Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(289)

Side by Side Diff: src/IceTargetLoweringX8632.cpp

Issue 372113005: Add support for passing and returning vectors in accordance with the x86 calling convention. (Closed) Base URL: https://gerrit.chromium.org/gerrit/p/native_client/pnacl-subzero.git@master
Patch Set: First round of changes, including new argument lowering. Created 6 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 //===- subzero/src/IceTargetLoweringX8632.cpp - x86-32 lowering -----------===// 1 //===- subzero/src/IceTargetLoweringX8632.cpp - x86-32 lowering -----------===//
2 // 2 //
3 // The Subzero Code Generator 3 // The Subzero Code Generator
4 // 4 //
5 // This file is distributed under the University of Illinois Open Source 5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details. 6 // License. See LICENSE.TXT for details.
7 // 7 //
8 //===----------------------------------------------------------------------===// 8 //===----------------------------------------------------------------------===//
9 // 9 //
10 // This file implements the TargetLoweringX8632 class, which 10 // This file implements the TargetLoweringX8632 class, which
(...skipping 229 matching lines...) Expand 10 before | Expand all | Expand 10 after
240 if (Func->hasError()) 240 if (Func->hasError())
241 return; 241 return;
242 T_deletePhis.printElapsedUs(Context, "deletePhis()"); 242 T_deletePhis.printElapsedUs(Context, "deletePhis()");
243 Func->dump("After Phi lowering"); 243 Func->dump("After Phi lowering");
244 244
245 // Address mode optimization. 245 // Address mode optimization.
246 Timer T_doAddressOpt; 246 Timer T_doAddressOpt;
247 Func->doAddressOpt(); 247 Func->doAddressOpt();
248 T_doAddressOpt.printElapsedUs(Context, "doAddressOpt()"); 248 T_doAddressOpt.printElapsedUs(Context, "doAddressOpt()");
249 249
250 // Argument lowering
251 Timer T_argLowering;
252 Func->doArgLowering();
253 T_argLowering.printElapsedUs(Context, "lowerArguments()");
254
250 // Target lowering. This requires liveness analysis for some parts 255 // Target lowering. This requires liveness analysis for some parts
251 // of the lowering decisions, such as compare/branch fusing. If 256 // of the lowering decisions, such as compare/branch fusing. If
252 // non-lightweight liveness analysis is used, the instructions need 257 // non-lightweight liveness analysis is used, the instructions need
253 // to be renumbered first. TODO: This renumbering should only be 258 // to be renumbered first. TODO: This renumbering should only be
254 // necessary if we're actually calculating live intervals, which we 259 // necessary if we're actually calculating live intervals, which we
255 // only do for register allocation. 260 // only do for register allocation.
256 Timer T_renumber1; 261 Timer T_renumber1;
257 Func->renumberInstructions(); 262 Func->renumberInstructions();
258 if (Func->hasError()) 263 if (Func->hasError())
259 return; 264 return;
260 T_renumber1.printElapsedUs(Context, "renumberInstructions()"); 265 T_renumber1.printElapsedUs(Context, "renumberInstructions()");
266
261 // TODO: It should be sufficient to use the fastest liveness 267 // TODO: It should be sufficient to use the fastest liveness
262 // calculation, i.e. livenessLightweight(). However, for some 268 // calculation, i.e. livenessLightweight(). However, for some
263 // reason that slows down the rest of the translation. Investigate. 269 // reason that slows down the rest of the translation. Investigate.
264 Timer T_liveness1; 270 Timer T_liveness1;
265 Func->liveness(Liveness_Basic); 271 Func->liveness(Liveness_Basic);
266 if (Func->hasError()) 272 if (Func->hasError())
267 return; 273 return;
268 T_liveness1.printElapsedUs(Context, "liveness()"); 274 T_liveness1.printElapsedUs(Context, "liveness()");
269 Func->dump("After x86 address mode opt"); 275 Func->dump("After x86 address mode opt");
276
270 Timer T_genCode; 277 Timer T_genCode;
271 Func->genCode(); 278 Func->genCode();
272 if (Func->hasError()) 279 if (Func->hasError())
273 return; 280 return;
274 T_genCode.printElapsedUs(Context, "genCode()"); 281 T_genCode.printElapsedUs(Context, "genCode()");
275 282
276 // Register allocation. This requires instruction renumbering and 283 // Register allocation. This requires instruction renumbering and
277 // full liveness analysis. 284 // full liveness analysis.
