Chromium Code Reviews| OLD | NEW |
|---|---|
| (Empty) | |
| 1 // Copyright 2013 The Chromium Authors. All rights reserved. | |
| 2 // Use of this source code is governed by a BSD-style license that can be | |
| 3 // found in the LICENSE file. | |
| 4 | |
| 5 #include "cc/quads/draw_polygon.h" | |
| 6 | |
| 7 #include <vector> | |
| 8 | |
| 9 #include "cc/output/bsp_compare_result.h" | |
| 10 | |
| 11 namespace { | |
| 12 // This allows for some imperfection in the normal comparison when checking if | |
| 13 // two pieces of geometry are coplanar. | |
| 14 const float coplanar_dot_epsilon = 0.99f; | |
| 15 } // namespace | |
| 16 | |
| 17 namespace cc { | |
| 18 | |
| 19 DrawPolygon::DrawPolygon() { | |
| 20 } | |
| 21 | |
| 22 DrawPolygon::DrawPolygon(DrawQuad* original, | |
| 23 gfx::Point3F* in_points, | |
| 24 int num_vertices_in_polygon, | |
| 25 int draw_order_index, | |
| 26 bool polygon_is_original) | |
| 27 : order_index(draw_order_index), | |
| 28 // offset(0), | |
| 29 is_original(polygon_is_original), | |
| 30 original_ref(original) { | |
| 31 for (int i = 0; i < num_vertices_in_polygon; i++) { | |
| 32 points.push_back(in_points[i]); | |
| 33 } | |
| 34 | |
| 35 if (num_vertices_in_polygon > 2) { | |
| 36 gfx::Vector3dF c12 = in_points[1] - in_points[0]; | |
| 37 gfx::Vector3dF c13 = in_points[2] - in_points[0]; | |
| 38 normal = gfx::CrossProduct(c12, c13); | |
| 39 normal.Scale(1.0f / normal.Length()); | |
| 40 } | |
| 41 area = Area(); | |
|
Ian Vollick
2014/07/16 20:54:33
Since area is computed in the ctor and is immutabl
troyhildebrandt
2014/07/18 21:48:26
Done.
| |
| 42 } | |
| 43 | |
| 44 DrawPolygon::DrawPolygon(const DrawPolygon& other) { | |
| 45 CopyFrom(other); | |
| 46 } | |
| 47 | |
| 48 DrawPolygon::~DrawPolygon() { | |
| 49 } | |
| 50 | |
| 51 DrawPolygon& DrawPolygon::operator=(const DrawPolygon& rhs) { | |
| 52 CopyFrom(rhs); | |
| 53 return *this; | |
| 54 } | |
| 55 | |
| 56 void DrawPolygon::CopyFrom(const DrawPolygon& other) { | |
| 57 order_index = other.order_index; | |
| 58 is_original = other.is_original; | |
| 59 original_ref = other.original_ref; | |
| 60 points.reserve(other.points.size()); | |
| 61 points = other.points; | |
| 62 normal.set_x(other.normal.x()); | |
| 63 normal.set_y(other.normal.y()); | |
| 64 normal.set_z(other.normal.z()); | |
| 65 area = other.area; | |
| 66 } | |
| 67 | |
| 68 float DrawPolygon::SignedPointDistance(const gfx::Point3F& point) const { | |
| 69 return gfx::DotProduct(point - points[0], normal); | |
| 70 } | |
| 71 | |
| 72 // Checks whether or not shape a lies on the front or back side of b, or | |
| 73 // whether they should be considered coplanar. If on the back side, we | |
| 74 // say ABeforeB because it should be drawn in that order. | |
| 75 // Assumes that layers are split and there are no intersecting planes. | |
| 76 BspCompareResult DrawPolygon::SideCompare(const DrawPolygon& a, | |
| 77 const DrawPolygon& b, | |
| 78 float z_threshold) { | |
|
Ian Vollick
2014/07/16 20:54:33
Multiple exit points nested in if/else's in this f
troyhildebrandt
2014/07/18 21:48:27
Done.
