Index: src/utils/SkTextureCompressor.cpp |
diff --git a/src/utils/SkTextureCompressor.cpp b/src/utils/SkTextureCompressor.cpp |
index 52bf09afb8a3b52acd3d8ae29d3afe4a127b67b2..c4a6293ed26f6a4407a0f20332e088a8119b8319 100644 |
--- a/src/utils/SkTextureCompressor.cpp |
+++ b/src/utils/SkTextureCompressor.cpp |
@@ -280,8 +280,8 @@ static uint64_t compress_latc_block(const uint8_t pixels[]) { |
} |
} |
-static bool compress_a8_to_latc(uint8_t* dst, const uint8_t* src, |
- int width, int height, int rowBytes) { |
+static inline bool compress_a8_to_latc(uint8_t* dst, const uint8_t* src, |
+ int width, int height, int rowBytes) { |
return compress_4x4_a8_to_64bit(dst, src, width, height, rowBytes, compress_latc_block); |
} |
@@ -291,6 +291,10 @@ static bool compress_a8_to_latc(uint8_t* dst, const uint8_t* src, |
// |
//////////////////////////////////////////////////////////////////////////////// |
+// #define COMPRESS_R11_EAC_SLOW 1 |
+// #define COMPRESS_R11_EAC_FAST 1 |
+#define COMPRESS_R11_EAC_FASTEST 1 |
+ |
// Blocks compressed into R11 EAC are represented as follows: |
// 0000000000000000000000000000000000000000000000000000000000000000 |
// |base_cw|mod|mul| ----------------- indices ------------------- |
@@ -327,6 +331,7 @@ static const int kR11EACModifierPalettes[kNumR11EACPalettes][kR11EACPaletteSize] |
{-3, -5, -7, -9, 2, 4, 6, 8} |
}; |
+#if COMPRESS_R11_EAC_SLOW |
// Pack the base codeword, palette, and multiplier into the 64 bits necessary |
// to decode it. |
static uint64_t pack_r11eac_block(uint16_t base_cw, uint16_t palette, uint16_t multiplier, |
@@ -354,7 +359,7 @@ static uint16_t compute_r11eac_pixel(int base_cw, int modifier, int multiplier) |
// 2. Choose a multiplier based roughly on the size of the span of block values |
// 3. Iterate through each palette and choose the one with the most accurate |
// modifiers. |
-static uint64_t compress_heterogeneous_r11eac_block(const uint8_t block[16]) { |
+static inline uint64_t compress_heterogeneous_r11eac_block(const uint8_t block[16]) { |
// Find the center of the data... |
uint16_t bmin = block[0]; |
uint16_t bmax = block[0]; |
@@ -382,7 +387,7 @@ static uint64_t compress_heterogeneous_r11eac_block(const uint8_t block[16]) { |
} |
// Finally, choose the proper palette and indices |
- uint32_t bestError = static_cast<uint32_t>(-1); |
+ uint32_t bestError = 0xFFFFFFFF; |
uint64_t bestIndices = 0; |
uint16_t bestPalette = 0; |
for (uint16_t paletteIdx = 0; paletteIdx < kNumR11EACPalettes; ++paletteIdx) { |
@@ -432,7 +437,60 @@ static uint64_t compress_heterogeneous_r11eac_block(const uint8_t block[16]) { |
// Finally, pack everything together... |
return pack_r11eac_block(center, bestPalette, multiplier, bestIndices); |
} |
+#endif // COMPRESS_R11_EAC_SLOW |
+ |
+#if COMPRESS_R11_EAC_FAST |
+// This function takes into account that most blocks that we compress have a gradation from |
+// fully opaque to fully transparent. The compression scheme works by selecting the |
+// palette and multiplier that has the tightest fit to the 0-255 range. This is encoded |
+// as the block header (0x8490). The indices are then selected by considering the top |
+// three bits of each alpha value. For alpha masks, this reduces the dynamic range from |
