Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(2532)

Unified Diff: cc/quads/draw_polygon.cc

Issue 384083002: WIP BSP Tree for 3D Layer Sorting (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@master
Patch Set: Removed some forgotten debug output Created 6 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« cc/output/bsp_walk_action.h ('K') | « cc/quads/draw_polygon.h ('k') | no next file » | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: cc/quads/draw_polygon.cc
diff --git a/cc/quads/draw_polygon.cc b/cc/quads/draw_polygon.cc
new file mode 100644
index 0000000000000000000000000000000000000000..35582bb46032b532ed8b24bc91c04943551f95c3
--- /dev/null
+++ b/cc/quads/draw_polygon.cc
@@ -0,0 +1,301 @@
+// Copyright 2014 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "cc/quads/draw_polygon.h"
+
+#include <vector>
+
+#include "cc/output/bsp_compare_result.h"
+
+namespace {
+// This allows for some imperfection in the normal comparison when checking if
+// two pieces of geometry are coplanar.
+static const float coplanar_dot_epsilon = 0.99f;
+// This threshold controls how "thick" a plane is. If a point's distance is
+// <= compare_threshold, then it is considered on the plane. Only when this
+// boundary is crossed do we consider doing splitting.
+static const float compare_threshold = 1.0f;
+static const float split_threshold = 0.5f;
+} // namespace
+
+namespace cc {
+
+DrawPolygon::DrawPolygon() {
+}
+
+DrawPolygon::DrawPolygon(DrawQuad* original,
+ const std::vector<gfx::Point3F>& in_points,
+ int draw_order_index)
+ : order_index_(draw_order_index), original_ref_(original) {
+ for (unsigned int i = 0; i < in_points.size(); i++) {
+ points_.push_back(in_points[i]);
+ }
+ normal_ = gfx::Vector3dF(0.0f, 0.0f, 1.0f);
+}
+
+DrawPolygon::~DrawPolygon() {
+}
+
+void DrawPolygon::SetNormal(const gfx::Vector3dF& normal) {
+ normal_ = normal;
+}
+
+scoped_ptr<DrawPolygon> DrawPolygon::CreateCopy() {
+ DrawPolygon* new_polygon = new DrawPolygon();
+ new_polygon->order_index_ = order_index_;
+ new_polygon->original_ref_ = original_ref_;
+ new_polygon->points_.reserve(points_.size());
+ new_polygon->points_ = points_;
+ new_polygon->normal_.set_x(normal_.x());
+ new_polygon->normal_.set_y(normal_.y());
+ new_polygon->normal_.set_z(normal_.z());
+ return scoped_ptr<DrawPolygon>(new_polygon);
+}
+
+float DrawPolygon::SignedPointDistance(const gfx::Point3F& point) const {
+ return gfx::DotProduct(point - points_[0], normal_);
+}
+
+// Checks whether or not shape a lies on the front or back side of b, or
+// whether they should be considered coplanar. If on the back side, we
+// say ABeforeB because it should be drawn in that order.
+// Assumes that layers are split and there are no intersecting planes.
+BspCompareResult DrawPolygon::SideCompare(const DrawPolygon& a,
+ const DrawPolygon& b) {
+ // Right away let's check if they're coplanar
+ double dot = gfx::DotProduct(a.normal_, b.normal_);
+ float sign;
+ bool normal_match = false;
+ // This check assumes that the normals are normalized.
+ if (std::abs(dot) >= coplanar_dot_epsilon) {
+ normal_match = true;
+ // The normals are matching enough that we only have to test one point.
+ sign = gfx::DotProduct(a.points_[0] - b.points_[0], b.normal_);
+ // Is it on either side of the splitter?
+ if (sign < -compare_threshold) {
+ return BSP_BACK;
+ }
+
+ if (sign > compare_threshold) {
+ return BSP_FRONT;
+ }
+
+ // No it wasn't, so the sign of the dot product of the normals
+ // along with document order determines which side it goes on.