| |
| 79 // Right away let's check if they're coplanar | |
| 80 double dot = gfx::DotProduct(a.normal, b.normal); | |
| 81 float sign; | |
| 82 bool normal_match = false; | |
| 83 // This check assumes that the normals are normalized. | |
| 84 if (std::abs(dot) >= coplanar_dot_epsilon) { | |
| 85 normal_match = true; | |
| 86 // The normals are matching enough that we only have to test one point. | |
| 87 sign = gfx::DotProduct(a.points[0] - b.points[0], b.normal); | |
| 88 // Is it on either side of the splitter? | |
| 89 if (sign < -z_threshold) { | |
| 90 return BSP_BACK; | |
| 91 } else if (sign > z_threshold) { | |
| 92 return BSP_FRONT; | |
| 93 } else { | |
| 94 // No it wasn't, so the sign of the dot product of the normals | |
| 95 // along with document order determines which side it goes on. | |
| 96 if (dot >= 0.0f) { | |
| 97 if (a.order_index < b.order_index) | |
| 98 return BSP_COPLANAR_FRONT; | |
| 99 else | |
| 100 return BSP_COPLANAR_BACK; | |
| 101 } else { | |
| 102 if (a.order_index < b.order_index) | |
| 103 return BSP_COPLANAR_BACK; | |
| 104 else | |
| 105 return BSP_COPLANAR_FRONT; | |
| 106 } | |
| 107 } | |
| 108 } | |
| 109 | |
| 110 unsigned int pos_count = 0; | |
| 111 unsigned int neg_count = 0; | |
| 112 for (unsigned int i = 0; i < a.points.size(); i++) { | |
| 113 if (!normal_match || (normal_match && i > 0)) | |
| 114 sign = gfx::DotProduct(a.points[i] - b.points[0], b.normal); | |
| 115 if (sign < -z_threshold) | |
| 116 ++neg_count; | |
| 117 else if (sign > z_threshold) | |
| 118 ++pos_count; | |
| 119 if (pos_count && neg_count) | |
| 120 return BSP_SPLIT; | |
| 121 } | |
| 122 | |
| 123 if (pos_count) | |
| 124 return BSP_FRONT; | |
| 125 return BSP_BACK; | |
| 126 } | |
| 127 | |
| 128 static bool LineIntersectPlane(const gfx::Point3F& line_start, | |
| 129 const gfx::Point3F& line_end, | |
| 130 const gfx::Point3F& plane_origin, | |
| 131 const gfx::Vector3dF& plane_normal, | |
| 132 gfx::Point3F* intersection, | |
| 133 float distance_threshold) { | |
| 134 gfx::Vector3dF vec1 = plane_origin - line_start; | |
| 135 gfx::Vector3dF vec2 = plane_origin - line_end; | |
| 136 | |
| 137 double start_distance = gfx::DotProduct(vec1, plane_normal); | |
| 138 double end_distance = gfx::DotProduct(vec2, plane_normal); | |
| 139 | |
| 140 // The case where one vertex lies on the thick-plane and the other | |
| 141 // is outside of it. | |
| 142 if (std::abs(start_distance) < distance_threshold && | |
| 143 std::abs(end_distance) > distance_threshold) { | |
| 144 intersection->SetPoint(line_start.x(), line_start.y(), line_start.z()); | |
| 145 return true; | |
| 146 } | |
| 147 | |
| 148 // This is the case where we clearly cross the thick-plane. | |
| 149 if ((start_distance > distance_threshold && | |
| 150 end_distance < -distance_threshold) || | |
| 151 (start_distance < -distance_threshold && | |
| 152 end_distance > distance_threshold)) { | |
| 153 gfx::Vector3dF v = line_end - line_start; | |
| 154 | |
| 155 v.Scale(1.f / v.Length()); | |
| 156 double projected_length = gfx::DotProduct(v, plane_normal); | |
| 157 if (!projected_length) | |
| 158 return false; | |
| 159 | |
| 160 double scale = start_distance / projected_length; | |
| 161 intersection->SetPoint(line_start.x() + (v.x() * scale), | |
| 162 line_start.y() + (v.y() * scale), | |
| 163 line_start.z() + (v.z() * scale)); | |
| 164 | |
| 165 return true; | |
| 166 } | |
| 167 return false; | |
| 168 } | |
| 169 | |
| 170 bool DrawPolygon::ApplyTransform(const gfx::Transform& transform) { | |
| 171 bool clipped = false; | |
| 172 for (unsigned int i = 0; i < points.size(); i++) { | |
| 173 points[i] = MathUtil::MapPoint(transform, points[i], &clipped); | |
| 174 } | |
|
Ian Vollick
2014/07/16 20:54:33
Couldn't this affect area?
