| Index: cc/quads/draw_polygon.cc
|
| diff --git a/cc/quads/draw_polygon.cc b/cc/quads/draw_polygon.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..35582bb46032b532ed8b24bc91c04943551f95c3
|
| --- /dev/null
|
| +++ b/cc/quads/draw_polygon.cc
|
| @@ -0,0 +1,301 @@
|
| +// Copyright 2014 The Chromium Authors. All rights reserved.
|
| +// Use of this source code is governed by a BSD-style license that can be
|
| +// found in the LICENSE file.
|
| +
|
| +#include "cc/quads/draw_polygon.h"
|
| +
|
| +#include <vector>
|
| +
|
| +#include "cc/output/bsp_compare_result.h"
|
| +
|
| +namespace {
|
| +// This allows for some imperfection in the normal comparison when checking if
|
| +// two pieces of geometry are coplanar.
|
| +static const float coplanar_dot_epsilon = 0.99f;
|
| +// This threshold controls how "thick" a plane is. If a point's distance is
|
| +// <= compare_threshold, then it is considered on the plane. Only when this
|
| +// boundary is crossed do we consider doing splitting.
|
| +static const float compare_threshold = 1.0f;
|
| +static const float split_threshold = 0.5f;
|
| +} // namespace
|
| +
|
| +namespace cc {
|
| +
|
| +DrawPolygon::DrawPolygon() {
|
| +}
|
| +
|
| +DrawPolygon::DrawPolygon(DrawQuad* original,
|
| + const std::vector<gfx::Point3F>& in_points,
|
| + int draw_order_index)
|
| + : order_index_(draw_order_index), original_ref_(original) {
|
| + for (unsigned int i = 0; i < in_points.size(); i++) {
|
| + points_.push_back(in_points[i]);
|
| + }
|
| + normal_ = gfx::Vector3dF(0.0f, 0.0f, 1.0f);
|
| +}
|
| +
|
| +DrawPolygon::~DrawPolygon() {
|
| +}
|
| +
|
| +void DrawPolygon::SetNormal(const gfx::Vector3dF& normal) {
|
| + normal_ = normal;
|
| +}
|
| +
|
| +scoped_ptr<DrawPolygon> DrawPolygon::CreateCopy() {
|
| + DrawPolygon* new_polygon = new DrawPolygon();
|
| + new_polygon->order_index_ = order_index_;
|
| + new_polygon->original_ref_ = original_ref_;
|
| + new_polygon->points_.reserve(points_.size());
|
| + new_polygon->points_ = points_;
|
| + new_polygon->normal_.set_x(normal_.x());
|
| + new_polygon->normal_.set_y(normal_.y());
|
| + new_polygon->normal_.set_z(normal_.z());
|
| + return scoped_ptr<DrawPolygon>(new_polygon);
|
| +}
|
| +
|
| +float DrawPolygon::SignedPointDistance(const gfx::Point3F& point) const {
|
| + return gfx::DotProduct(point - points_[0], normal_);
|
| +}
|
| +
|
| +// Checks whether or not shape a lies on the front or back side of b, or
|
| +// whether they should be considered coplanar. If on the back side, we
|
| +// say ABeforeB because it should be drawn in that order.
|
| +// Assumes that layers are split and there are no intersecting planes.
|
| +BspCompareResult DrawPolygon::SideCompare(const DrawPolygon& a,
|
| + const DrawPolygon& b) {
|
| + // Right away let's check if they're coplanar
|
| + double dot = gfx::DotProduct(a.normal_, b.normal_);
|
| + float sign;
|
| + bool normal_match = false;
|
| + // This check assumes that the normals are normalized.
|
| + if (std::abs(dot) >= coplanar_dot_epsilon) {
|
| + normal_match = true;
|
| + // The normals are matching enough that we only have to test one point.
|
| + sign = gfx::DotProduct(a.points_[0] - b.points_[0], b.normal_);
|
| + // Is it on either side of the splitter?
|
| + if (sign < -compare_threshold) {
|
| + return BSP_BACK;
|
| + }
|
| +
|
| + if (sign > compare_threshold) {
|
| + return BSP_FRONT;
|
| + }
|
| +
|
| + // No it wasn't, so the sign of the dot product of the normals
|
| + // along with document order determines which side it goes on.
