Chromium Code Reviews| OLD | NEW |
|---|---|
| 1 /* | 1 /* |
| 2 * Copyright 2014 Google Inc. | 2 * Copyright 2014 Google Inc. |
| 3 * | 3 * |
| 4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
| 5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
| 6 */ | 6 */ |
| 7 | 7 |
| 8 #include "SkTextureCompressor.h" | 8 #include "SkTextureCompressor.h" |
| 9 | 9 |
| 10 #include "SkBitmap.h" | 10 #include "SkBitmap.h" |
| (...skipping 262 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 273 // This is really just for correctness, in all of my tests we | 273 // This is really just for correctness, in all of my tests we |
| 274 // never take this step. We don't lose too much perf here because | 274 // never take this step. We don't lose too much perf here because |
| 275 // most of the processing in this function is worth it for the | 275 // most of the processing in this function is worth it for the |
| 276 // 1 == nUniquePixels optimization. | 276 // 1 == nUniquePixels optimization. |
| 277 return compress_latc_block_bb(pixels); | 277 return compress_latc_block_bb(pixels); |
| 278 } else { | 278 } else { |
| 279 return compress_latc_block_bb_ignore_extremal(pixels); | 279 return compress_latc_block_bb_ignore_extremal(pixels); |
| 280 } | 280 } |
| 281 } | 281 } |
| 282 | 282 |
| 283 static bool compress_a8_to_latc(uint8_t* dst, const uint8_t* src, | 283 static inline bool compress_a8_to_latc(uint8_t* dst, const uint8_t* src, |
| 284 int width, int height, int rowBytes) { | 284 int width, int height, int rowBytes) { |
| 285 return compress_4x4_a8_to_64bit(dst, src, width, height, rowBytes, compress_ latc_block); | 285 return compress_4x4_a8_to_64bit(dst, src, width, height, rowBytes, compress_ latc_block); |
| 286 } | 286 } |
| 287 | 287 |
| 288 //////////////////////////////////////////////////////////////////////////////// | 288 //////////////////////////////////////////////////////////////////////////////// |
| 289 // | 289 // |
| 290 // R11 EAC Compressor | 290 // R11 EAC Compressor |
| 291 // | 291 // |
| 292 //////////////////////////////////////////////////////////////////////////////// | 292 //////////////////////////////////////////////////////////////////////////////// |
| 293 | 293 |
| 294 // #define COMPRESS_R11_EAC_SLOW 1 | |
| 295 // #define COMPRESS_R11_EAC_FAST 1 | |
| 296 #define COMPRESS_R11_EAC_FASTEST 1 | |
| 297 | |
| 294 // Blocks compressed into R11 EAC are represented as follows: | 298 // Blocks compressed into R11 EAC are represented as follows: |
| 295 // 0000000000000000000000000000000000000000000000000000000000000000 | 299 // 0000000000000000000000000000000000000000000000000000000000000000 |
| 296 // |base_cw|mod|mul| ----------------- indices ------------------- | 300 // |base_cw|mod|mul| ----------------- indices ------------------- |
| 297 // | 301 // |
| 298 // To reconstruct the value of a given pixel, we use the formula: | 302 // To reconstruct the value of a given pixel, we use the formula: |
| 299 // clamp[0, 2047](base_cw * 8 + 4 + mod_val*mul*8) | 303 // clamp[0, 2047](base_cw * 8 + 4 + mod_val*mul*8) |