278 Timer T_renumber2; 285 Timer T_renumber2;
279 Func->renumberInstructions(); 286 Func->renumberInstructions();
(...skipping 42 matching lines...) Expand 10 before | Expand all | Expand 10 after
322 if (Func->hasError()) 329 if (Func->hasError())
323 return; 330 return;
324 T_placePhiStores.printElapsedUs(Context, "placePhiStores()"); 331 T_placePhiStores.printElapsedUs(Context, "placePhiStores()");
325 Timer T_deletePhis; 332 Timer T_deletePhis;
326 Func->deletePhis(); 333 Func->deletePhis();
327 if (Func->hasError()) 334 if (Func->hasError())
328 return; 335 return;
329 T_deletePhis.printElapsedUs(Context, "deletePhis()"); 336 T_deletePhis.printElapsedUs(Context, "deletePhis()");
330 Func->dump("After Phi lowering"); 337 Func->dump("After Phi lowering");
331 338
339 Timer T_argLowering;
340 Func->doArgLowering();
341 T_argLowering.printElapsedUs(Context, "lowerArguments()");
342
332 Timer T_genCode; 343 Timer T_genCode;
333 Func->genCode(); 344 Func->genCode();
334 if (Func->hasError()) 345 if (Func->hasError())
335 return; 346 return;
336 T_genCode.printElapsedUs(Context, "genCode()"); 347 T_genCode.printElapsedUs(Context, "genCode()");
337 Func->dump("After initial x8632 codegen"); 348 Func->dump("After initial x8632 codegen");
338 349
339 Timer T_genFrame; 350 Timer T_genFrame;
340 Func->genFrame(); 351 Func->genFrame();
341 if (Func->hasError()) 352 if (Func->hasError())
(...skipping 63 matching lines...) Expand 10 before | Expand all | Expand 10 after
405 if (!hasFramePointer()) 416 if (!hasFramePointer())
406 Offset += getStackAdjustment(); 417 Offset += getStackAdjustment();
407 if (Offset) { 418 if (Offset) {
408 if (Offset > 0) 419 if (Offset > 0)
409 Str << "+"; 420 Str << "+";
410 Str << Offset; 421 Str << Offset;
411 } 422 }
412 Str << "]"; 423 Str << "]";
413 } 424 }
414 425
415 // Helper function for addProlog(). Sets the frame offset for Arg, 426 void TargetX8632::lowerArguments() {
416 // updates InArgsSizeBytes according to Arg's width, and generates an 427 VarList &Args = Func->getArgs();
417 // instruction to copy Arg into its assigned register if applicable. 428 // The first four arguments of vector type, regardless of their
418 // For an I64 arg that has been split into Lo and Hi components, it 429 // position relative to the other arguments in the argument list, are
419 // calls itself recursively on the components, taking care to handle 430 // passed in registers xmm0 - xmm3.
420 // Lo first because of the little-endian architecture. 431 unsigned NumXmmArgs = 0;
421 void TargetX8632::setArgOffsetAndCopy(Variable *Arg, Variable *FramePtr, 432
422 size_t BasicFrameOffset, 433 Context.init(Func->getEntryNode());
423 size_t &InArgsSizeBytes) { 434 Context.setInsertPoint(Context.getCur());
435
436 for (SizeT I = 0, E = Args.size(); I < E && NumXmmArgs < 4; ++I) {
jvoung (off chromium) 2014/07/09 04:26:53 Might be worth making the "4" a symbolic constant
Jim Stichnoth 2014/07/09 16:56:13 I agree, except that between x86-32 and x86-64 low
wala 2014/07/09 19:05:12 Done.
437 Variable *Arg = Args[I];
438 Type Ty = Arg->getType();
439 if (!isVectorType(Ty))
440 continue;
441 // Replace Arg in the argument list with the home register. Then
442 // generate an instruction in the prolog to copy the home register
443 // to the assigned location of Arg.
444 int32_t RegNum = Reg_xmm0 + NumXmmArgs;
445 ++NumXmmArgs;
446 IceString Name = "home_reg:" + Arg->getName();
447 const CfgNode *DefNode = NULL;
448 Variable *RegisterArg = Func->makeVariable(Ty, DefNode, Name);
449 RegisterArg->setRegNum(RegNum);
450 RegisterArg->setIsArg(Func);
451 Arg->setIsArg(Func, false);
452
453 Args[I] = RegisterArg;
454 Context.insert(InstAssign::create(Func, Arg, RegisterArg));
455 }
456 }
457
458 // Helper function for addProlog().
459 //
460 // This assumes Arg is an argument passed on the stack. This sets the
461 // frame offset for Arg and updates InArgsSizeBytes according to Arg's
462 // width. For an I64 arg that has been split into Lo and Hi components,
463 // it calls itself recursively on the components, taking care to handle
464 // Lo first because of the little-endian architecture. Lastly, this
465 // function generates an instruction to copy Arg into its assigned
466 // register if applicable.
