| Index: bench/AlternatingColorPatternBench.cpp
|
| diff --git a/bench/AlternatingColorPatternBench.cpp b/bench/AlternatingColorPatternBench.cpp
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..b497979a892816642fb813492b768113303d6709
|
| --- /dev/null
|
| +++ b/bench/AlternatingColorPatternBench.cpp
|
| @@ -0,0 +1,200 @@
|
| +/*
|
| + * Copyright 2014 Google Inc.
|
| + *
|
| + * Use of this source code is governed by a BSD-style license that can be
|
| + * found in the LICENSE file.
|
| + */
|
| +
|
| +#include "Benchmark.h"
|
| +#include "SkCanvas.h"
|
| +#include "SkGradientShader.h"
|
| +#include "SkPaint.h"
|
| +#include "SkString.h"
|
| +
|
| +enum ColorPattern {
|
| + kWhite_ColorPattern,
|
| + kBlue_ColorPattern,
|
| + kOpaqueBitmap_ColorPattern,
|
| + kAlphaBitmap_ColorPattern,
|
| +};
|
| +
|
| +static const struct ColorPatternData{
|
| + SkColor fColor;
|
| + bool fIsBitmap;
|
| + const char* fName;
|
| +} gColorPatterns[] = {
|
| + // Keep this in same order as ColorPattern enum
|
| + { SK_ColorWHITE, false, "white" }, // kWhite_ColorPattern
|
| + { SK_ColorBLUE, false, "blue" }, // kBlue_ColorPattern
|
| + { SK_ColorWHITE, true, "obaqueBitMap" }, // kOpaqueBitmap_ColorPattern
|
| + { 0x10000000, true, "alphaBitmap" }, // kAlphaBitmap_ColorPattern
|
| +};
|
| +
|
| +enum DrawType {
|
| + kRect_DrawType,
|
| + kPath_DrawType,
|
| +};
|
| +
|
| +static void makebm(SkBitmap* bm, int w, int h) {
|
| + bm->allocN32Pixels(w, h);
|
| + bm->eraseColor(SK_ColorTRANSPARENT);
|
| +
|
| + SkCanvas canvas(*bm);
|
| + SkScalar s = SkIntToScalar(SkMin32(w, h));
|
| + static const SkPoint kPts0[] = { { 0, 0 }, { s, s } };
|
| + static const SkPoint kPts1[] = { { s/2, 0 }, { s/2, s } };
|
| + static const SkScalar kPos[] = { 0, SK_Scalar1/2, SK_Scalar1 };
|
| + static const SkColor kColors0[] = {0x80F00080, 0xF0F08000, 0x800080F0 };
|
| + static const SkColor kColors1[] = {0xF08000F0, 0x8080F000, 0xF000F080 };
|
| +
|
| +
|
| + SkPaint paint;
|
| +
|
| + paint.setShader(SkGradientShader::CreateLinear(kPts0, kColors0, kPos,
|
| + SK_ARRAY_COUNT(kColors0), SkShader::kClamp_TileMode))->unref();
|
| + canvas.drawPaint(paint);
|
| + paint.setShader(SkGradientShader::CreateLinear(kPts1, kColors1, kPos,
|
| + SK_ARRAY_COUNT(kColors1), SkShader::kClamp_TileMode))->unref();
|
| + canvas.drawPaint(paint);
|
| +}
|
| +
|
| +/**
|
| + * This bench draws a grid of either rects or filled paths, with two alternating color patterns.
|
| + * This color patterns are passed in as enums to the class. The options are:
|
| + * 1) solid white color
|
| + * 2) solid blue color
|
| + * 3) opaque bitmap
|
| + * 4) partial alpha bitmap
|
| + * The same color pattern can be set for both arguments to create a uniform pattern on all draws.
|
| + *
|
| + * The bench is used to test a few things. First it can test any optimizations made for a specific
|
| + * color pattern (for example drawing an opaque bitmap versus one with partial alpha). Also it can
|
| + * be used to test the cost of program switching and/or batching when alternating between different
|
| + * patterns when on the gpu.