| 300 // | 304 // |
| 301 // mod_val is chosen from a palette of values based on the index of the | 305 // mod_val is chosen from a palette of values based on the index of the |
| 302 // given pixel. The palette is chosen by the value stored in mod. | 306 // given pixel. The palette is chosen by the value stored in mod. |
| 303 // This formula returns a value between 0 and 2047, which is converted | 307 // This formula returns a value between 0 and 2047, which is converted |
| (...skipping 16 matching lines...) Expand all Loading... | |
| 320 {-2, -6, -8, -10, 1, 5, 7, 9}, | 324 {-2, -6, -8, -10, 1, 5, 7, 9}, |
| 321 {-2, -5, -8, -10, 1, 4, 7, 9}, | 325 {-2, -5, -8, -10, 1, 4, 7, 9}, |
| 322 {-2, -4, -8, -10, 1, 3, 7, 9}, | 326 {-2, -4, -8, -10, 1, 3, 7, 9}, |
| 323 {-2, -5, -7, -10, 1, 4, 6, 9}, | 327 {-2, -5, -7, -10, 1, 4, 6, 9}, |
| 324 {-3, -4, -7, -10, 2, 3, 6, 9}, | 328 {-3, -4, -7, -10, 2, 3, 6, 9}, |
| 325 {-1, -2, -3, -10, 0, 1, 2, 9}, | 329 {-1, -2, -3, -10, 0, 1, 2, 9}, |
| 326 {-4, -6, -8, -9, 3, 5, 7, 8}, | 330 {-4, -6, -8, -9, 3, 5, 7, 8}, |
| 327 {-3, -5, -7, -9, 2, 4, 6, 8} | 331 {-3, -5, -7, -9, 2, 4, 6, 8} |
| 328 }; | 332 }; |
| 329 | 333 |
| 334 #if COMPRESS_R11_EAC_SLOW | |
| 330 // Pack the base codeword, palette, and multiplier into the 64 bits necessary | 335 // Pack the base codeword, palette, and multiplier into the 64 bits necessary |
| 331 // to decode it. | 336 // to decode it. |
| 332 static uint64_t pack_r11eac_block(uint16_t base_cw, uint16_t palette, uint16_t m ultiplier, | 337 static uint64_t pack_r11eac_block(uint16_t base_cw, uint16_t palette, uint16_t m ultiplier, |
| 333 uint64_t indices) { | 338 uint64_t indices) { |
| 334 SkASSERT(palette < 16); | 339 SkASSERT(palette < 16); |
| 335 SkASSERT(multiplier < 16); | 340 SkASSERT(multiplier < 16); |
| 336 SkASSERT(indices < (static_cast<uint64_t>(1) << 48)); | 341 SkASSERT(indices < (static_cast<uint64_t>(1) << 48)); |
| 337 | 342 |
| 338 const uint64_t b = static_cast<uint64_t>(base_cw) << 56; | 343 const uint64_t b = static_cast<uint64_t>(base_cw) << 56; |
| 339 const uint64_t m = static_cast<uint64_t>(multiplier) << 52; | 344 const uint64_t m = static_cast<uint64_t>(multiplier) << 52; |
| 340 const uint64_t p = static_cast<uint64_t>(palette) << 48; | 345 const uint64_t p = static_cast<uint64_t>(palette) << 48; |
| 341 return SkEndian_SwapBE64(b | m | p | indices); | 346 return SkEndian_SwapBE64(b | m | p | indices); |
| 342 } | 347 } |
| 343 | 348 |
| 344 // Given a base codeword, a modifier, and a multiplier, compute the proper | 349 // Given a base codeword, a modifier, and a multiplier, compute the proper |
| 345 // pixel value in the range [0, 2047]. | 350 // pixel value in the range [0, 2047]. |
| 346 static uint16_t compute_r11eac_pixel(int base_cw, int modifier, int multiplier) { | 351 static uint16_t compute_r11eac_pixel(int base_cw, int modifier, int multiplier) { |
| 347 int ret = (base_cw * 8 + 4) + (modifier * multiplier * 8); | 352 int ret = (base_cw * 8 + 4) + (modifier * multiplier * 8); |