467 void TargetX8632::finishArgumentLowering(Variable *Arg, Variable *FramePtr,
468 size_t BasicFrameOffset,
469 size_t &InArgsSizeBytes) {
424 Variable *Lo = Arg->getLo(); 470 Variable *Lo = Arg->getLo();
425 Variable *Hi = Arg->getHi(); 471 Variable *Hi = Arg->getHi();
426 Type Ty = Arg->getType(); 472 Type Ty = Arg->getType();
427 if (Lo && Hi && Ty == IceType_i64) { 473 if (Lo && Hi && Ty == IceType_i64) {
428 assert(Lo->getType() != IceType_i64); // don't want infinite recursion 474 assert(Lo->getType() != IceType_i64); // don't want infinite recursion
429 assert(Hi->getType() != IceType_i64); // don't want infinite recursion 475 assert(Hi->getType() != IceType_i64); // don't want infinite recursion
430 setArgOffsetAndCopy(Lo, FramePtr, BasicFrameOffset, InArgsSizeBytes); 476 finishArgumentLowering(Lo, FramePtr, BasicFrameOffset, InArgsSizeBytes);
431 setArgOffsetAndCopy(Hi, FramePtr, BasicFrameOffset, InArgsSizeBytes); 477 finishArgumentLowering(Hi, FramePtr, BasicFrameOffset, InArgsSizeBytes);
432 return; 478 return;
433 } 479 }
434 Arg->setStackOffset(BasicFrameOffset + InArgsSizeBytes); 480 Arg->setStackOffset(BasicFrameOffset + InArgsSizeBytes);
481 InArgsSizeBytes += typeWidthInBytesOnStack(Ty);
435 if (Arg->hasReg()) { 482 if (Arg->hasReg()) {
436 assert(Ty != IceType_i64); 483 assert(Ty != IceType_i64);
437 OperandX8632Mem *Mem = OperandX8632Mem::create( 484 OperandX8632Mem *Mem = OperandX8632Mem::create(
438 Func, Ty, FramePtr, 485 Func, Ty, FramePtr,
439 Ctx->getConstantInt(IceType_i32, Arg->getStackOffset())); 486 Ctx->getConstantInt(IceType_i32, Arg->getStackOffset()));
440 _mov(Arg, Mem); 487 if (isVectorType(Arg->getType())) {
488 _movp(Arg, Mem);
489 } else {
490 _mov(Arg, Mem);
491 }
441 } 492 }
442 InArgsSizeBytes += typeWidthInBytesOnStack(Ty);
443 } 493 }
444 494
445 Type TargetX8632::stackSlotType() { return IceType_i32; } 495 Type TargetX8632::stackSlotType() { return IceType_i32; }
446 496
447 void TargetX8632::addProlog(CfgNode *Node) { 497 void TargetX8632::addProlog(CfgNode *Node) {
448 // If SimpleCoalescing is false, each variable without a register 498 // If SimpleCoalescing is false, each variable without a register
449 // gets its own unique stack slot, which leads to large stack 499 // gets its own unique stack slot, which leads to large stack
450 // frames. If SimpleCoalescing is true, then each "global" variable 500 // frames. If SimpleCoalescing is true, then each "global" variable
451 // without a register gets its own slot, but "local" variable slots 501 // without a register gets its own slot, but "local" variable slots
452 // are reused across basic blocks. E.g., if A and B are local to 502 // are reused across basic blocks. E.g., if A and B are local to
(...skipping 29 matching lines...) Expand all
482 RegsUsed = llvm::SmallBitVector(CalleeSaves.size()); 532 RegsUsed = llvm::SmallBitVector(CalleeSaves.size());
483 const VarList &Variables = Func->getVariables(); 533 const VarList &Variables = Func->getVariables();
484 const VarList &Args = Func->getArgs(); 534 const VarList &Args = Func->getArgs();
485 for (VarList::const_iterator I = Variables.begin(), E = Variables.end(); 535 for (VarList::const_iterator I = Variables.begin(), E = Variables.end();
486 I != E; ++I) { 536 I != E; ++I) {
487 Variable *Var = *I; 537 Variable *Var = *I;
488 if (Var->hasReg()) { 538 if (Var->hasReg()) {
489 RegsUsed[Var->getRegNum()] = true; 539 RegsUsed[Var->getRegNum()] = true;
490 continue; 540 continue;
491 } 541 }
492 // An argument passed on the stack already has a stack slot. 542 // An argument either does not need a stack slot (if passed in a
543 // register) or already has one (if passed on the stack).
