
 | 
| -    T* ptr;
 | 
| -  };
 | 
| -
 | 
| -  Data data_;
 | 
| -
 | 
| -  DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl);
 | 
| -};
 | 
| -
 | 
| -}  // namespace internal
 | 
| -
 | 
| -}  // namespace addressinput
 | 
| -}  // namespace i18n
 | 
| -
 | 
| -// A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
 | 
| -// automatically deletes the pointer it holds (if any).
 | 
| -// That is, scoped_ptr<T> owns the T object that it points to.
 | 
| -// Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object.
 | 
| -// Also like T*, scoped_ptr<T> is thread-compatible, and once you
 | 
| -// dereference it, you get the thread safety guarantees of T.
 | 
| -//
 | 
| -// The size of scoped_ptr is small. On most compilers, when using the
 | 
| -// DefaultDeleter, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters will
 | 
| -// increase the size proportional to whatever state they need to have. See
 | 
| -// comments inside scoped_ptr_impl<> for details.
 | 
| -//
 | 
| -// Current implementation targets having a strict subset of  C++11's
 | 
| -// unique_ptr<> features. Known deficiencies include not supporting move-only
 | 
| -// deleteres, function pointers as deleters, and deleters with reference
 | 
| -// types.
 | 
| -template <class T, class D = i18n::addressinput::DefaultDeleter<T> >
 | 
| -class scoped_ptr {
 | 
| -  MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
 | 
| -
 | 
| -  COMPILE_ASSERT(i18n::addressinput::internal::IsNotRefCounted<T>::value,
 | 
| -                 T_is_refcounted_type_and_needs_scoped_refptr);
 | 
| -
 | 
| - public:
 | 
| -  // The element and deleter types.
 | 
| -  typedef T element_type;
 | 
| -  typedef D deleter_type;
 | 
| -
 | 
| -  // Constructor.  Defaults to initializing with NULL.
 | 
| -  scoped_ptr() : impl_(NULL) { }
 | 
| -
 | 
| -  // Constructor.  Takes ownership of p.
 | 
| -  explicit scoped_ptr(element_type* p) : impl_(p) { }
 | 
| -
 | 
| -  // Constructor.  Allows initialization of a stateful deleter.
 | 
| -  scoped_ptr(element_type* p, const D& d) : impl_(p, d) { }
 | 
| -
 | 
| -  // Constructor.  Allows construction from a scoped_ptr rvalue for a
 | 
| -  // convertible type and deleter.
 | 
| -  //
 | 
| -  // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this constructor distinct
 | 
| -  // from the normal move constructor. By C++11 20.7.1.2.1.21, this constructor
 | 
| -  // has different post-conditions if D is a reference type. Since this
 | 
| -  // implementation does not support deleters with reference type,
 | 
| -  // we do not need a separate move constructor allowing us to avoid one
 | 
| -  // use of SFINAE. You only need to care about this if you modify the
 | 
| -  // implementation of scoped_ptr.
 | 
| -  template <typename U, typename V>
 | 
| -  scoped_ptr(scoped_ptr<U, V> other) : impl_(&other.impl_) {
 | 
| -    COMPILE_ASSERT(!is_array<U>::value, U_cannot_be_an_array);
 | 
| -  }
 | 
| -
 | 
| -  // Constructor.  Move constructor for C++03 move emulation of this type.
 | 
| -  scoped_ptr(RValue rvalue) : impl_(&rvalue.object->impl_) { }
 | 
| -
 | 
| -  // operator=.  Allows assignment from a scoped_ptr rvalue for a convertible
 | 
| -  // type and deleter.
 | 
| -  //
 | 
| -  // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from
 | 
| -  // the normal move assignment operator. By C++11 20.7.1.2.3.4, this templated
 | 
| -  // form has different requirements on for move-only Deleters. Since this
 | 
| -  // implementation does not support move-only Deleters, we do not need a
 | 
| -  // separate move assignment operator allowing us to avoid one use of SFINAE.