| 348 return (ret > 2047)? 2047 : ((ret < 0)? 0 : ret); | 353 return (ret > 2047)? 2047 : ((ret < 0)? 0 : ret); |
| 349 } | 354 } |
| 350 | 355 |
| 351 // Compress a block into R11 EAC format. | 356 // Compress a block into R11 EAC format. |
| 352 // The compression works as follows: | 357 // The compression works as follows: |
| 353 // 1. Find the center of the span of the block's values. Use this as the base co deword. | 358 // 1. Find the center of the span of the block's values. Use this as the base co deword. |
| 354 // 2. Choose a multiplier based roughly on the size of the span of block values | 359 // 2. Choose a multiplier based roughly on the size of the span of block values |
| 355 // 3. Iterate through each palette and choose the one with the most accurate | 360 // 3. Iterate through each palette and choose the one with the most accurate |
| 356 // modifiers. | 361 // modifiers. |
| 357 static uint64_t compress_heterogeneous_r11eac_block(const uint8_t block[16]) { | 362 static inline uint64_t compress_heterogeneous_r11eac_block(const uint8_t block[1 6]) { |
| 358 // Find the center of the data... | 363 // Find the center of the data... |
| 359 uint16_t bmin = block[0]; | 364 uint16_t bmin = block[0]; |
| 360 uint16_t bmax = block[0]; | 365 uint16_t bmax = block[0]; |
| 361 for (int i = 1; i < 16; ++i) { | 366 for (int i = 1; i < 16; ++i) { |
| 362 bmin = SkTMin<uint16_t>(bmin, block[i]); | 367 bmin = SkTMin<uint16_t>(bmin, block[i]); |
| 363 bmax = SkTMax<uint16_t>(bmax, block[i]); | 368 bmax = SkTMax<uint16_t>(bmax, block[i]); |
| 364 } | 369 } |
| 365 | 370 |
| 366 uint16_t center = (bmax + bmin) >> 1; | 371 uint16_t center = (bmax + bmin) >> 1; |
| 367 SkASSERT(center <= 255); | 372 SkASSERT(center <= 255); |
| (...skipping 57 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 425 if (error < bestError) { | 430 if (error < bestError) { |
| 426 bestPalette = paletteIdx; | 431 bestPalette = paletteIdx; |
| 427 bestIndices = indices; | 432 bestIndices = indices; |
| 428 bestError = error; | 433 bestError = error; |
| 429 } | 434 } |
| 430 } | 435 } |
| 431 | 436 |
| 432 // Finally, pack everything together... | 437 // Finally, pack everything together... |
| 433 return pack_r11eac_block(center, bestPalette, multiplier, bestIndices); | 438 return pack_r11eac_block(center, bestPalette, multiplier, bestIndices); |
| 434 } | 439 } |
| 440 #endif // COMPRESS_R11_EAC_SLOW | |
| 435 | 441 |
| 442 #if COMPRESS_R11_EAC_FAST | |
|
robertphillips
2014/07/09 12:24:25
// This works by ... ?
krajcevski
2014/07/09 15:18:08
Done.
| |
| 443 static inline uint64_t compress_heterogeneous_r11eac_block(const uint8_t block[1 6]) { | |
| 444 uint64_t retVal = static_cast<uint64_t>(0x8490) << 48; | |
| 445 for(int i = 0; i < 4; ++i) { | |
| 446 for(int j = 0; j < 4; ++j) { | |
| 447 const int shift = 45-3*(j*4+i); | |
| 448 SkASSERT(shift <= 45); | |
| 449 const uint64_t idx = block[i*4+j] >> 5; | |
| 450 SkASSERT(idx < 8); | |
| 451 switch(idx) { | |
|
robertphillips
2014/07/09 12:24:26
each of these guys on their own line ?
krajcevski
2014/07/09 15:18:07
Done.