|
| + if (dot >= 0.0f) {
|
| + if (a.order_index_ < b.order_index_) {
|
| + return BSP_COPLANAR_FRONT;
|
| + }
|
| + return BSP_COPLANAR_BACK;
|
| + }
|
| +
|
| + if (a.order_index_ < b.order_index_) {
|
| + return BSP_COPLANAR_BACK;
|
| + }
|
| + return BSP_COPLANAR_FRONT;
|
| + }
|
| +
|
| + unsigned int pos_count = 0;
|
| + unsigned int neg_count = 0;
|
| + for (unsigned int i = 0; i < a.points_.size(); i++) {
|
| + if (!normal_match || (normal_match && i > 0)) {
|
| + sign = gfx::DotProduct(a.points_[i] - b.points_[0], b.normal_);
|
| + }
|
| +
|
| + if (sign < -compare_threshold) {
|
| + ++neg_count;
|
| + } else if (sign > compare_threshold) {
|
| + ++pos_count;
|
| + }
|
| +
|
| + if (pos_count && neg_count) {
|
| + return BSP_SPLIT;
|
| + }
|
| + }
|
| +
|
| + if (pos_count) {
|
| + return BSP_FRONT;
|
| + }
|
| + return BSP_BACK;
|
| +}
|
| +
|
| +static bool LineIntersectPlane(const gfx::Point3F& line_start,
|
| + const gfx::Point3F& line_end,
|
| + const gfx::Point3F& plane_origin,
|
| + const gfx::Vector3dF& plane_normal,
|
| + gfx::Point3F* intersection,
|
| + float distance_threshold) {
|
| + gfx::Vector3dF start_to_origin_vector = plane_origin - line_start;
|
| + gfx::Vector3dF end_to_origin_vector = plane_origin - line_end;
|
| +
|
| + double start_distance = gfx::DotProduct(start_to_origin_vector, plane_normal);
|
| + double end_distance = gfx::DotProduct(end_to_origin_vector, plane_normal);
|
| +
|
| + // The case where one vertex lies on the thick-plane and the other
|
| + // is outside of it.
|
| + if (std::abs(start_distance) < distance_threshold &&
|
| + std::abs(end_distance) > distance_threshold) {
|
| + intersection->SetPoint(line_start.x(), line_start.y(), line_start.z());
|
| + return true;
|
| + }
|
| +
|
| + // This is the case where we clearly cross the thick-plane.
|
| + if ((start_distance > distance_threshold &&
|
| + end_distance < -distance_threshold) ||
|
| + (start_distance < -distance_threshold &&
|
| + end_distance > distance_threshold)) {
|
| + // By getting the dot product of the line segment normalized vs. the plane's
|
| + // normal, we get a value that approaches zero as the angle of the
|
| + // intersecting line becomes parallel with the plane.
|
| + // When the line segment vector is equal to the plane's normal, we have the
|
| + // most direct path to the plane, and the dot product is 1. In this case,
|
| + // the calculation below is just |start_distance| / 1, which is the trivial
|
| + // case because the line takes the most direct path to intersect with the
|
| + // plane. |start_distance| is already the shortest straight line path
|
| + // distance to the plane.
|
| + // However, as the vector that represents the direction of the line segment
|
| + // indicates that it is becoming more parallel with the surface of the plane
|
| + // and the dot product approaches 0, the path to intersection becomes much
|
| + // longer, and the division of |start_distance| by < 1 gives us the true
|
| + // distance of the start point to the plane following the vector of the line
|
| + // segment.
|
| + gfx::Vector3dF v = line_end - line_start;
|
| + v.Scale(1.f / v.Length());
|
| + double projected_length = gfx::DotProduct(v, plane_normal);
|
| +
|
| + // The only way this will ever be true is the case where the line runs
|
| + // parallel to the surface of the plane and would never contact it, and
|
| + // this would result in a divide by zero below.
|
| + if (!projected_length) {
|
| + return false;
|
| + }
|
| +
|
| + double scale = start_distance / projected_length;
|
| + intersection->SetPoint(line_start.x() + (v.x() * scale),
|
| + line_start.y() + (v.y() * scale),
|
| + line_start.z() + (v.z() * scale));
|
| +
|
| + return true;
|
| + }
|
| + return false;
|
| +}
|
| +
|
| +bool DrawPolygon::Split(const DrawPolygon& splitter,
|
| + scoped_ptr<DrawPolygon>* front,
|
| + scoped_ptr<DrawPolygon>* back) {
|
| + gfx::Point3F intersections[2];
|
| + std::vector<gfx::Point3F> out_points[2];
|
| + // vertex_before stores the index of the vertex before its matching
|
| + // intersection.
|
| + // i.e. vertex_before[0] stores the vertex we saw before we crossed the plane
|
| + // which resulted in the line/plane intersection giving us intersections[0].