 | 
| -  // You only need to care about this if you modify the implementation of
 | 
| -  // scoped_ptr.
 | 
| -  template <typename U, typename V>
 | 
| -  scoped_ptr& operator=(scoped_ptr<U, V> rhs) {
 | 
| -    COMPILE_ASSERT(!is_array<U>::value, U_cannot_be_an_array);
 | 
| -    impl_.TakeState(&rhs.impl_);
 | 
| -    return *this;
 | 
| -  }
 | 
| -
 | 
| -  // Reset.  Deletes the currently owned object, if any.
 | 
| -  // Then takes ownership of a new object, if given.
 | 
| -  void reset(element_type* p = NULL) { impl_.reset(p); }
 | 
| -
 | 
| -  // Accessors to get the owned object.
 | 
| -  // operator* and operator-> will assert() if there is no current object.
 | 
| -  element_type& operator*() const {
 | 
| -    assert(impl_.get() != NULL);
 | 
| -    return *impl_.get();
 | 
| -  }
 | 
| -  element_type* operator->() const  {
 | 
| -    assert(impl_.get() != NULL);
 | 
| -    return impl_.get();
 | 
| -  }
 | 
| -  element_type* get() const { return impl_.get(); }
 | 
| -
 | 
| -  // Access to the deleter.
 | 
| -  deleter_type& get_deleter() { return impl_.get_deleter(); }
 | 
| -  const deleter_type& get_deleter() const { return impl_.get_deleter(); }
 | 
| -
 | 
| -  // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
 | 
| -  // implicitly convertible to a real bool (which is dangerous).
 | 
| -  //
 | 
| -  // Note that this trick is only safe when the == and != operators
 | 
| -  // are declared explicitly, as otherwise "scoped_ptr1 ==
 | 
| -  // scoped_ptr2" will compile but do the wrong thing (i.e., convert
 | 
| -  // to Testable and then do the comparison).
 | 
| - private:
 | 
| -  typedef
 | 
| -      i18n::addressinput::internal::scoped_ptr_impl <element_type, deleter_type>
 | 
| -      scoped_ptr::*Testable;
 | 
| -
 | 
| - public:
 | 
| -  operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; }
 | 
| -
 | 
| -  // Comparison operators.
 | 
| -  // These return whether two scoped_ptr refer to the same object, not just to
 | 
| -  // two different but equal objects.
 | 
| -  bool operator==(const element_type* p) const { return impl_.get() == p; }
 | 
| -  bool operator!=(const element_type* p) const { return impl_.get() != p; }
 | 
| -
 | 
| -  // Swap two scoped pointers.
 | 
| -  void swap(scoped_ptr& p2) {
 | 
| -    impl_.swap(p2.impl_);
 | 
| -  }
 | 
| -
 | 
| -  // Release a pointer.
 | 
| -  // The return value is the current pointer held by this object.
 | 
| -  // If this object holds a NULL pointer, the return value is NULL.
 | 
| -  // After this operation, this object will hold a NULL pointer,
 | 
| -  // and will not own the object any more.
 | 
| -  element_type* release() WARN_UNUSED_RESULT {
 | 
| -    return impl_.release();
 | 
| -  }
 | 
| -
 | 
| -  // C++98 doesn't support functions templates with default parameters which
 | 
| -  // makes it hard to write a PassAs() that understands converting the deleter
 | 
| -  // while preserving simple calling semantics.
 | 
| -  //
 | 
| -  // Until there is a use case for PassAs() with custom deleters, just ignore
 | 
| -  // the custom deleter.
 | 
| -  template <typename PassAsType>
 | 
| -  scoped_ptr<PassAsType> PassAs() {
 | 
| -    return scoped_ptr<PassAsType>(Pass());
 | 
| -  }
 | 
| -
 | 
| - private:
 | 
| -  // Needed to reach into |impl_| in the constructor.