493 if (Var->getIsArg()) 544 if (Var->getIsArg())
494 continue; 545 continue;
495 // An unreferenced variable doesn't need a stack slot. 546 // An unreferenced variable doesn't need a stack slot.
496 if (ComputedLiveRanges && Var->getLiveRange().isEmpty()) 547 if (ComputedLiveRanges && Var->getLiveRange().isEmpty())
497 continue; 548 continue;
498 // A spill slot linked to a variable with a stack slot should reuse 549 // A spill slot linked to a variable with a stack slot should reuse
499 // that stack slot. 550 // that stack slot.
500 if (Var->getWeight() == RegWeight::Zero && Var->getRegisterOverlap()) { 551 if (Var->getWeight() == RegWeight::Zero && Var->getRegisterOverlap()) {
501 if (Variable *Linked = Var->getPreferredRegister()) { 552 if (Variable *Linked = Var->getPreferredRegister()) {
502 if (!Linked->hasReg()) 553 if (!Linked->hasReg())
(...skipping 37 matching lines...) Expand 10 before | Expand all | Expand 10 after
540 _mov(ebp, esp); 591 _mov(ebp, esp);
541 } 592 }
542 593
543 // Generate "sub esp, LocalsSizeBytes" 594 // Generate "sub esp, LocalsSizeBytes"
544 if (LocalsSizeBytes) 595 if (LocalsSizeBytes)
545 _sub(getPhysicalRegister(Reg_esp), 596 _sub(getPhysicalRegister(Reg_esp),
546 Ctx->getConstantInt(IceType_i32, LocalsSizeBytes)); 597 Ctx->getConstantInt(IceType_i32, LocalsSizeBytes));
547 598
548 resetStackAdjustment(); 599 resetStackAdjustment();
549 600
550 // Fill in stack offsets for args, and copy args into registers for 601 // Fill in stack offsets for stack args, and copy args into registers
551 // those that were register-allocated. Args are pushed right to 602 // for those that were register-allocated. Args are pushed right to
552 // left, so Arg[0] is closest to the stack/frame pointer. 603 // left, so Arg[0] is closest to the stack/frame pointer.
553 //
554 // TODO: Make this right for different width args, calling
555 // conventions, etc. For one thing, args passed in registers will
556 // need to be copied/shuffled to their home registers (the
557 // RegManager code may have some permutation logic to leverage),
558 // and if they have no home register, home space will need to be
559 // allocated on the stack to copy into.
560 Variable *FramePtr = getPhysicalRegister(getFrameOrStackReg()); 604 Variable *FramePtr = getPhysicalRegister(getFrameOrStackReg());
561 size_t BasicFrameOffset = PreservedRegsSizeBytes + RetIpSizeBytes; 605 size_t BasicFrameOffset = PreservedRegsSizeBytes + RetIpSizeBytes;
562 if (!IsEbpBasedFrame) 606 if (!IsEbpBasedFrame)
563 BasicFrameOffset += LocalsSizeBytes; 607 BasicFrameOffset += LocalsSizeBytes;
608
609 unsigned NumXmmArgs = 0;
564 for (SizeT i = 0; i < Args.size(); ++i) { 610 for (SizeT i = 0; i < Args.size(); ++i) {
565 Variable *Arg = Args[i]; 611 Variable *Arg = Args[i];
566 setArgOffsetAndCopy(Arg, FramePtr, BasicFrameOffset, InArgsSizeBytes); 612 // Skip arguments passed in registers.
613 if (isVectorType(Arg->getType()) && NumXmmArgs < 4) {
614 ++NumXmmArgs;
615 continue;
616 }
617 finishArgumentLowering(Arg, FramePtr, BasicFrameOffset, InArgsSizeBytes);
567 } 618 }
568 619
569 // Fill in stack offsets for locals. 620 // Fill in stack offsets for locals.