| |
| 452 case 0: case 1: case 2: case 3: | |
| 453 retVal |= (3-idx) << shift; | |
| 454 break; | |
| 455 default: | |
| 456 retVal |= idx << shift; | |
| 457 break; | |
| 458 } | |
| 459 } | |
| 460 } | |
| 461 | |
| 462 return SkEndian_SwapBE64(retVal); | |
| 463 } | |
| 464 #endif // COMPRESS_R11_EAC_FAST | |
| 465 | |
| 466 #if (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST) | |
| 436 static uint64_t compress_r11eac_block(const uint8_t block[16]) { | 467 static uint64_t compress_r11eac_block(const uint8_t block[16]) { |
| 437 // Are all blocks a solid color? | 468 // Are all blocks a solid color? |
| 438 bool solid = true; | 469 bool solid = true; |
| 439 for (int i = 1; i < 16; ++i) { | 470 for (int i = 1; i < 16; ++i) { |
| 440 if (block[i] != block[0]) { | 471 if (block[i] != block[0]) { |
| 441 solid = false; | 472 solid = false; |
| 442 break; | 473 break; |
| 443 } | 474 } |
| 444 } | 475 } |
| 445 | 476 |
| 446 // Fully transparent? We know the encoding... | 477 if (solid) { |
| 447 if (solid && 0 == block[0]) { | 478 switch(block[0]) { |
| 448 // (0x0060 << 48) produces the following: | 479 // Fully transparent? We know the encoding... |
| 449 // basw_cw: 0 | 480 case 0: |
| 450 // mod: 6, palette: {-4, -7, -8, -11, 3, 6, 7, 10} | 481 // (0x0020 << 48) produces the following: |
| 451 // mod_val: -3 | 482 // basw_cw: 0 |
| 452 // | 483 // mod: 0, palette: {-3, -6, -9, -15, 2, 5, 8, 14} |
| 453 // this gives the following formula: | 484 // multiplier: 2 |
| 454 // clamp[0, 2047](0*8+4+(-4)) = 0 | 485 // mod_val: -3 |
| 455 return SkEndian_SwapBE64(static_cast<uint64_t>(0x0060) << 48); | 486 // |
| 456 | 487 // this gives the following formula: |
| 457 // Fully opaque? We know this encoding too... | 488 // clamp[0, 2047](0*8+4+(-3)*2*8) = 0 |
| 458 } else if (solid && 255 == block[0]) { | 489 // |
| 459 // -1 produces the following: | 490 // Furthermore, it is impervious to endianness: |
| 460 // basw_cw: 255 | 491 // 0x0020000000002000ULL |
| 461 // mod: 15, palette: {-3, -5, -7, -9, 2, 4, 6, 8} | 492 // Will produce one pixel with index 2, which gives: |
| 462 // mod_val: 8 | 493 // clamp[0, 2047](0*8+4+(-9)*2*8) = 0 |
| 463 // | 494 return 0x0020000000002000ULL; |
| 464 // this gives the following formula: | 495 |
| 465 // clamp[0, 2047](255*8+4+8*8*8) = clamp[0, 2047](2556) = 2047 | 496 // Fully opaque? We know this encoding too... |
| 466 return static_cast<uint64_t>(-1); | 497 case 255: |
| 467 } | 498 |
| 468 | 499 // -1 produces the following: |
| 469 #if 0 | 500 // basw_cw: 255 |
| 470 else if (solid) { | 501 // mod: 15, palette: {-3, -5, -7, -9, 2, 4, 6, 8} |
| 471 // !TODO! krajcevski: | 502 // mod_val: 8 |
| 472 // This will probably never happen, since we're using this format | 503 // |
| 473 // primarily for compressing alpha maps. Usually the only | 504 // this gives the following formula: |
| 474 // non-fullly opaque or fully transparent blocks are not a solid | 505 // clamp[0, 2047](255*8+4+8*8*8) = clamp[0, 2047](2556) = 2047 |
| 475 // intermediate color. If we notice that they are, then we can | 506 return -1ULL; |
| 476 // add another optimization... | 507 |
| 477 } | 508 default: |
| 509 // !TODO! krajcevski: | |
| 510 // This will probably never happen, since we're using this forma t | |
| 511 // primarily for compressing alpha maps. Usually the only | |
| 512 // non-fullly opaque or fully transparent blocks are not a solid | |
| 513 // intermediate color. If we notice that they are, then we can | |
| 514 // add another optimization... | |
| 515 break; | |
| 516 } | |
| 517 } | |
| 518 | |
| 519 return compress_heterogeneous_r11eac_block(block); | |
| 520 } | |
| 521 #endif // (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST) | |
| 522 | |
| 523 #if COMPRESS_R11_EAC_FASTEST | |
| 524 static inline uint64_t interleave6(uint64_t a, uint64_t b) { | |
| 525 // If our block indices are laid out as: | |
| 526 // a b c d | |
| 527 // e f g h | |
| 528 // i j k l | |
| 529 // m n o p | |
| 530 // | |
|
robertphillips
2014/07/09 12:24:25
May want to pick different input names. 'a' and 'b
krajcevski
2014/07/09 15:18:08
Done.