 | 
| -  template <typename U, typename V> friend class scoped_ptr;
 | 
| -  i18n::addressinput::internal::scoped_ptr_impl<element_type, deleter_type>
 | 
| -      impl_;
 | 
| -
 | 
| -  // Forbidden for API compatibility with std::unique_ptr.
 | 
| -  explicit scoped_ptr(int disallow_construction_from_null);
 | 
| -
 | 
| -  // Forbid comparison of scoped_ptr types.  If U != T, it totally
 | 
| -  // doesn't make sense, and if U == T, it still doesn't make sense
 | 
| -  // because you should never have the same object owned by two different
 | 
| -  // scoped_ptrs.
 | 
| -  template <class U> bool operator==(scoped_ptr<U> const& p2) const;
 | 
| -  template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
 | 
| -};
 | 
| -
 | 
| -template <class T, class D>
 | 
| -class scoped_ptr<T[], D> {
 | 
| -  MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
 | 
| -
 | 
| - public:
 | 
| -  // The element and deleter types.
 | 
| -  typedef T element_type;
 | 
| -  typedef D deleter_type;
 | 
| -
 | 
| -  // Constructor.  Defaults to initializing with NULL.
 | 
| -  scoped_ptr() : impl_(NULL) { }
 | 
| -
 | 
| -  // Constructor. Stores the given array. Note that the argument's type
 | 
| -  // must exactly match T*. In particular:
 | 
| -  // - it cannot be a pointer to a type derived from T, because it is
 | 
| -  //   inherently unsafe in the general case to access an array through a
 | 
| -  //   pointer whose dynamic type does not match its static type (eg., if
 | 
| -  //   T and the derived types had different sizes access would be
 | 
| -  //   incorrectly calculated). Deletion is also always undefined
 | 
| -  //   (C++98 [expr.delete]p3). If you're doing this, fix your code.
 | 
| -  // - it cannot be NULL, because NULL is an integral expression, not a
 | 
| -  //   pointer to T. Use the no-argument version instead of explicitly
 | 
| -  //   passing NULL.
 | 
| -  // - it cannot be const-qualified differently from T per unique_ptr spec
 | 
| -  //   (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting
 | 
| -  //   to work around this may use implicit_cast<const T*>().
 | 
| -  //   However, because of the first bullet in this comment, users MUST
 | 
| -  //   NOT use implicit_cast<Base*>() to upcast the static type of the array.
 | 
| -  explicit scoped_ptr(element_type* array) : impl_(array) { }
 | 
| -
 | 
| -  // Constructor.  Move constructor for C++03 move emulation of this type.
 | 
| -  scoped_ptr(RValue rvalue) : impl_(&rvalue.object->impl_) { }
 | 
| -
 | 
| -  // operator=.  Move operator= for C++03 move emulation of this type.
 | 
| -  scoped_ptr& operator=(RValue rhs) {
 | 
| -    impl_.TakeState(&rhs.object->impl_);
 | 
| -    return *this;
 | 
| -  }
 | 
| -
 | 
| -  // Reset.  Deletes the currently owned array, if any.
 | 
| -  // Then takes ownership of a new object, if given.
 | 
| -  void reset(element_type* array = NULL) { impl_.reset(array); }
 | 
| -
 | 
| -  // Accessors to get the owned array.
 | 
| -  element_type& operator[](size_t i) const {
 | 
| -    assert(impl_.get() != NULL);
 | 
| -    return impl_.get()[i];
 | 
| -  }
 | 
| -  element_type* get() const { return impl_.get(); }
 | 
| -
 | 
| -  // Access to the deleter.
 | 
| -  deleter_type& get_deleter() { return impl_.get_deleter(); }
 | 
| -  const deleter_type& get_deleter() const { return impl_.get_deleter(); }
 | 
| -
 | 
| -  // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
 | 
| -  // implicitly convertible to a real bool (which is dangerous).