570 size_t TotalGlobalsSize = GlobalsSize; 621 size_t TotalGlobalsSize = GlobalsSize;
571 GlobalsSize = 0; 622 GlobalsSize = 0;
572 LocalsSize.assign(LocalsSize.size(), 0); 623 LocalsSize.assign(LocalsSize.size(), 0);
573 size_t NextStackOffset = 0; 624 size_t NextStackOffset = 0;
574 for (VarList::const_iterator I = Variables.begin(), E = Variables.end(); 625 for (VarList::const_iterator I = Variables.begin(), E = Variables.end();
575 I != E; ++I) { 626 I != E; ++I) {
576 Variable *Var = *I; 627 Variable *Var = *I;
(...skipping 666 matching lines...) Expand 10 before | Expand all | Expand 10 after
1243 Operand *Src0Lo = loOperand(Src0); 1294 Operand *Src0Lo = loOperand(Src0);
1244 Operand *Src0Hi = hiOperand(Src0); 1295 Operand *Src0Hi = hiOperand(Src0);
1245 Variable *DestLo = llvm::cast<Variable>(loOperand(Dest)); 1296 Variable *DestLo = llvm::cast<Variable>(loOperand(Dest));
1246 Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest)); 1297 Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest));
1247 Variable *T_Lo = NULL, *T_Hi = NULL; 1298 Variable *T_Lo = NULL, *T_Hi = NULL;
1248 _mov(T_Lo, Src0Lo); 1299 _mov(T_Lo, Src0Lo);
1249 _mov(DestLo, T_Lo); 1300 _mov(DestLo, T_Lo);
1250 _mov(T_Hi, Src0Hi); 1301 _mov(T_Hi, Src0Hi);
1251 _mov(DestHi, T_Hi); 1302 _mov(DestHi, T_Hi);
1252 } else { 1303 } else {
1253 const bool AllowOverlap = true; 1304 const bool AllowOverlap = false;
1254 // RI is either a physical register or an immediate. 1305 // RI is either a physical register or an immediate.
1255 Operand *RI = legalize(Src0, Legal_Reg | Legal_Imm, AllowOverlap); 1306 Operand *RI = legalize(Src0, Legal_Reg | Legal_Imm, AllowOverlap);
1256 _mov(Dest, RI); 1307 if (isVectorType(Dest->getType()))
1308 _movp(Dest, RI);
1309 else
1310 _mov(Dest, RI);
1257 } 1311 }
1258 } 1312 }
1259 1313
1260 void TargetX8632::lowerBr(const InstBr *Inst) { 1314 void TargetX8632::lowerBr(const InstBr *Inst) {
1261 if (Inst->isUnconditional()) { 1315 if (Inst->isUnconditional()) {
1262 _br(Inst->getTargetUnconditional()); 1316 _br(Inst->getTargetUnconditional());
1263 } else { 1317 } else {
1264 Operand *Src0 = legalize(Inst->getCondition()); 1318 Operand *Src0 = legalize(Inst->getCondition());
1265 Constant *Zero = Ctx->getConstantZero(IceType_i32); 1319 Constant *Zero = Ctx->getConstantZero(IceType_i32);
1266 _cmp(Src0, Zero); 1320 _cmp(Src0, Zero);
1267 _br(InstX8632Br::Br_ne, Inst->getTargetTrue(), Inst->getTargetFalse()); 1321 _br(InstX8632Br::Br_ne, Inst->getTargetTrue(), Inst->getTargetFalse());
1268 } 1322 }
1269 } 1323 }
1270 1324
1271 void TargetX8632::lowerCall(const InstCall *Instr) { 1325 void TargetX8632::lowerCall(const InstCall *Instr) {
1272 // Generate a sequence of push instructions, pushing right to left, 1326 // For stack arguments, generate a sequence of push instructions,
1273 // keeping track of stack offsets in case a push involves a stack 1327 // pushing right to left, keeping track of stack offsets in case a
1274 // operand and we are using an esp-based frame. 1328 // push involves a stack operand and we are using an esp-based frame.
1275 uint32_t StackOffset = 0; 1329 uint32_t StackOffset = 0;
1330 // Keep track of the number of xmm registers that get used to pass
1331 // arguments.
1332 unsigned NumXmmArgs = 0;
1333 VarList RegisterArgs;
1276 // TODO: If for some reason the call instruction gets dead-code 1334 // TODO: If for some reason the call instruction gets dead-code
1277 // eliminated after lowering, we would need to ensure that the 1335 // eliminated after lowering, we would need to ensure that the
1278 // pre-call push instructions and the post-call esp adjustment get 1336 // pre-call push instructions and the post-call esp adjustment get
1279 // eliminated as well. 1337 // eliminated as well.