|
| + */
|
| +class AlternatingColorPatternBench : public Benchmark {
|
| +public:
|
| + enum {
|
| + NX = 5,
|
| + NY = 5,
|
| + NUM_DRAWS = NX * NY,
|
| + };
|
| + SkShader* fBmShader;
|
| +
|
| + SkPath fPaths[NUM_DRAWS];
|
| + SkRect fRects[NUM_DRAWS];
|
| + SkColor fColors[NUM_DRAWS];
|
| + SkShader* fShaders[NUM_DRAWS];
|
| +
|
| + SkString fName;
|
| + ColorPatternData fPattern1;
|
| + ColorPatternData fPattern2;
|
| + DrawType fDrawType;
|
| + SkBitmap fBmp;
|
| +
|
| +
|
| + AlternatingColorPatternBench(ColorPattern pattern1, ColorPattern pattern2, DrawType drawType)
|
| + : fBmShader(NULL) {
|
| + fPattern1 = gColorPatterns[pattern1];
|
| + fPattern2 = gColorPatterns[pattern2];
|
| + fName.printf("colorPattern_%s_%s_%s",
|
| + fPattern1.fName, fPattern2.fName,
|
| + kRect_DrawType == drawType ? "rect" : "path");
|
| + fDrawType = drawType;
|
| + }
|
| +
|
| + virtual ~AlternatingColorPatternBench() {
|
| + SkSafeUnref(fBmShader);
|
| + }
|
| +
|
| +protected:
|
| + virtual const char* onGetName() SK_OVERRIDE {
|
| + return fName.c_str();
|
| + }
|
| +
|
| + virtual void onPreDraw() {
|
| + int w = 40;
|
| + int h = 40;
|
| + makebm(&fBmp, w, h);
|
| + fBmShader = SkShader::CreateBitmapShader(fBmp,
|
| + SkShader::kRepeat_TileMode,
|
| + SkShader::kRepeat_TileMode);
|
| + int offset = 2;
|
| + int count = 0;
|
| + for (int j = 0; j < NY; ++j) {
|
| + for (int i = 0; i < NX; ++i) {
|
| + int x = (w + offset) * i;
|
| + int y = (h * offset) * j;
|
| + if (kRect_DrawType == fDrawType) {
|
| + fRects[count].set(SkIntToScalar(x), SkIntToScalar(y),
|
| + SkIntToScalar(x + w), SkIntToScalar(y + h));
|
| + } else {
|
| + fPaths[count].moveTo(SkIntToScalar(x), SkIntToScalar(y));
|
| + fPaths[count].rLineTo(SkIntToScalar(w), 0);
|
| + fPaths[count].rLineTo(0, SkIntToScalar(h));
|
| + fPaths[count].rLineTo(SkIntToScalar(-w + 1), 0);
|
| + }
|
| + if (0 == count % 2) {
|
| + fColors[count] = fPattern1.fColor;
|
| + fShaders[count] = fPattern1.fIsBitmap ? fBmShader : NULL;
|
| + } else {
|
| + fColors[count] = fPattern2.fColor;
|
| + fShaders[count] = fPattern2.fIsBitmap ? fBmShader : NULL;
|
| + }
|
| + ++count;
|
| + }
|
| + }
|
| + }
|
| +
|
| + virtual void onDraw(const int loops, SkCanvas* canvas) SK_OVERRIDE {
|
| + SkPaint paint;
|
| + paint.setAntiAlias(false);
|
| + paint.setFilterLevel(SkPaint::kLow_FilterLevel);
|
| +
|
| + for (int i = 0; i < loops; ++i) {
|
| + for (int j = 0; j < NUM_DRAWS; ++j) {
|
| + paint.setColor(fColors[j]);
|
| + paint.setShader(fShaders[j]);
|
| + if (kRect_DrawType == fDrawType) {
|
| + canvas->drawRect(fRects[j], paint);
|
| + } else {
|
| + canvas->drawPath(fPaths[j], paint);
|
| + }
|
| + }
|
| + }
|
| + }
|
| +
|
| +private:
|
| + typedef Benchmark INHERITED;
|
| +};
|
| +
|
| +DEF_BENCH( return SkNEW_ARGS(AlternatingColorPatternBench,
|
| + (kWhite_ColorPattern, kWhite_ColorPattern,
|
| + kPath_DrawType)); )
|
| +DEF_BENCH( return SkNEW_ARGS(AlternatingColorPatternBench,
|
| + (kBlue_ColorPattern, kBlue_ColorPattern,
|
| + kPath_DrawType)); )
|
| +DEF_BENCH( return SkNEW_ARGS(AlternatingColorPatternBench,
|
| + (kWhite_ColorPattern, kBlue_ColorPattern,
|
| + kPath_DrawType)); )
|
| +
|
| +DEF_BENCH( return SkNEW_ARGS(AlternatingColorPatternBench,
|
| + (kOpaqueBitmap_ColorPattern, kOpaqueBitmap_ColorPattern,
|
| + kPath_DrawType)); )
|
| +DEF_BENCH( return SkNEW_ARGS(AlternatingColorPatternBench,
|
| + (kAlphaBitmap_ColorPattern, kAlphaBitmap_ColorPattern,
|
| + kPath_DrawType)); )
|
| +DEF_BENCH( return SkNEW_ARGS(AlternatingColorPatternBench,
|
| + (kOpaqueBitmap_ColorPattern, kAlphaBitmap_ColorPattern,
|
| + kPath_DrawType)); )
|
| +
|
| +DEF_BENCH( return SkNEW_ARGS(AlternatingColorPatternBench,
|
| + (kOpaqueBitmap_ColorPattern, kOpaqueBitmap_ColorPattern,
|
| + kRect_DrawType)); )
|
| +DEF_BENCH( return SkNEW_ARGS(AlternatingColorPatternBench,
|
| + (kAlphaBitmap_ColorPattern, kAlphaBitmap_ColorPattern,
|
| + kRect_DrawType)); )
|
| +DEF_BENCH( return SkNEW_ARGS(AlternatingColorPatternBench,
|
| + (kOpaqueBitmap_ColorPattern, kAlphaBitmap_ColorPattern,
|
| + kRect_DrawType)); )
|
| +
|
|
|