 | 
| - private:
 | 
| -  typedef
 | 
| -      i18n::addressinput::internal::scoped_ptr_impl<element_type, deleter_type>
 | 
| -      scoped_ptr::*Testable;
 | 
| -
 | 
| - public:
 | 
| -  operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; }
 | 
| -
 | 
| -  // Comparison operators.
 | 
| -  // These return whether two scoped_ptr refer to the same object, not just to
 | 
| -  // two different but equal objects.
 | 
| -  bool operator==(element_type* array) const { return impl_.get() == array; }
 | 
| -  bool operator!=(element_type* array) const { return impl_.get() != array; }
 | 
| -
 | 
| -  // Swap two scoped pointers.
 | 
| -  void swap(scoped_ptr& p2) {
 | 
| -    impl_.swap(p2.impl_);
 | 
| -  }
 | 
| -
 | 
| -  // Release a pointer.
 | 
| -  // The return value is the current pointer held by this object.
 | 
| -  // If this object holds a NULL pointer, the return value is NULL.
 | 
| -  // After this operation, this object will hold a NULL pointer,
 | 
| -  // and will not own the object any more.
 | 
| -  element_type* release() WARN_UNUSED_RESULT {
 | 
| -    return impl_.release();
 | 
| -  }
 | 
| -
 | 
| - private:
 | 
| -  // Force element_type to be a complete type.
 | 
| -  enum { type_must_be_complete = sizeof(element_type) };
 | 
| -
 | 
| -  // Actually hold the data.
 | 
| -  i18n::addressinput::internal::scoped_ptr_impl<element_type, deleter_type>
 | 
| -      impl_;
 | 
| -
 | 
| -  // Disable initialization from any type other than element_type*, by
 | 
| -  // providing a constructor that matches such an initialization, but is
 | 
| -  // private and has no definition. This is disabled because it is not safe to
 | 
| -  // call delete[] on an array whose static type does not match its dynamic
 | 
| -  // type.
 | 
| -  template <typename U> explicit scoped_ptr(U* array);
 | 
| -  explicit scoped_ptr(int disallow_construction_from_null);
 | 
| -
 | 
| -  // Disable reset() from any type other than element_type*, for the same
 | 
| -  // reasons as the constructor above.
 | 
| -  template <typename U> void reset(U* array);
 | 
| -  void reset(int disallow_reset_from_null);
 | 
| -
 | 
| -  // Forbid comparison of scoped_ptr types.  If U != T, it totally
 | 
| -  // doesn't make sense, and if U == T, it still doesn't make sense
 | 
| -  // because you should never have the same object owned by two different
 | 
| -  // scoped_ptrs.
 | 
| -  template <class U> bool operator==(scoped_ptr<U> const& p2) const;
 | 
| -  template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
 | 
| -};
 | 
| -
 | 
| -// Free functions
 | 
| -template <class T, class D>
 | 
| -void swap(scoped_ptr<T, D>& p1, scoped_ptr<T, D>& p2) {
 | 
| -  p1.swap(p2);
 | 
| -}
 | 
| -
 | 
| -template <class T, class D>
 | 
| -bool operator==(T* p1, const scoped_ptr<T, D>& p2) {
 | 
| -  return p1 == p2.get();
 | 
| -}
 | 
| -
 | 
| -template <class T, class D>
 | 
| -bool operator!=(T* p1, const scoped_ptr<T, D>& p2) {
 | 
| -  return p1 != p2.get();
 | 
| -}
 | 
| -
 | 
| -// A function to convert T* into scoped_ptr<T>
 | 
| -// Doing e.g. make_scoped_ptr(new FooBarBaz<type>(arg)) is a shorter notation
 | 
| -// for scoped_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg))
 | 
| -template <typename T>
 | 
| -scoped_ptr<T> make_scoped_ptr(T* ptr) {
 | 
| -  return scoped_ptr<T>(ptr);
 | 
| -}
 | 
| -
 | 
| -#endif  // I18N_ADDRESSINPUT_UTIL_INTERNAL_SCOPED_PTR_H_
 | 
| 
 |