1280 for (SizeT NumArgs = Instr->getNumArgs(), i = 0; i < NumArgs; ++i) { 1338 for (SizeT NumArgs = Instr->getNumArgs(), i = 0; i < NumArgs; ++i) {
1281 Operand *Arg = legalize(Instr->getArg(NumArgs - i - 1)); 1339 Operand *Arg = legalize(Instr->getArg(NumArgs - i - 1));
1340 bool ArgInRegister = false;
1282 if (Arg->getType() == IceType_i64) { 1341 if (Arg->getType() == IceType_i64) {
1283 _push(hiOperand(Arg)); 1342 _push(hiOperand(Arg));
1284 _push(loOperand(Arg)); 1343 _push(loOperand(Arg));
1285 } else if (Arg->getType() == IceType_f64) { 1344 } else if (Arg->getType() == IceType_f64) {
1286 // If the Arg turns out to be a memory operand, we need to push 1345 // If the Arg turns out to be a memory operand, we need to push
1287 // 8 bytes, which requires two push instructions. This ends up 1346 // 8 bytes, which requires two push instructions. This ends up
1288 // being somewhat clumsy in the current IR, so we use a 1347 // being somewhat clumsy in the current IR, so we use a
1289 // workaround. Force the operand into a (xmm) register, and 1348 // workaround. Force the operand into a (xmm) register, and
1290 // then push the register. An xmm register push is actually not 1349 // then push the register. An xmm register push is actually not
1291 // possible in x86, but the Push instruction emitter handles 1350 // possible in x86, but the Push instruction emitter handles
1292 // this by decrementing the stack pointer and directly writing 1351 // this by decrementing the stack pointer and directly writing
1293 // the xmm register value. 1352 // the xmm register value.
1294 Variable *T = NULL; 1353 Variable *T = NULL;
1295 _mov(T, Arg); 1354 _mov(T, Arg);
1296 _push(T); 1355 _push(T);
1356 } else if (isVectorType(Arg->getType())) {
1357 if (NumXmmArgs < 4) {
1358 Variable *Reg = legalizeToVar(Arg, false, Reg_xmm0 + NumXmmArgs);
1359 ++NumXmmArgs;
1360 ArgInRegister = true;
1361 RegisterArgs.push_back(Reg);
1362 } else {
1363 // sub esp, 16
1364 // movups [esp], legalize_to_reg(Arg)
1365 Variable *esp = getPhysicalRegister(Reg_esp);
1366 size_t Width = typeWidthInBytesOnStack(Arg->getType());
1367 _sub(esp, Ctx->getConstantInt(IceType_i8, Width));
1368 Constant *Zero = Ctx->getConstantZero(IceType_i8);
1369 OperandX8632Mem *Dest =
1370 OperandX8632Mem::create(Func, Arg->getType(), esp, Zero);
1371 _storep(legalize(Arg, Legal_Reg), Dest);
1372 }
1297 } else { 1373 } else {
1298 // Otherwise PNaCl requires parameter types to be at least 32-bits. 1374 // Otherwise PNaCl requires parameter types to be at least 32-bits.
1299 assert(Arg->getType() == IceType_f32 || Arg->getType() == IceType_i32); 1375 assert(Arg->getType() == IceType_f32 || Arg->getType() == IceType_i32);
1300 _push(Arg); 1376 _push(Arg);
1301 } 1377 }
1302 StackOffset += typeWidthInBytesOnStack(Arg->getType()); 1378 if (!ArgInRegister) {
1379 StackOffset += typeWidthInBytesOnStack(Arg->getType());
1380 }
1381 }
1382 // Generate a FakeUse of all register arguments so that they do not
1383 // get dead code eliminated as a result of the FakeKill of scratch
1384 // registers after the call.
Jim Stichnoth 2014/07/09 16:56:13 I think it wouldn't hurt to assert(RegisterArgs.si
wala 2014/07/09 19:05:12 Unnecessary in the revised code.
1385 for (VarList::const_iterator I = RegisterArgs.begin(), E = RegisterArgs.end();
1386 I != E; ++I) {
1387 Context.insert(InstFakeUse::create(Func, *I));
1303 } 1388 }
1304 // Generate the call instruction. Assign its result to a temporary 1389 // Generate the call instruction. Assign its result to a temporary
1305 // with high register allocation weight. 1390 // with high register allocation weight.