+ if (dot >= 0.0f) {
+ if (a.order_index_ < b.order_index_) {
+ return BSP_COPLANAR_FRONT;
+ }
+ return BSP_COPLANAR_BACK;
+ }
+
+ if (a.order_index_ < b.order_index_) {
+ return BSP_COPLANAR_BACK;
+ }
+ return BSP_COPLANAR_FRONT;
+ }
+
+ unsigned int pos_count = 0;
+ unsigned int neg_count = 0;
+ for (unsigned int i = 0; i < a.points_.size(); i++) {
+ if (!normal_match || (normal_match && i > 0)) {
+ sign = gfx::DotProduct(a.points_[i] - b.points_[0], b.normal_);
+ }
+
+ if (sign < -compare_threshold) {
+ ++neg_count;
+ } else if (sign > compare_threshold) {
+ ++pos_count;
+ }
+
+ if (pos_count && neg_count) {
+ return BSP_SPLIT;
+ }
+ }
+
+ if (pos_count) {
+ return BSP_FRONT;
+ }
+ return BSP_BACK;
+}
+
+static bool LineIntersectPlane(const gfx::Point3F& line_start,
+ const gfx::Point3F& line_end,
+ const gfx::Point3F& plane_origin,
+ const gfx::Vector3dF& plane_normal,
+ gfx::Point3F* intersection,
+ float distance_threshold) {
+ gfx::Vector3dF start_to_origin_vector = plane_origin - line_start;
+ gfx::Vector3dF end_to_origin_vector = plane_origin - line_end;
+
+ double start_distance = gfx::DotProduct(start_to_origin_vector, plane_normal);
+ double end_distance = gfx::DotProduct(end_to_origin_vector, plane_normal);
+
+ // The case where one vertex lies on the thick-plane and the other
+ // is outside of it.
+ if (std::abs(start_distance) < distance_threshold &&
+ std::abs(end_distance) > distance_threshold) {
+ intersection->SetPoint(line_start.x(), line_start.y(), line_start.z());
+ return true;
+ }
+
+ // This is the case where we clearly cross the thick-plane.
+ if ((start_distance > distance_threshold &&
+ end_distance < -distance_threshold) ||
+ (start_distance < -distance_threshold &&
+ end_distance > distance_threshold)) {
+ // By getting the dot product of the line segment normalized vs. the plane's
+ // normal, we get a value that approaches zero as the angle of the
+ // intersecting line becomes parallel with the plane.
+ // When the line segment vector is equal to the plane's normal, we have the
+ // most direct path to the plane, and the dot product is 1. In this case,
+ // the calculation below is just |start_distance| / 1, which is the trivial
+ // case because the line takes the most direct path to intersect with the
+ // plane. |start_distance| is already the shortest straight line path
+ // distance to the plane.
+ // However, as the vector that represents the direction of the line segment
+ // indicates that it is becoming more parallel with the surface of the plane
+ // and the dot product approaches 0, the path to intersection becomes much
+ // longer, and the division of |start_distance| by < 1 gives us the true
+ // distance of the start point to the plane following the vector of the line
+ // segment.
+ gfx::Vector3dF v = line_end - line_start;
+ v.Scale(1.f / v.Length());
+ double projected_length = gfx::DotProduct(v, plane_normal);
+
+ // The only way this will ever be true is the case where the line runs
+ // parallel to the surface of the plane and would never contact it, and
+ // this would result in a divide by zero below.
+ if (!projected_length) {
+ return false;
+ }
+
+ double scale = start_distance / projected_length;
+ intersection->SetPoint(line_start.x() + (v.x() * scale),
+ line_start.y() + (v.y() * scale),
+ line_start.z() + (v.z() * scale));
+
+ return true;
+ }
+ return false;
+}
+
+bool DrawPolygon::Split(const DrawPolygon& splitter,
+ scoped_ptr<DrawPolygon>* front,
+ scoped_ptr<DrawPolygon>* back) {
+ gfx::Point3F intersections[2];
+ std::vector<gfx::Point3F> out_points[2];
+ // vertex_before stores the index of the vertex before its matching
+ // intersection.
+ // i.e. vertex_before[0] stores the vertex we saw before we crossed the plane
+ // which resulted in the line/plane intersection giving us intersections[0].