+// 17 to 8, but the quality is still acceptable. |
+// |
+// There are a few caveats that need to be taken care of... |
+// |
+// 1. The block is read in as scanlines, so the indices are stored as: |
+// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
+// However, the decomrpession routine reads them in column-major order, so they |
+// need to be packed as: |
+// 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15 |
+// So when reading, they must be transposed. |
+// |
+// 2. We cannot use the top three bits as an index directly, since the R11 EAC palettes |
+// above store the modulation values first decreasing and then increasing: |
+// e.g. {-3, -6, -9, -15, 2, 5, 8, 14} |
+// Hence, we need to convert the indices with the following mapping: |
+// From: 0 1 2 3 4 5 6 7 |
+// To: 3 2 1 0 4 5 6 7 |
+static inline uint64_t compress_heterogeneous_r11eac_block(const uint8_t block[16]) { |
+ uint64_t retVal = static_cast<uint64_t>(0x8490) << 48; |
+ for(int i = 0; i < 4; ++i) { |
+ for(int j = 0; j < 4; ++j) { |
+ const int shift = 45-3*(j*4+i); |
+ SkASSERT(shift <= 45); |
+ const uint64_t idx = block[i*4+j] >> 5; |
+ SkASSERT(idx < 8); |
+ |
+ // !SPEED! This is slightly faster than having an if-statement. |
+ switch(idx) { |
+ case 0: |
+ case 1: |
+ case 2: |
+ case 3: |
+ retVal |= (3-idx) << shift; |
+ break; |
+ default: |
+ retVal |= idx << shift; |
+ break; |
+ } |
+ } |
+ } |
+ return SkEndian_SwapBE64(retVal); |
+} |
+#endif // COMPRESS_R11_EAC_FAST |
+ |
+#if (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST) |
static uint64_t compress_r11eac_block(const uint8_t block[16]) { |
// Are all blocks a solid color? |
bool solid = true; |
@@ -443,62 +501,265 @@ static uint64_t compress_r11eac_block(const uint8_t block[16]) { |
} |
} |
- // Fully transparent? We know the encoding... |
- if (solid && 0 == block[0]) { |
- // (0x0060 << 48) produces the following: |
- // basw_cw: 0 |
- // mod: 6, palette: {-4, -7, -8, -11, 3, 6, 7, 10} |
- // mod_val: -3 |
- // |
- // this gives the following formula: |
- // clamp[0, 2047](0*8+4+(-4)) = 0 |
- return SkEndian_SwapBE64(static_cast<uint64_t>(0x0060) << 48); |
- |
- // Fully opaque? We know this encoding too... |
- } else if (solid && 255 == block[0]) { |
- // -1 produces the following: |
- // basw_cw: 255 |
- // mod: 15, palette: {-3, -5, -7, -9, 2, 4, 6, 8} |
- // mod_val: 8 |
- // |
- // this gives the following formula: |
- // clamp[0, 2047](255*8+4+8*8*8) = clamp[0, 2047](2556) = 2047 |
- return static_cast<uint64_t>(-1); |
+ if (solid) { |
+ switch(block[0]) { |
+ // Fully transparent? We know the encoding... |
+ case 0: |
+ // (0x0020 << 48) produces the following: |
+ // basw_cw: 0 |
+ // mod: 0, palette: {-3, -6, -9, -15, 2, 5, 8, 14} |
+ // multiplier: 2 |
+ // mod_val: -3 |
+ // |
+ // this gives the following formula: |
+ // clamp[0, 2047](0*8+4+(-3)*2*8) = 0 |
+ // |
+ // Furthermore, it is impervious to endianness: |
+ // 0x0020000000002000ULL |
+ // Will produce one pixel with index 2, which gives: |
+ // clamp[0, 2047](0*8+4+(-9)*2*8) = 0 |
+ return 0x0020000000002000ULL; |
+ |
+ // Fully opaque? We know this encoding too... |
+ case 255: |
+ |
+ // -1 produces the following: |
+ // basw_cw: 255 |