1306 Variable *Dest = Instr->getDest(); 1391 Variable *Dest = Instr->getDest();
1307 Variable *eax = NULL; // doubles as RegLo as necessary 1392 // ReturnReg doubles as ReturnRegLo as necessary.
1308 Variable *edx = NULL; 1393 Variable *ReturnReg = NULL;
1394 Variable *ReturnRegHi = NULL;
1309 if (Dest) { 1395 if (Dest) {
1310 switch (Dest->getType()) { 1396 switch (Dest->getType()) {
1311 case IceType_NUM: 1397 case IceType_NUM:
1312 llvm_unreachable("Invalid Call dest type"); 1398 llvm_unreachable("Invalid Call dest type");
1313 break; 1399 break;
1314 case IceType_void: 1400 case IceType_void:
1315 break; 1401 break;
1316 case IceType_i1: 1402 case IceType_i1:
1317 case IceType_i8: 1403 case IceType_i8:
1318 case IceType_i16: 1404 case IceType_i16:
1319 case IceType_i32: 1405 case IceType_i32:
1320 eax = makeReg(Dest->getType(), Reg_eax); 1406 ReturnReg = makeReg(Dest->getType(), Reg_eax);
1321 break; 1407 break;
1322 case IceType_i64: 1408 case IceType_i64:
1323 eax = makeReg(IceType_i32, Reg_eax); 1409 ReturnReg = makeReg(IceType_i32, Reg_eax);
1324 edx = makeReg(IceType_i32, Reg_edx); 1410 ReturnRegHi = makeReg(IceType_i32, Reg_edx);
1325 break; 1411 break;
1326 case IceType_f32: 1412 case IceType_f32:
1327 case IceType_f64: 1413 case IceType_f64:
1328 // Leave eax==edx==NULL, and capture the result with the fstp 1414 // Leave ReturnReg==ReturnRegHi==NULL, and capture the result with
1329 // instruction. 1415 // the fstp instruction.
1330 break; 1416 break;
1331 case IceType_v4i1: 1417 case IceType_v4i1:
1332 case IceType_v8i1: 1418 case IceType_v8i1:
1333 case IceType_v16i1: 1419 case IceType_v16i1:
1334 case IceType_v16i8: 1420 case IceType_v16i8:
1335 case IceType_v8i16: 1421 case IceType_v8i16:
1336 case IceType_v4i32: 1422 case IceType_v4i32:
1337 case IceType_v4f32: { 1423 case IceType_v4f32:
1338 // TODO(wala): Handle return values of vector type in the caller. 1424 ReturnReg = makeReg(Dest->getType(), Reg_xmm0);
1339 IceString Ty; 1425 break;
1340 llvm::raw_string_ostream BaseOS(Ty);
1341 Ostream OS(&BaseOS);
1342 OS << Dest->getType();
1343 Func->setError("Unhandled dest type: " + BaseOS.str());
1344 return;
1345 }
1346 } 1426 }
1347 } 1427 }
1348 // TODO(stichnot): LEAHACK: remove Legal_All (and use default) once 1428 // TODO(stichnot): LEAHACK: remove Legal_All (and use default) once
1349 // a proper emitter is used. 1429 // a proper emitter is used.
1350 Operand *CallTarget = legalize(Instr->getCallTarget(), Legal_All); 1430 Operand *CallTarget = legalize(Instr->getCallTarget(), Legal_All);
1351 Inst *NewCall = InstX8632Call::create(Func, eax, CallTarget); 1431 Inst *NewCall = InstX8632Call::create(Func, ReturnReg, CallTarget);
1352 Context.insert(NewCall); 1432 Context.insert(NewCall);
1353 if (edx) 1433 if (ReturnRegHi)
1354 Context.insert(InstFakeDef::create(Func, edx)); 1434 Context.insert(InstFakeDef::create(Func, ReturnRegHi));
1355 1435
1356 // Add the appropriate offset to esp. 1436 // Add the appropriate offset to esp.
1357 if (StackOffset) { 1437 if (StackOffset) {
1358 Variable *esp = Func->getTarget()->getPhysicalRegister(Reg_esp); 1438 Variable *esp = Func->getTarget()->getPhysicalRegister(Reg_esp);
1359 _add(esp, Ctx->getConstantInt(IceType_i32, StackOffset)); 1439 _add(esp, Ctx->getConstantInt(IceType_i32, StackOffset));
1360 } 1440 }
1361 1441
1362 // Insert a register-kill pseudo instruction. 1442 // Insert a register-kill pseudo instruction.
1363 VarList KilledRegs; 1443 VarList KilledRegs;
1364 for (SizeT i = 0; i < ScratchRegs.size(); ++i) { 1444 for (SizeT i = 0; i < ScratchRegs.size(); ++i) {
1365 if (ScratchRegs[i]) 1445 if (ScratchRegs[i])
1366 KilledRegs.push_back(Func->getTarget()->getPhysicalRegister(i)); 1446 KilledRegs.push_back(Func->getTarget()->getPhysicalRegister(i));
1367 } 1447 }
1368 Context.insert(InstFakeKill::create(Func, KilledRegs, NewCall)); 1448 Context.insert(InstFakeKill::create(Func, KilledRegs, NewCall));
1369 1449
1370 // Generate a FakeUse to keep the call live if necessary. 1450 // Generate a FakeUse to keep the call live if necessary.