| |
| 531 // This function expects a and b to contain the first two rows interleaved | |
| 532 // in the least significant bits of a and b. In other words... | |
| 533 // | |
| 534 // If the architecture is big endian, then a and b will contain the followin g: | |
| 535 // Bits 0-31: | |
| 536 // a: 00 a e 00 b f 00 c g 00 d h | |
| 537 // b: 00 i m 00 j n 00 k o 00 l p | |
| 538 // | |
| 539 // If the architecture is little endian, then a and b will contain the follo wing: | |
| 540 // Bits 0-31: | |
| 541 // a: 00 d h 00 c g 00 b f 00 a e | |
| 542 // b: 00 l p 00 k o 00 j n 00 i m | |
| 543 // | |
| 544 // This function returns a packing of the form: | |
| 545 // a e i m b f j n c g k o d h l p | |
| 546 // | |
| 547 // !SPEED! this function might be even faster if certain SIMD intrinsics are | |
| 548 // used.. | |
| 549 | |
| 550 // For both architectures, we can figure out a packing of the bits by | |
| 551 // using a shuffle and a few shift-rotates... | |
| 552 uint64_t x = (static_cast<uint64_t>(a) << 32) | static_cast<uint64_t>(b); | |
| 553 | |
| 554 // x: 00 a e 00 b f 00 c g 00 d h 00 i m 00 j n 00 k o 00 l p | |
| 555 | |
| 556 uint64_t t = (x ^ (x >> 10)) & 0x3FC0003FC00000ULL; | |
| 557 x = x ^ t ^ (t << 10); | |
| 558 | |
| 559 // x: b f 00 00 00 a e c g i m 00 00 00 d h j n 00 k o 00 l p | |
| 560 | |
| 561 x |= ((x << 52) & (0x3FULL << 52)); | |
| 562 x = (x | ((x << 20) & (0x3FULL << 28))) >> 16; | |
| 563 | |
| 564 #if defined (SK_CPU_BENDIAN) | |
| 565 // x: 00 00 00 00 00 00 00 00 b f l p a e c g i m k o d h j n | |
| 566 | |
| 567 t = (x ^ (x >> 6)) & 0xFC0000ULL; | |
| 568 x = x ^ t ^ (t << 6); | |
| 569 | |
| 570 // x: 00 00 00 00 00 00 00 00 b f l p a e i m c g k o d h j n | |
| 571 | |
| 572 t = (x ^ (x >> 36)) & 0x3FULL; | |
| 573 x = x ^ t ^ (t << 36); | |
| 574 | |
| 575 // x: 00 00 00 00 00 00 00 00 b f j n a e i m c g k o d h l p | |
| 576 | |
| 577 t = (x ^ (x >> 12)) & 0xFFF000000ULL; | |
| 578 x = x ^ t ^ (t << 12); | |
| 579 | |
| 580 // x: 00 00 00 00 00 00 00 00 a e i m b f j n c g k o d h l p | |
| 581 return x; | |
| 582 #else | |
| 583 // If our CPU is little endian, then the above logic will | |
| 584 // produce the following indices: | |
| 585 // x: 00 00 00 00 00 00 00 00 c g i m d h b f l p j n a e k o | |
| 586 | |
| 587 t = (x ^ (x >> 6)) & 0xFC0000ULL; | |
| 588 x = x ^ t ^ (t << 6); | |
| 589 | |
| 590 // x: 00 00 00 00 00 00 00 00 c g i m d h l p b f j n a e k o | |
| 591 | |
| 592 t = (x ^ (x >> 36)) & 0xFC0ULL; | |
| 593 x = x ^ t ^ (t << 36); | |
| 594 | |
| 595 // x: 00 00 00 00 00 00 00 00 a e i m d h l p b f j n c g k o | |
| 596 | |
| 597 x = (x & (0xFFFULL << 36)) | ((x & 0xFFFFFFULL) << 12) | ((x >> 24) & 0xFFFU LL); | |
| 598 | |
| 599 // x: 00 00 00 00 00 00 00 00 a e i m b f j n c g k o d h l p | |
| 600 | |
| 601 return x; | |
| 478 #endif | 602 #endif |
| 479 | 603 } |
| 480 return compress_heterogeneous_r11eac_block(block); | 604 |
| 481 } | 605 // This function converts an integer containing four bytes of alpha |
| 482 | 606 // values into an integer containing four bytes of indices into R11 EAC. |
| 483 static bool compress_a8_to_r11eac(uint8_t* dst, const uint8_t* src, | 607 // Note, there needs to be a mapping of indices: |
| 484 int width, int height, int rowBytes) { | 608 // 0 1 2 3 4 5 6 7 |
| 609 // 3 2 1 0 4 5 6 7 | |
| 610 // | |
| 611 // To compute this, we first negate each byte, and then add three, which | |
| 612 // gives the mapping | |
| 613 // 3 2 1 0 -1 -2 -3 -4 | |
| 614 // | |
| 615 // Then we mask out the negative values, take their absolute value, and | |
| 616 // add three. | |
| 617 // | |
| 618 // Most of the voodoo in this function comes from Hacker's Delight, section 2-18 | |
|
robertphillips
2014/07/09 12:24:26
inline ?