+ // mod: 15, palette: {-3, -5, -7, -9, 2, 4, 6, 8} |
+ // mod_val: 8 |
+ // |
+ // this gives the following formula: |
+ // clamp[0, 2047](255*8+4+8*8*8) = clamp[0, 2047](2556) = 2047 |
+ return 0xFFFFFFFFFFFFFFFFULL; |
+ |
+ default: |
+ // !TODO! krajcevski: |
+ // This will probably never happen, since we're using this format |
+ // primarily for compressing alpha maps. Usually the only |
+ // non-fullly opaque or fully transparent blocks are not a solid |
+ // intermediate color. If we notice that they are, then we can |
+ // add another optimization... |
+ break; |
+ } |
} |
-#if 0 |
- else if (solid) { |
- // !TODO! krajcevski: |
- // This will probably never happen, since we're using this format |
- // primarily for compressing alpha maps. Usually the only |
- // non-fullly opaque or fully transparent blocks are not a solid |
- // intermediate color. If we notice that they are, then we can |
- // add another optimization... |
- } |
+ return compress_heterogeneous_r11eac_block(block); |
+} |
+#endif // (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST) |
+ |
+#if COMPRESS_R11_EAC_FASTEST |
+static inline uint64_t interleave6(uint64_t topRows, uint64_t bottomRows) { |
+ // If our 3-bit block indices are laid out as: |
+ // a b c d |
+ // e f g h |
+ // i j k l |
+ // m n o p |
+ // |
+ // This function expects topRows and bottomRows to contain the first two rows |
+ // of indices interleaved in the least significant bits of a and b. In other words... |
+ // |
+ // If the architecture is big endian, then topRows and bottomRows will contain the following: |
+ // Bits 31-0: |
+ // a: 00 a e 00 b f 00 c g 00 d h |
+ // b: 00 i m 00 j n 00 k o 00 l p |
+ // |
+ // If the architecture is little endian, then topRows and bottomRows will contain |
+ // the following: |
+ // Bits 31-0: |
+ // a: 00 d h 00 c g 00 b f 00 a e |
+ // b: 00 l p 00 k o 00 j n 00 i m |
+ // |
+ // This function returns a 48-bit packing of the form: |
+ // a e i m b f j n c g k o d h l p |
+ // |
+ // !SPEED! this function might be even faster if certain SIMD intrinsics are |
+ // used.. |
+ |
+ // For both architectures, we can figure out a packing of the bits by |
+ // using a shuffle and a few shift-rotates... |
+ uint64_t x = (static_cast<uint64_t>(topRows) << 32) | static_cast<uint64_t>(bottomRows); |
+ |
+ // x: 00 a e 00 b f 00 c g 00 d h 00 i m 00 j n 00 k o 00 l p |
+ |
+ uint64_t t = (x ^ (x >> 10)) & 0x3FC0003FC00000ULL; |
+ x = x ^ t ^ (t << 10); |
+ |
+ // x: b f 00 00 00 a e c g i m 00 00 00 d h j n 00 k o 00 l p |
+ |
+ x |= ((x << 52) & (0x3FULL << 52)); |
+ x = (x | ((x << 20) & (0x3FULL << 28))) >> 16; |
+ |
+#if defined (SK_CPU_BENDIAN) |
+ // x: 00 00 00 00 00 00 00 00 b f l p a e c g i m k o d h j n |
+ |
+ t = (x ^ (x >> 6)) & 0xFC0000ULL; |
+ x = x ^ t ^ (t << 6); |
+ |
+ // x: 00 00 00 00 00 00 00 00 b f l p a e i m c g k o d h j n |
+ |
+ t = (x ^ (x >> 36)) & 0x3FULL; |
+ x = x ^ t ^ (t << 36); |
+ |
+ // x: 00 00 00 00 00 00 00 00 b f j n a e i m c g k o d h l p |
+ |
+ t = (x ^ (x >> 12)) & 0xFFF000000ULL; |
+ x = x ^ t ^ (t << 12); |
+ |
+ // x: 00 00 00 00 00 00 00 00 a e i m b f j n c g k o d h l p |
+ return x; |
+#else |
+ // If our CPU is little endian, then the above logic will |
