Chromium Code Reviews| OLD | NEW |
|---|---|
| (Empty) | |
| 1 /* | |
| 2 * Copyright 2014 Google Inc. | |
| 3 * | |
| 4 * Use of this source code is governed by a BSD-style license that can be | |
| 5 * found in the LICENSE file. | |
| 6 */ | |
| 7 | |
| 8 #include "Benchmark.h" | |
| 9 #include "SkCanvas.h" | |
| 10 #include "SkGradientShader.h" | |
| 11 #include "SkPaint.h" | |
| 12 #include "SkString.h" | |
| 13 | |
| 14 enum ColorPattern { | |
| 15 kWhite_ColorPattern, | |
| 16 kBlue_ColorPattern, | |
| 17 kOpaqueBitmap_ColorPattern, | |
| 18 kAlphaBitmap_ColorPattern, | |
| 19 }; | |
| 20 | |
| 21 static const struct ColorPatternData{ | |
| 22 SkColor fColor; | |
|
bsalomon
2014/07/11 14:29:52
Calling setAlpha on SkPaint actually changes SkPai
egdaniel
2014/07/11 15:01:25
Alpha field removed.
On 2014/07/11 14:29:52, bsalo
| |
| 23 U8CPU fAlpha; | |
| 24 bool fIsBitmap; | |
| 25 const char* fName; | |
| 26 } gColorPatterns[] = { | |
| 27 // Keep this in same order as ColorPattern enum | |
| 28 { SK_ColorWHITE, 0xFF, false, "white" }, // kWhite_ColorPattern | |
| 29 { SK_ColorBLUE, 0xFF, false, "blue" }, // kBlue_ColorPattern | |
| 30 { SK_ColorWHITE, 0xFF, true, "obaqueBitMap" }, // kOpaqueBitmap_ColorPatte rn | |
| 31 { SK_ColorWHITE, 0x10, true, "alphaBitmap" }, // kAlphaBitmap_ColorPatter n | |
| 32 }; | |
| 33 | |
| 34 enum DrawType { | |
| 35 kRect_DrawType, | |
| 36 kPath_DrawType, | |
| 37 }; | |
| 38 | |
| 39 static void makebm(SkBitmap* bm, int w, int h) { | |
| 40 bm->allocN32Pixels(w, h); | |
| 41 bm->eraseColor(SK_ColorTRANSPARENT); | |
| 42 | |
| 43 SkCanvas canvas(*bm); | |
| 44 SkScalar s = SkIntToScalar(SkMin32(w, h)); | |
| 45 static const SkPoint kPts0[] = { { 0, 0 }, { s, s } }; | |
| 46 static const SkPoint kPts1[] = { { s/2, 0 }, { s/2, s } }; | |
| 47 static const SkScalar kPos[] = { 0, SK_Scalar1/2, SK_Scalar1 }; | |
| 48 static const SkColor kColors0[] = {0x80F00080, 0xF0F08000, 0x800080F0 }; | |
| 49 static const SkColor kColors1[] = {0xF08000F0, 0x8080F000, 0xF000F080 }; | |
| 50 | |
| 51 | |
| 52 SkPaint paint; | |
| 53 | |
| 54 paint.setShader(SkGradientShader::CreateLinear(kPts0, kColors0, kPos, | |
| 55 SK_ARRAY_COUNT(kColors0), SkShader::kClamp_TileMode))->unref (); | |
| 56 canvas.drawPaint(paint); | |
| 57 paint.setShader(SkGradientShader::CreateLinear(kPts1, kColors1, kPos, | |
| 58 SK_ARRAY_COUNT(kColors1), SkShader::kClamp_TileMode))->unref (); | |
| 59 canvas.drawPaint(paint); | |
| 60 } | |
| 61 | |
| 62 /** | |
| 63 * This bench draws a grid of either rects or filled paths, with two alternating color patterns. | |
| 64 * This color patterns are passed in as enums to the class. The options are: | |
| 65 * 1) solid white color | |
| 66 * 2) solid blue color | |
| 67 * 3) opaque bitmap | |
| 68 * 4) partial alpha bitmap | |
| 69 * The same color pattern can be set for both arguments to create a uniform patt ern on all draws. | |
| 70 * | |
| 71 * The bench is used to test a few things. First it can test any optimizations m ade for a specific | |
| 72 * color pattern (for example drawing an opaque bitmap versus one with partial a lpha). Also it can | |
| 73 * be used to test the cost of program switching and/or batching when alternatin g between different | |
| 74 * patterns when on the gpu. | |
| 75 */ | |
| 76 class AlternatingColorPatternBench : public Benchmark { | |
| 77 public: | |
| 78 enum { | |
| 79 NX = 5, | |
| 80 NY = 5, | |
| 81 NUM_DRAWS = NX * NY, | |
| 82 }; | |
| 83 SkPath fPaths[NUM_DRAWS]; | |
| 84 SkRect fRects[NUM_DRAWS]; | |
| 85 U8CPU fAlphas[NUM_DRAWS]; | |
| 86 SkColor fColors[NUM_DRAWS]; | |
| 87 SkShader* fShaders[NUM_DRAWS]; | |
| 88 | |
| 89 SkString fName; | |
| 90 ColorPatternData fPattern1; | |
| 91 ColorPatternData fPattern2; | |
| 92 DrawType fDrawType; | |
| 93 SkBitmap fBmp; | |
| 94 | |
| 95 SkShader* fBmShader; | |
| 96 | |
| 97 AlternatingColorPatternBench(ColorPattern pattern1, ColorPattern pattern2, D rawType drawType) { | |