+ unsigned int vertex_before[2];
+ unsigned int points_size = points_.size();
+ unsigned int current_intersection = 0;
+
+ unsigned int current_vertex = 0;
+ while (current_intersection < 2) {
+ if (LineIntersectPlane(points_[(current_vertex % points_size)],
+ points_[(current_vertex + 1) % points_size],
+ splitter.points_[0],
+ splitter.normal_,
+ &intersections[current_intersection],
+ split_threshold)) {
+ vertex_before[current_intersection] = current_vertex % points_size;
+ current_intersection++;
+ // We found both intersection points so we're done already.
+ if (current_intersection == 2) {
+ break;
+ }
+ }
+ if (current_vertex++ > points_size) {
+ break;
+ }
+ }
+ if (current_intersection < 2) {
+ return false;
+ }
+
+ // Since we found both the intersection points, we can begin building the
+ // vertex set for both our new polygons.
+ unsigned int start1 = (vertex_before[0] + 1) % points_size;
+ unsigned int start2 = (vertex_before[1] + 1) % points_size;
+ unsigned int points_remaining = points_size;
+
+ // First polygon.
+ out_points[0].push_back(intersections[0]);
+ for (unsigned int i = start1; i <= vertex_before[1]; i++) {
+ out_points[0].push_back(points_[i]);
+ --points_remaining;
+ }
+ out_points[0].push_back(intersections[1]);
+
+ // Second polygon.
+ out_points[1].push_back(intersections[1]);
+ unsigned int index = start2;
+ for (unsigned int i = 0; i < points_remaining; i++) {
+ out_points[1].push_back(points_[index % points_size]);
+ ++index;
+ }
+ out_points[1].push_back(intersections[0]);
+
+ // Give both polygons the original splitting polygon's ID, so that they'll
+ // still be sorted properly in co-planar instances.
+ // Send false as last parameter for is_original because they're split.
+ scoped_ptr<DrawPolygon> poly1(
+ new DrawPolygon(original_ref_, out_points[0], order_index_));
+ scoped_ptr<DrawPolygon> poly2(
+ new DrawPolygon(original_ref_, out_points[1], order_index_));
+
+ poly1->SetNormal(normal_);
+ poly2->SetNormal(normal_);
+
+ if (SideCompare(*poly1, splitter) == BSP_FRONT) {
+ *front = poly1.Pass();
+ *back = poly2.Pass();
+ } else {
+ *front = poly2.Pass();
+ *back = poly1.Pass();
+ }
+ return true;
+}
+
+// This algorithm takes the first vertex in the polygon and uses that as a
+// pivot point to fan out and create quads from the rest of the vertices.
+// |offset| starts off as the second vertex, and then |op1| and |op2| indicate
+// offset+1 and offset+2 respectively.
+// After the first quad is created, the first vertex in the next quad is the
+// same as all the rest, the pivot point. The second vertex in the next quad is
+// the old |op2|, the last vertex added to the previous quad. This continues
+// until all points are exhausted.
+// The special case here is where there are only 3 points remaining, in which
+// case we use the same values for vertex 3 and 4 to make a degenerate quad
+// that represents a triangle.
+void DrawPolygon::ToQuads2D(std::vector<gfx::QuadF>* quads) const {
+ if (points_.size() <= 2)
+ return;
+
+ gfx::PointF first(points_[0].x(), points_[0].y());
+ unsigned int offset = 1;
+ while (offset < points_.size() - 1) {
+ unsigned int op1 = offset + 1;
+ unsigned int op2 = offset + 2;
+ if (op2 >= points_.size()) {
+ // It's going to be a degenerate triangle.
+ op2 = op1;
+ }
+ quads->push_back(
+ gfx::QuadF(first,
+ gfx::PointF(points_[offset].x(), points_[offset].y()),
+ gfx::PointF(points_[op1].x(), points_[op1].y()),
+ gfx::PointF(points_[op2].x(), points_[op2].y())));
+ offset = op2;
+ }
+}
+
+bool DrawPolygon::GetInverseTransform(gfx::Transform* transform) const {
+ return original_ref_->quadTransform().GetInverse(transform);
+}
+
+} // namespace cc
« cc/output/bsp_walk_action.h ('K') | « cc/quads/draw_polygon.h ('k') | no next file » | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698