krajcevski
2014/07/09 15:18:07
Done.
| |
| 619 static uint32_t convert_indices(uint32_t x) { | |
| 620 // Take the top three bits... | |
| 621 x = (x & 0xE0E0E0E0) >> 5; | |
| 622 | |
| 623 // Negate... | |
| 624 x = ~((0x80808080 - x) ^ 0x7F7F7F7F); | |
| 625 | |
| 626 // Add three | |
| 627 uint32_t s = (x & 0x7F7F7F7F) + 0x03030303; | |
| 628 x = ((x ^ 0x03030303) & 0x80808080) ^ s; | |
| 629 | |
| 630 // Absolute value | |
| 631 uint32_t a = x & 0x80808080; | |
| 632 | |
| 633 // Aside: mask negatives (m is three if the byte was negative) | |
| 634 uint32_t m = a >> 6; | |
| 635 m |= m >> 1; | |
| 636 | |
| 637 // .. continue absolute value | |
| 638 uint32_t b = a >> 7; | |
| 639 x = (x ^ ((a - b) | a)) + b; | |
| 640 | |
| 641 // Add three | |
| 642 return x + m; | |
| 643 } | |
| 644 | |
| 645 static uint64_t compress_r11eac_block_fast(const uint8_t* src, int rowBytes) { | |
|
robertphillips
2014/07/09 12:24:26
ri* -> inputRow* ?
ri* -> alphaRow* ?
krajcevski
2014/07/09 15:18:08
Done.
| |
| 646 const uint32_t ri1 = *(reinterpret_cast<const uint32_t*>(src)); | |
| 647 const uint32_t ri2 = *(reinterpret_cast<const uint32_t*>(src + rowBytes)); | |
| 648 const uint32_t ri3 = *(reinterpret_cast<const uint32_t*>(src + 2*rowBytes)); | |
| 649 const uint32_t ri4 = *(reinterpret_cast<const uint32_t*>(src + 3*rowBytes)); | |
| 650 | |
| 651 if (ri1 == ri2 && ri1 == ri3 && ri1 == ri4) { | |
| 652 if (0 == ri1) { | |
|
robertphillips
2014/07/09 12:24:26
// Fully transparent block ?
krajcevski
2014/07/09 15:18:07
Done.
| |
| 653 return 0x0020000000002000ULL; | |
| 654 } else if (0xFFFFFFFF == ri1) { | |
|
robertphillips
2014/07/09 12:24:25
// Fully opaque block ?
krajcevski
2014/07/09 15:18:08
Done.
| |
| 655 return -1ULL; | |
| 656 } | |
| 657 } | |
| 658 | |
|
robertphillips
2014/07/09 12:24:26
r* -> indexRow* ?
krajcevski
2014/07/09 15:18:08
Done.
| |
| 659 const uint32_t r1 = convert_indices(ri1); | |
| 660 const uint32_t r2 = convert_indices(ri2); | |
| 661 const uint32_t r3 = convert_indices(ri3); | |
| 662 const uint32_t r4 = convert_indices(ri4); | |
|
robertphillips
2014/07/09 12:24:26
// comment ?