| 98 fPattern1 = gColorPatterns[pattern1]; | |
| 99 fPattern2 = gColorPatterns[pattern2]; | |
| 100 fName.printf("colorbench_%s_%s_%s", | |
| 101 fPattern1.fName, fPattern2.fName, | |
| 102 kRect_DrawType == drawType ? "rect" : "path"); | |
| 103 fDrawType = drawType; | |
| 104 } | |
| 105 | |
| 106 virtual ~AlternatingColorPatternBench() { | |
| 107 fBmShader->unref(); | |
| 108 } | |
| 109 | |
| 110 protected: | |
| 111 virtual const char* onGetName() SK_OVERRIDE { | |
| 112 return fName.c_str(); | |
| 113 } | |
| 114 | |
| 115 virtual void onPreDraw() { | |
| 116 int w = 40; | |
| 117 int h = 40; | |
| 118 makebm(&fBmp, w, h); | |
| 119 fBmShader = SkShader::CreateBitmapShader(fBmp, | |
| 120 SkShader::kRepeat_TileMode, | |
| 121 SkShader::kRepeat_TileMode); | |
| 122 int offset = 2; | |
| 123 int count = 0; | |
| 124 for (int j = 0; j < NY; ++j) { | |
| 125 for (int i = 0; i < NX; ++i) { | |
| 126 int x = (w + offset) * i; | |
| 127 int y = (h * offset) * j; | |
| 128 if (kRect_DrawType == fDrawType) { | |
| 129 fRects[count].set(x, y, x + w, y + h); | |
| 130 } else { | |
| 131 fPaths[count].moveTo(x, y); | |
| 132 fPaths[count].rLineTo(w, 0); | |
| 133 fPaths[count].rLineTo(0, h); | |
| 134 fPaths[count].rLineTo(-w + 1, 0); | |
| 135 } | |
| 136 if (0 == count % 2) { | |
| 137 fColors[count] = fPattern1.fColor; | |
| 138 fAlphas[count] = fPattern1.fAlpha; | |
| 139 fShaders[count] = fPattern1.fIsBitmap ? fBmShader : NULL; | |
| 140 } else { | |
| 141 fColors[count] = fPattern2.fColor; | |
| 142 fAlphas[count] = fPattern2.fAlpha; | |
| 143 fShaders[count] = fPattern2.fIsBitmap ? fBmShader : NULL; | |
| 144 } | |
| 145 ++count; | |
| 146 } | |
| 147 } | |
| 148 } | |
| 149 | |
| 150 virtual void onDraw(const int loops, SkCanvas* canvas) SK_OVERRIDE { | |
| 151 SkPaint paint; | |
| 152 paint.setAntiAlias(false); | |
| 153 paint.setFilterLevel(SkPaint::kLow_FilterLevel); | |
| 154 | |
| 155 for (int i = 0; i < loops; ++i) { | |
| 156 for (int j = 0; j < NUM_DRAWS; ++j) { | |
| 157 paint.setColor(fColors[j]); | |
| 158 paint.setAlpha(fAlphas[j]); | |
| 159 paint.setShader(fShaders[j]); | |
| 160 if (kRect_DrawType == fDrawType) { | |
| 161 canvas->drawRect(fRects[j], paint); | |
| 162 } else { | |
| 163 canvas->drawPath(fPaths[j], paint); | |
| 164 } | |
| 165 } | |
| 166 } | |
| 167 } | |
| 168 | |
| 169 private: | |
| 170 typedef Benchmark INHERITED; | |
| 171 }; | |
| 172 | |
| 173 DEF_BENCH( return SkNEW_ARGS(AlternatingColorPatternBench, | |
| 174 (kWhite_ColorPattern, kWhite_ColorPattern, | |
| 175 kPath_DrawType)); ) | |
| 176 DEF_BENCH( return SkNEW_ARGS(AlternatingColorPatternBench, | |
| 177 (kBlue_ColorPattern, kBlue_ColorPattern, | |
| 178 kPath_DrawType)); ) | |
| 179 DEF_BENCH( return SkNEW_ARGS(AlternatingColorPatternBench, | |
| 180 (kWhite_ColorPattern, kBlue_ColorPattern, | |
| 181 kPath_DrawType)); ) | |
| 182 | |
| 183 DEF_BENCH( return SkNEW_ARGS(AlternatingColorPatternBench, | |
| 184 (kOpaqueBitmap_ColorPattern, kOpaqueBitmap_ColorPat tern, | |
| 185 kPath_DrawType)); ) | |
| 186 DEF_BENCH( return SkNEW_ARGS(AlternatingColorPatternBench, | |
| 187 (kAlphaBitmap_ColorPattern, kAlphaBitmap_ColorPatte rn, | |
| 188 kPath_DrawType)); ) | |
| 189 DEF_BENCH( return SkNEW_ARGS(AlternatingColorPatternBench, | |
| 190 (kOpaqueBitmap_ColorPattern, kAlphaBitmap_ColorPatt ern, | |
| 191 kPath_DrawType)); ) | |
| 192 | |
| 193 DEF_BENCH( return SkNEW_ARGS(AlternatingColorPatternBench, | |
| 194 (kOpaqueBitmap_ColorPattern, kOpaqueBitmap_ColorPat tern, | |
| 195 kRect_DrawType)); ) | |
| 196 DEF_BENCH( return SkNEW_ARGS(AlternatingColorPatternBench, | |
| 197 (kAlphaBitmap_ColorPattern, kAlphaBitmap_ColorPatte rn, | |
| 198 kRect_DrawType)); ) | |
| 199 DEF_BENCH( return SkNEW_ARGS(AlternatingColorPatternBench, | |
| 200 (kOpaqueBitmap_ColorPattern, kAlphaBitmap_ColorPatt ern, | |
| 201 kRect_DrawType)); ) | |
| 202 | |
| OLD | NEW |