|
| + unsigned int vertex_before[2];
|
| + unsigned int points_size = points_.size();
|
| + unsigned int current_intersection = 0;
|
| +
|
| + unsigned int current_vertex = 0;
|
| + while (current_intersection < 2) {
|
| + if (LineIntersectPlane(points_[(current_vertex % points_size)],
|
| + points_[(current_vertex + 1) % points_size],
|
| + splitter.points_[0],
|
| + splitter.normal_,
|
| + &intersections[current_intersection],
|
| + split_threshold)) {
|
| + vertex_before[current_intersection] = current_vertex % points_size;
|
| + current_intersection++;
|
| + // We found both intersection points so we're done already.
|
| + if (current_intersection == 2) {
|
| + break;
|
| + }
|
| + }
|
| + if (current_vertex++ > points_size) {
|
| + break;
|
| + }
|
| + }
|
| + if (current_intersection < 2) {
|
| + return false;
|
| + }
|
| +
|
| + // Since we found both the intersection points, we can begin building the
|
| + // vertex set for both our new polygons.
|
| + unsigned int start1 = (vertex_before[0] + 1) % points_size;
|
| + unsigned int start2 = (vertex_before[1] + 1) % points_size;
|
| + unsigned int points_remaining = points_size;
|
| +
|
| + // First polygon.
|
| + out_points[0].push_back(intersections[0]);
|
| + for (unsigned int i = start1; i <= vertex_before[1]; i++) {
|
| + out_points[0].push_back(points_[i]);
|
| + --points_remaining;
|
| + }
|
| + out_points[0].push_back(intersections[1]);
|
| +
|
| + // Second polygon.
|
| + out_points[1].push_back(intersections[1]);
|
| + unsigned int index = start2;
|
| + for (unsigned int i = 0; i < points_remaining; i++) {
|
| + out_points[1].push_back(points_[index % points_size]);
|
| + ++index;
|
| + }
|
| + out_points[1].push_back(intersections[0]);
|
| +
|
| + // Give both polygons the original splitting polygon's ID, so that they'll
|
| + // still be sorted properly in co-planar instances.
|
| + // Send false as last parameter for is_original because they're split.
|
| + scoped_ptr<DrawPolygon> poly1(
|
| + new DrawPolygon(original_ref_, out_points[0], order_index_));
|
| + scoped_ptr<DrawPolygon> poly2(
|
| + new DrawPolygon(original_ref_, out_points[1], order_index_));
|
| +
|
| + poly1->SetNormal(normal_);
|
| + poly2->SetNormal(normal_);
|
| +
|
| + if (SideCompare(*poly1, splitter) == BSP_FRONT) {
|
| + *front = poly1.Pass();
|
| + *back = poly2.Pass();
|
| + } else {
|
| + *front = poly2.Pass();
|
| + *back = poly1.Pass();
|
| + }
|
| + return true;
|
| +}
|
| +
|
| +// This algorithm takes the first vertex in the polygon and uses that as a
|
| +// pivot point to fan out and create quads from the rest of the vertices.
|
| +// |offset| starts off as the second vertex, and then |op1| and |op2| indicate
|
| +// offset+1 and offset+2 respectively.
|
| +// After the first quad is created, the first vertex in the next quad is the
|
| +// same as all the rest, the pivot point. The second vertex in the next quad is
|
| +// the old |op2|, the last vertex added to the previous quad. This continues
|
| +// until all points are exhausted.
|
| +// The special case here is where there are only 3 points remaining, in which
|
| +// case we use the same values for vertex 3 and 4 to make a degenerate quad
|
| +// that represents a triangle.
|
| +void DrawPolygon::ToQuads2D(std::vector<gfx::QuadF>* quads) const {
|
| + if (points_.size() <= 2)
|
| + return;
|
| +
|
| + gfx::PointF first(points_[0].x(), points_[0].y());
|
| + unsigned int offset = 1;
|
| + while (offset < points_.size() - 1) {
|
| + unsigned int op1 = offset + 1;
|
| + unsigned int op2 = offset + 2;
|
| + if (op2 >= points_.size()) {
|
| + // It's going to be a degenerate triangle.
|
| + op2 = op1;
|
| + }
|
| + quads->push_back(
|
| + gfx::QuadF(first,
|
| + gfx::PointF(points_[offset].x(), points_[offset].y()),
|
| + gfx::PointF(points_[op1].x(), points_[op1].y()),
|
| + gfx::PointF(points_[op2].x(), points_[op2].y())));
|
| + offset = op2;
|
| + }
|
| +}
|
| +
|
| +bool DrawPolygon::GetInverseTransform(gfx::Transform* transform) const {
|
| + return original_ref_->quadTransform().GetInverse(transform);
|
| +}
|
| +
|
| +} // namespace cc
|
|
|