+ // produce the following indices: |
+ // x: 00 00 00 00 00 00 00 00 c g i m d h b f l p j n a e k o |
+ |
+ t = (x ^ (x >> 6)) & 0xFC0000ULL; |
+ x = x ^ t ^ (t << 6); |
+ |
+ // x: 00 00 00 00 00 00 00 00 c g i m d h l p b f j n a e k o |
+ |
+ t = (x ^ (x >> 36)) & 0xFC0ULL; |
+ x = x ^ t ^ (t << 36); |
+ |
+ // x: 00 00 00 00 00 00 00 00 a e i m d h l p b f j n c g k o |
+ |
+ x = (x & (0xFFFULL << 36)) | ((x & 0xFFFFFFULL) << 12) | ((x >> 24) & 0xFFFULL); |
+ |
+ // x: 00 00 00 00 00 00 00 00 a e i m b f j n c g k o d h l p |
+ |
+ return x; |
#endif |
+} |
- return compress_heterogeneous_r11eac_block(block); |
+// This function converts an integer containing four bytes of alpha |
+// values into an integer containing four bytes of indices into R11 EAC. |
+// Note, there needs to be a mapping of indices: |
+// 0 1 2 3 4 5 6 7 |
+// 3 2 1 0 4 5 6 7 |
+// |
+// To compute this, we first negate each byte, and then add three, which |
+// gives the mapping |
+// 3 2 1 0 -1 -2 -3 -4 |
+// |
+// Then we mask out the negative values, take their absolute value, and |
+// add three. |
+// |
+// Most of the voodoo in this function comes from Hacker's Delight, section 2-18 |
+static inline uint32_t convert_indices(uint32_t x) { |
+ // Take the top three bits... |
+ x = (x & 0xE0E0E0E0) >> 5; |
+ |
+ // Negate... |
+ x = ~((0x80808080 - x) ^ 0x7F7F7F7F); |
+ |
+ // Add three |
+ const uint32_t s = (x & 0x7F7F7F7F) + 0x03030303; |
+ x = ((x ^ 0x03030303) & 0x80808080) ^ s; |
+ |
+ // Absolute value |
+ const uint32_t a = x & 0x80808080; |
+ const uint32_t b = a >> 7; |
+ |
+ // Aside: mask negatives (m is three if the byte was negative) |
+ const uint32_t m = (a >> 6) | b; |
+ |
+ // .. continue absolute value |
+ x = (x ^ ((a - b) | a)) + b; |
+ |
+ // Add three |
+ return x + m; |
+} |
+ |
+// This function follows the same basic procedure as compress_heterogeneous_r11eac_block |
+// above when COMPRESS_R11_EAC_FAST is defined, but it avoids a few loads/stores and |
+// tries to optimize where it can using SIMD. |
+static uint64_t compress_r11eac_block_fast(const uint8_t* src, int rowBytes) { |
+ // Store each row of alpha values in an integer |
+ const uint32_t alphaRow1 = *(reinterpret_cast<const uint32_t*>(src)); |
+ const uint32_t alphaRow2 = *(reinterpret_cast<const uint32_t*>(src + rowBytes)); |
+ const uint32_t alphaRow3 = *(reinterpret_cast<const uint32_t*>(src + 2*rowBytes)); |
+ const uint32_t alphaRow4 = *(reinterpret_cast<const uint32_t*>(src + 3*rowBytes)); |
+ |
+ // Check for solid blocks. The explanations for these values |
+ // can be found in the comments of compress_r11eac_block above |
+ if (alphaRow1 == alphaRow2 && alphaRow1 == alphaRow3 && alphaRow1 == alphaRow4) { |
+ if (0 == alphaRow1) { |
+ // Fully transparent block |
+ return 0x0020000000002000ULL; |
+ } else if (0xFFFFFFFF == alphaRow1) { |
+ // Fully opaque block |
+ return 0xFFFFFFFFFFFFFFFFULL; |
+ } |
+ } |
+ |
+ // Convert each integer of alpha values into an integer of indices |
+ const uint32_t indexRow1 = convert_indices(alphaRow1); |
+ const uint32_t indexRow2 = convert_indices(alphaRow2); |
+ const uint32_t indexRow3 = convert_indices(alphaRow3); |
+ const uint32_t indexRow4 = convert_indices(alphaRow4); |