krajcevski
2014/07/09 15:18:07
Done.
| |
| 663 const uint32_t r1r2 = (r1 << 3) | r2; | |
| 664 const uint32_t r3r4 = (r3 << 3) | r4; | |
| 665 const uint64_t indices = interleave6(r1r2, r3r4); | |
|
robertphillips
2014/07/09 12:24:25
// comment ?
krajcevski
2014/07/09 15:18:08
Done.
| |
| 666 return SkEndian_SwapBE64(0x8490000000000000ULL | indices); | |
| 667 } | |
| 668 | |
| 669 static bool compress_a8_to_r11eac_fast(uint8_t* dst, const uint8_t* src, | |
| 670 int width, int height, int rowBytes) { | |
| 671 // Make sure that our data is well-formed enough to be considered for compre ssion | |
| 672 if (0 == width || 0 == height || (width % 4) != 0 || (height % 4) != 0) { | |
| 673 return false; | |
| 674 } | |
| 675 | |
|
robertphillips
2014/07/09 12:24:25
const ?
krajcevski
2014/07/09 15:18:07
Done.
| |
| 676 int blocksX = width >> 2; | |
| 677 int blocksY = height >> 2; | |
| 678 | |
| 679 uint64_t* encPtr = reinterpret_cast<uint64_t*>(dst); | |
| 680 for (int y = 0; y < blocksY; ++y) { | |
| 681 for (int x = 0; x < blocksX; ++x) { | |
| 682 // Compress it | |
| 683 *encPtr = compress_r11eac_block_fast(src + 4*x, rowBytes); | |
| 684 ++encPtr; | |
| 685 } | |
| 686 src += 4 * rowBytes; | |
| 687 } | |
| 688 return true; | |
| 689 } | |
| 690 #endif // COMPRESS_R11_EAC_FASTEST | |
| 691 | |
| 692 static inline bool compress_a8_to_r11eac(uint8_t* dst, const uint8_t* src, | |
| 693 int width, int height, int rowBytes) { | |
| 694 #if (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST) | |
| 485 return compress_4x4_a8_to_64bit(dst, src, width, height, rowBytes, compress_ r11eac_block); | 695 return compress_4x4_a8_to_64bit(dst, src, width, height, rowBytes, compress_ r11eac_block); |
| 696 #elif COMPRESS_R11_EAC_FASTEST | |
| 697 return compress_a8_to_r11eac_fast(dst, src, width, height, rowBytes); | |
| 698 #else | |
| 699 #error "Must choose R11 EAC algorithm" | |
| 700 #endif | |
| 486 } | 701 } |
| 487 | 702 |
| 488 //////////////////////////////////////////////////////////////////////////////// | 703 //////////////////////////////////////////////////////////////////////////////// |
| 489 | 704 |
| 490 namespace SkTextureCompressor { | 705 namespace SkTextureCompressor { |
| 491 | 706 |
| 492 static size_t get_compressed_data_size(Format fmt, int width, int height) { | 707 static inline size_t get_compressed_data_size(Format fmt, int width, int height) { |
| 493 switch (fmt) { | 708 switch (fmt) { |
| 709 // These formats are 64 bits per 4x4 block. | |
| 494 case kR11_EAC_Format: | 710 case kR11_EAC_Format: |
| 495 case kLATC_Format: | 711 case kLATC_Format: |
| 496 { | 712 { |
| 497 // The LATC format is 64 bits per 4x4 block. | |
| 498 static const int kLATCEncodedBlockSize = 8; | 713 static const int kLATCEncodedBlockSize = 8; |
| 499 | 714 |
| 500 int blocksX = width / kLATCBlockSize; | 715 const int blocksX = width / kLATCBlockSize; |
| 501 int blocksY = height / kLATCBlockSize; | 716 const int blocksY = height / kLATCBlockSize; |
| 502 | 717 |
| 503 return blocksX * blocksY * kLATCEncodedBlockSize; | 718 return blocksX * blocksY * kLATCEncodedBlockSize; |
| 504 } | 719 } |
| 505 | 720 |