1371 if (Instr->hasSideEffects() && eax) { 1451 if (Instr->hasSideEffects() && ReturnReg) {
1372 Inst *FakeUse = InstFakeUse::create(Func, eax); 1452 Inst *FakeUse = InstFakeUse::create(Func, ReturnReg);
1373 Context.insert(FakeUse); 1453 Context.insert(FakeUse);
1374 } 1454 }
1375 1455
1376 // Generate Dest=eax assignment. 1456 // Assign the result of the call to Dest.
1377 if (Dest && eax) { 1457 if (!Dest) {
1378 if (edx) { 1458 return;
1459 } else if (ReturnReg) {
Jim Stichnoth 2014/07/09 16:56:13 Don't use "else if" here. http://llvm.org/docs/Cod
wala 2014/07/09 19:05:12 Done.
1460 if (ReturnRegHi) {
1461 assert(Dest->getType() == IceType_i64);
1379 split64(Dest); 1462 split64(Dest);
1380 Variable *DestLo = Dest->getLo(); 1463 Variable *DestLo = Dest->getLo();
1381 Variable *DestHi = Dest->getHi(); 1464 Variable *DestHi = Dest->getHi();
1382 DestLo->setPreferredRegister(eax, false); 1465 DestLo->setPreferredRegister(ReturnReg, false);
1383 DestHi->setPreferredRegister(edx, false); 1466 DestHi->setPreferredRegister(ReturnRegHi, false);
1384 _mov(DestLo, eax); 1467 _mov(DestLo, ReturnReg);
1385 _mov(DestHi, edx); 1468 _mov(DestHi, ReturnRegHi);
1386 } else { 1469 } else {
1387 Dest->setPreferredRegister(eax, false); 1470 assert(Dest->getType() == IceType_i32 || Dest->getType() == IceType_i16 ||
1388 _mov(Dest, eax); 1471 Dest->getType() == IceType_i8 || Dest->getType() == IceType_i1 ||
1472 isVectorType(Dest->getType()));
1473 Dest->setPreferredRegister(ReturnReg, false);
1474 if (isVectorType(Dest->getType())) {
1475 _movp(Dest, ReturnReg);
1476 } else {
1477 _mov(Dest, ReturnReg);
1478 }
1389 } 1479 }
1390 } 1480 } else if (Dest->getType() == IceType_f32 || Dest->getType() == IceType_f64) {
1391 1481 // Special treatment for an FP function which returns its result in
1392 // Special treatment for an FP function which returns its result in 1482 // st(0).
1393 // st(0).
1394 if (Dest &&
1395 (Dest->getType() == IceType_f32 || Dest->getType() == IceType_f64)) {
1396 _fstp(Dest); 1483 _fstp(Dest);
1397 // If Dest ends up being a physical xmm register, the fstp emit 1484 // If Dest ends up being a physical xmm register, the fstp emit code
1398 // code will route st(0) through a temporary stack slot. 1485 // will route st(0) through a temporary stack slot.
1399 } 1486 }
1400 } 1487 }
1401 1488
1402 void TargetX8632::lowerCast(const InstCast *Inst) { 1489 void TargetX8632::lowerCast(const InstCast *Inst) {
1403 // a = cast(b) ==> t=cast(b); a=t; (link t->b, link a->t, no overlap) 1490 // a = cast(b) ==> t=cast(b); a=t; (link t->b, link a->t, no overlap)
1404 InstCast::OpKind CastKind = Inst->getCastKind(); 1491 InstCast::OpKind CastKind = Inst->getCastKind();
1405 Variable *Dest = Inst->getDest(); 1492 Variable *Dest = Inst->getDest();
1406 switch (CastKind) { 1493 switch (CastKind) {
1407 default: 1494 default:
1408 Func->setError("Cast type not supported"); 1495 Func->setError("Cast type not supported");
(...skipping 1325 matching lines...) Expand 10 before | Expand all | Expand 10 after
2734 for (SizeT i = 0; i < Size; ++i) { 2821 for (SizeT i = 0; i < Size; ++i) {
2735 Str << "\t.byte\t" << (((unsigned)Data[i]) & 0xff) << "\n"; 2822 Str << "\t.byte\t" << (((unsigned)Data[i]) & 0xff) << "\n";
2736 } 2823 }
2737 Str << "\t.size\t" << MangledName << ", " << Size << "\n"; 2824 Str << "\t.size\t" << MangledName << ", " << Size << "\n";
2738 } 2825 }
2739 Str << "\t" << (IsInternal ? ".local" : ".global") << "\t" << MangledName 2826 Str << "\t" << (IsInternal ? ".local" : ".global") << "\t" << MangledName
2740 << "\n"; 2827 << "\n";
2741 } 2828 }
2742 2829
2743 } // end of namespace Ice 2830 } // end of namespace Ice
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698