troyhildebrandt
2014/07/18 21:48:27
Yea, I'll take a look and see if I can find a bett
| |
| 175 return !clipped; | |
| 176 } | |
| 177 | |
| 178 float DrawPolygon::Area() const { | |
| 179 return std::abs(SignedArea()); | |
| 180 } | |
| 181 | |
| 182 float DrawPolygon::SignedArea() const { | |
| 183 gfx::Vector3dF total; | |
| 184 for (unsigned int i = 0; i < points.size(); i++) { | |
| 185 unsigned int j = (i + 1) % points.size(); | |
| 186 gfx::Vector3dF cross_prod = gfx::CrossProduct( | |
| 187 gfx::Vector3dF(points[i].x(), points[i].y(), points[i].z()), | |
| 188 gfx::Vector3dF(points[j].x(), points[j].y(), points[j].z())); | |
| 189 total = total + cross_prod; | |
| 190 } | |
| 191 return 0.5f * std::abs(gfx::DotProduct(total, normal)); | |
| 192 } | |
| 193 | |
| 194 bool DrawPolygon::Split(const DrawPolygon& splitter, | |
| 195 double plane_threshold, | |
| 196 scoped_ptr<DrawPolygon>* front, | |
| 197 scoped_ptr<DrawPolygon>* back) { | |
| 198 gfx::Point3F intersections[2]; | |
| 199 std::vector<gfx::Point3F> out_points[2]; | |
| 200 int vertex_before[2]; | |
| 201 int points_size = points.size(); | |
| 202 int current_intersection = 0; | |
| 203 | |
| 204 int current_vertex = 0; | |
| 205 while (current_intersection < 2) { | |
| 206 if (current_intersection > 0 && | |
| 207 vertex_before[0] == (current_vertex % points_size)) { | |
| 208 continue; | |
| 209 } | |
| 210 | |
| 211 if (LineIntersectPlane(points[(current_vertex % points_size)], | |
| 212 points[(current_vertex + 1) % points_size], | |
| 213 splitter.points[0], | |
| 214 splitter.normal, | |
| 215 &intersections[current_intersection], | |
| 216 plane_threshold)) { | |
| 217 vertex_before[current_intersection] = current_vertex % points_size; | |
| 218 current_intersection++; | |
| 219 // We found both intersection points so we're done already. | |
| 220 if (current_intersection == 2) { | |
| 221 break; | |
| 222 } | |
| 223 } | |
| 224 ++current_vertex; | |
| 225 // We've gone around one whole time, leave early. | |
| 226 if (current_vertex > points_size) { | |
| 227 break; | |
| 228 } | |
| 229 } | |
| 230 if (current_intersection < 2) { | |
| 231 return false; | |
| 232 } | |
| 233 | |
| 234 // Since we found both the intersection points, we can begin building the | |
| 235 // vertex set for both our new polygons. | |
| 236 int start1 = (vertex_before[0] + 1) % points_size; | |
| 237 int start2 = (vertex_before[1] + 1) % points_size; | |
| 238 int points_remaining = points_size; | |
| 239 | |
| 240 // First polygon. | |
| 241 out_points[0].push_back(intersections[0]); | |
| 242 for (int i = start1; i <= vertex_before[1]; i++) { | |
| 243 out_points[0].push_back(points[i]); | |
| 244 --points_remaining; | |
| 245 } | |
| 246 out_points[0].push_back(intersections[1]); | |
| 247 | |
| 248 // Second polygon. | |
| 249 out_points[1].push_back(intersections[1]); | |
| 250 int index = start2; | |
| 251 for (int i = 0; i < points_remaining; i++) { | |
| 252 out_points[1].push_back(points[index % points_size]); | |
| 253 ++index; | |
| 254 } | |
| 255 out_points[1].push_back(intersections[0]); | |
| 256 | |
| 257 // Give both polygons the original splitting polygon's ID, so that they'll | |
| 258 // still be sorted properly in co-planar instances. | |
| 259 // Send false as last parameter for is_original because they're split. | |
| 260 scoped_ptr<DrawPolygon> poly1(new DrawPolygon(original_ref, | |
| 261 &(out_points[0][0]), | |
| 262 out_points[0].size(), | |
| 263 this->order_index, | |
| 264 false)); | |
| 265 scoped_ptr<DrawPolygon> poly2(new DrawPolygon(original_ref, | |
| 266 &(out_points[1][0]), | |
| 267 out_points[1].size(), | |
| 268 this->order_index, | |
| 269 false)); | |
| 270 | |
| 271 if (SideCompare(*poly1, splitter, plane_threshold) == BSP_FRONT) { | |
| 272 *front = poly1.Pass(); | |
| 273 *back = poly2.Pass(); | |
| 274 } else { | |
| 275 *front = poly2.Pass(); | |
| 276 *back = poly1.Pass(); | |
| 277 } | |
| 278 return true; | |
| 279 } | |
| 280 | |
| 281 void DrawPolygon::ToQuads2D(std::vector<gfx::QuadF>* quads) const { | |
| 282 if (points.size() == 0) | |
| 283 return; | |
| 284 | |
| 285 // op1 = offset plus 1, op2 = offset plus 2. | |
| 286 gfx::PointF first(points[0].x(), points[0].y()); | |
| 287 unsigned int offset = 1; | |
| 288 while (offset < points.size() - 1) { | |
| 289 unsigned int op1 = offset + 1; | |
| 290 unsigned int op2 = offset + 2; | |
| 291 if (op2 >= points.size()) { | |
| 292 // It's going to be a degenerate triangle. | |
| 293 op2 = op1; | |
| 294 } | |
| 295 quads->push_back( | |
| 296 gfx::QuadF(first, | |
| 297 gfx::PointF(points[offset].x(), points[offset].y()), | |
| 298 gfx::PointF(points[op1].x(), points[op1].y()), | |
| 299 gfx::PointF(points[op2].x(), points[op2].y()))); | |
| 300 offset = op2; | |
| 301 } | |
| 302 } | |
| 303 | |
| 304 bool DrawPolygon::GetInverseTransform(gfx::Transform* transform) const { | |
| 305 return original_ref->quadTransform().GetInverse(transform); | |
| 306 } | |
| 307 | |
| 308 } // namespace cc | |
| OLD | NEW |