| 506 default: | 721 default: |
| 507 SkFAIL("Unknown compressed format!"); | 722 SkFAIL("Unknown compressed format!"); |
| 508 return 0; | 723 return 0; |
| 509 } | 724 } |
| 510 } | 725 } |
| 511 | 726 |
| 512 typedef bool (*CompressBitmapProc)(uint8_t* dst, const uint8_t* src, | 727 typedef bool (*CompressBitmapProc)(uint8_t* dst, const uint8_t* src, |
| 513 int width, int height, int rowBytes); | 728 int width, int height, int rowBytes); |
| 514 | 729 |
| 515 bool CompressBufferToFormat(uint8_t* dst, const uint8_t* src, SkColorType srcCol orType, | 730 bool CompressBufferToFormat(uint8_t* dst, const uint8_t* src, SkColorType srcCol orType, |
| 516 int width, int height, int rowBytes, Format format) { | 731 int width, int height, int rowBytes, Format format) { |
| 517 | 732 |
| 518 CompressBitmapProc kProcMap[kFormatCnt][kLastEnum_SkColorType + 1]; | 733 CompressBitmapProc kProcMap[kFormatCnt][kLastEnum_SkColorType + 1]; |
| 519 memset(kProcMap, 0, sizeof(kProcMap)); | 734 memset(kProcMap, 0, sizeof(kProcMap)); |
| 520 | 735 |
| 521 kProcMap[kLATC_Format][kAlpha_8_SkColorType] = compress_a8_to_latc; | 736 kProcMap[kLATC_Format][kAlpha_8_SkColorType] = compress_a8_to_latc; |
| 522 kProcMap[kR11_EAC_Format][kAlpha_8_SkColorType] = compress_a8_to_r11eac; | 737 kProcMap[kR11_EAC_Format][kAlpha_8_SkColorType] = compress_a8_to_r11eac; |
| 523 | 738 |
| 524 CompressBitmapProc proc = kProcMap[format][srcColorType]; | 739 CompressBitmapProc proc = kProcMap[format][srcColorType]; |
| 525 if (NULL != proc) { | 740 if (NULL != proc) { |
| 526 return proc(dst, src, width, height, rowBytes); | 741 return proc(dst, src, width, height, rowBytes); |
| 527 } | 742 } |
| 528 | 743 |
| 529 return false; | 744 return false; |
| 530 } | 745 } |
| 531 | 746 |
| 532 SkData *CompressBitmapToFormat(const SkBitmap &bitmap, Format format) { | 747 SkData *CompressBitmapToFormat(const SkBitmap &bitmap, Format format) { |
| 533 SkAutoLockPixels alp(bitmap); | 748 SkAutoLockPixels alp(bitmap); |
| 534 | 749 |
| 535 int compressedDataSize = get_compressed_data_size(format, bitmap.width(), bi tmap.height()); | 750 int compressedDataSize = get_compressed_data_size(format, bitmap.width(), bi tmap.height()); |
| 536 const uint8_t* src = reinterpret_cast<const uint8_t*>(bitmap.getPixels()); | 751 const uint8_t* src = reinterpret_cast<const uint8_t*>(bitmap.getPixels()); |
| 537 uint8_t* dst = reinterpret_cast<uint8_t*>(sk_malloc_throw(compressedDataSize )); | 752 uint8_t* dst = reinterpret_cast<uint8_t*>(sk_malloc_throw(compressedDataSize )); |
| 538 if (CompressBufferToFormat(dst, src, bitmap.colorType(), bitmap.width(), bit map.height(), | 753 if (CompressBufferToFormat(dst, src, bitmap.colorType(), bitmap.width(), bit map.height(), |
| 539 bitmap.rowBytes(), format)) { | 754 bitmap.rowBytes(), format)) { |
| 540 return SkData::NewFromMalloc(dst, compressedDataSize); | 755 return SkData::NewFromMalloc(dst, compressedDataSize); |
| 541 } | 756 } |
| 542 | 757 |
| 543 sk_free(dst); | 758 sk_free(dst); |
| 544 return NULL; | 759 return NULL; |
| 545 } | 760 } |
| 546 | 761 |
| 547 } // namespace SkTextureCompressor | 762 } // namespace SkTextureCompressor |
| OLD | NEW |