+ |
+ // Interleave the indices from the top two rows and bottom two rows |
+ // prior to passing them to interleave6. Since each index is at most |
+ // three bits, then each byte can hold two indices... The way that the |
+ // compression scheme expects the packing allows us to efficiently pack |
+ // the top two rows and bottom two rows. Interleaving each 6-bit sequence |
+ // and tightly packing it into a uint64_t is a little trickier, which is |
+ // taken care of in interleave6. |
+ const uint32_t r1r2 = (indexRow1 << 3) | indexRow2; |
+ const uint32_t r3r4 = (indexRow3 << 3) | indexRow4; |
+ const uint64_t indices = interleave6(r1r2, r3r4); |
+ |
+ // Return the packed incdices in the least significant bits with the magic header |
+ return SkEndian_SwapBE64(0x8490000000000000ULL | indices); |
+} |
+ |
+static bool compress_a8_to_r11eac_fast(uint8_t* dst, const uint8_t* src, |
+ int width, int height, int rowBytes) { |
+ // Make sure that our data is well-formed enough to be considered for compression |
+ if (0 == width || 0 == height || (width % 4) != 0 || (height % 4) != 0) { |
+ return false; |
+ } |
+ |
+ const int blocksX = width >> 2; |
+ const int blocksY = height >> 2; |
+ |
+ uint64_t* encPtr = reinterpret_cast<uint64_t*>(dst); |
+ for (int y = 0; y < blocksY; ++y) { |
+ for (int x = 0; x < blocksX; ++x) { |
+ // Compress it |
+ *encPtr = compress_r11eac_block_fast(src + 4*x, rowBytes); |
+ ++encPtr; |
+ } |
+ src += 4 * rowBytes; |
+ } |
+ return true; |
} |
+#endif // COMPRESS_R11_EAC_FASTEST |
-static bool compress_a8_to_r11eac(uint8_t* dst, const uint8_t* src, |
- int width, int height, int rowBytes) { |
+static inline bool compress_a8_to_r11eac(uint8_t* dst, const uint8_t* src, |
+ int width, int height, int rowBytes) { |
+#if (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST) |
return compress_4x4_a8_to_64bit(dst, src, width, height, rowBytes, compress_r11eac_block); |
+#elif COMPRESS_R11_EAC_FASTEST |
+ return compress_a8_to_r11eac_fast(dst, src, width, height, rowBytes); |
+#else |
+#error "Must choose R11 EAC algorithm" |
+#endif |
} |
//////////////////////////////////////////////////////////////////////////////// |
namespace SkTextureCompressor { |
-static size_t get_compressed_data_size(Format fmt, int width, int height) { |
+static inline size_t get_compressed_data_size(Format fmt, int width, int height) { |
switch (fmt) { |
+ // These formats are 64 bits per 4x4 block. |
case kR11_EAC_Format: |
case kLATC_Format: |
{ |
- // The LATC format is 64 bits per 4x4 block. |
static const int kLATCEncodedBlockSize = 8; |
- int blocksX = width / kLATCBlockSize; |
- int blocksY = height / kLATCBlockSize; |
+ const int blocksX = width / kLATCBlockSize; |
+ const int blocksY = height / kLATCBlockSize; |
return blocksX * blocksY * kLATCEncodedBlockSize; |
} |
@@ -520,7 +781,7 @@ bool CompressBufferToFormat(uint8_t* dst, const uint8_t* src, SkColorType srcCol |
kProcMap[kLATC_Format][kAlpha_8_SkColorType] = compress_a8_to_latc; |
kProcMap[kR11_EAC_Format][kAlpha_8_SkColorType] = compress_a8_to_r11eac; |
- |
+ |
CompressBitmapProc proc = kProcMap[format][srcColorType]; |
if (NULL != proc) { |
return proc(dst, src, width, height, rowBytes); |