Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(360)

Side by Side Diff: src/IceTargetLoweringX8632.cpp

Issue 372113005: Add support for passing and returning vectors in accordance with the x86 calling convention. (Closed) Base URL: https://gerrit.chromium.org/gerrit/p/native_client/pnacl-subzero.git@master
Patch Set: Reset AllowOverlap, add comment on lowerCall() strategies, and use X86_MAX_XMM_ARGS where appropria… Created 6 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « src/IceTargetLoweringX8632.h ('k') | tests_lit/llvm2ice_tests/vector-arg.ll » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 //===- subzero/src/IceTargetLoweringX8632.cpp - x86-32 lowering -----------===// 1 //===- subzero/src/IceTargetLoweringX8632.cpp - x86-32 lowering -----------===//
2 // 2 //
3 // The Subzero Code Generator 3 // The Subzero Code Generator
4 // 4 //
5 // This file is distributed under the University of Illinois Open Source 5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details. 6 // License. See LICENSE.TXT for details.
7 // 7 //
8 //===----------------------------------------------------------------------===// 8 //===----------------------------------------------------------------------===//
9 // 9 //
10 // This file implements the TargetLoweringX8632 class, which 10 // This file implements the TargetLoweringX8632 class, which
(...skipping 67 matching lines...) Expand 10 before | Expand all | Expand 10 after
78 #undef X 78 #undef X
79 }; 79 };
80 const size_t TableIcmp64Size = llvm::array_lengthof(TableIcmp64); 80 const size_t TableIcmp64Size = llvm::array_lengthof(TableIcmp64);
81 81
82 InstX8632Br::BrCond getIcmp32Mapping(InstIcmp::ICond Cond) { 82 InstX8632Br::BrCond getIcmp32Mapping(InstIcmp::ICond Cond) {
83 size_t Index = static_cast<size_t>(Cond); 83 size_t Index = static_cast<size_t>(Cond);
84 assert(Index < TableIcmp32Size); 84 assert(Index < TableIcmp32Size);
85 return TableIcmp32[Index].Mapping; 85 return TableIcmp32[Index].Mapping;
86 } 86 }
87 87
88 // The maximum number of arguments to pass in XMM registers
89 const unsigned X86_MAX_XMM_ARGS = 4;
90
88 // In some cases, there are x-macros tables for both high-level and 91 // In some cases, there are x-macros tables for both high-level and
89 // low-level instructions/operands that use the same enum key value. 92 // low-level instructions/operands that use the same enum key value.
90 // The tables are kept separate to maintain a proper separation 93 // The tables are kept separate to maintain a proper separation
91 // between abstraction layers. There is a risk that the tables 94 // between abstraction layers. There is a risk that the tables
92 // could get out of sync if enum values are reordered or if entries 95 // could get out of sync if enum values are reordered or if entries
93 // are added or deleted. This dummy function uses static_assert to 96 // are added or deleted. This dummy function uses static_assert to
94 // ensure everything is kept in sync. 97 // ensure everything is kept in sync.
95 void xMacroIntegrityCheck() { 98 void xMacroIntegrityCheck() {
96 // Validate the enum values in FCMPX8632_TABLE. 99 // Validate the enum values in FCMPX8632_TABLE.
97 { 100 {
(...skipping 142 matching lines...) Expand 10 before | Expand all | Expand 10 after
240 if (Func->hasError()) 243 if (Func->hasError())
241 return; 244 return;
242 T_deletePhis.printElapsedUs(Context, "deletePhis()"); 245 T_deletePhis.printElapsedUs(Context, "deletePhis()");
243 Func->dump("After Phi lowering"); 246 Func->dump("After Phi lowering");
244 247
245 // Address mode optimization. 248 // Address mode optimization.
246 Timer T_doAddressOpt; 249 Timer T_doAddressOpt;
247 Func->doAddressOpt(); 250 Func->doAddressOpt();
248 T_doAddressOpt.printElapsedUs(Context, "doAddressOpt()"); 251 T_doAddressOpt.printElapsedUs(Context, "doAddressOpt()");
249 252
253 // Argument lowering
254 Timer T_argLowering;
255 Func->doArgLowering();
256 T_argLowering.printElapsedUs(Context, "lowerArguments()");
257
250 // Target lowering. This requires liveness analysis for some parts 258 // Target lowering. This requires liveness analysis for some parts
251 // of the lowering decisions, such as compare/branch fusing. If 259 // of the lowering decisions, such as compare/branch fusing. If
252 // non-lightweight liveness analysis is used, the instructions need 260 // non-lightweight liveness analysis is used, the instructions need
253 // to be renumbered first. TODO: This renumbering should only be 261 // to be renumbered first. TODO: This renumbering should only be
254 // necessary if we're actually calculating live intervals, which we 262 // necessary if we're actually calculating live intervals, which we
255 // only do for register allocation. 263 // only do for register allocation.
256 Timer T_renumber1; 264 Timer T_renumber1;
257 Func->renumberInstructions(); 265 Func->renumberInstructions();
258 if (Func->hasError()) 266 if (Func->hasError())
259 return; 267 return;
260 T_renumber1.printElapsedUs(Context, "renumberInstructions()"); 268 T_renumber1.printElapsedUs(Context, "renumberInstructions()");
269
261 // TODO: It should be sufficient to use the fastest liveness 270 // TODO: It should be sufficient to use the fastest liveness
262 // calculation, i.e. livenessLightweight(). However, for some 271 // calculation, i.e. livenessLightweight(). However, for some
263 // reason that slows down the rest of the translation. Investigate. 272 // reason that slows down the rest of the translation. Investigate.
264 Timer T_liveness1; 273 Timer T_liveness1;
265 Func->liveness(Liveness_Basic); 274 Func->liveness(Liveness_Basic);
266 if (Func->hasError()) 275 if (Func->hasError())
267 return; 276 return;
268 T_liveness1.printElapsedUs(Context, "liveness()"); 277 T_liveness1.printElapsedUs(Context, "liveness()");
269 Func->dump("After x86 address mode opt"); 278 Func->dump("After x86 address mode opt");
279
270 Timer T_genCode; 280 Timer T_genCode;
271 Func->genCode(); 281 Func->genCode();
272 if (Func->hasError()) 282 if (Func->hasError())
273 return; 283 return;
274 T_genCode.printElapsedUs(Context, "genCode()"); 284 T_genCode.printElapsedUs(Context, "genCode()");
275 285
276 // Register allocation. This requires instruction renumbering and 286 // Register allocation. This requires instruction renumbering and
277 // full liveness analysis. 287 // full liveness analysis.
278 Timer T_renumber2; 288 Timer T_renumber2;
279 Func->renumberInstructions(); 289 Func->renumberInstructions();
(...skipping 42 matching lines...) Expand 10 before | Expand all | Expand 10 after
322 if (Func->hasError()) 332 if (Func->hasError())
323 return; 333 return;
324 T_placePhiStores.printElapsedUs(Context, "placePhiStores()"); 334 T_placePhiStores.printElapsedUs(Context, "placePhiStores()");
325 Timer T_deletePhis; 335 Timer T_deletePhis;
326 Func->deletePhis(); 336 Func->deletePhis();
327 if (Func->hasError()) 337 if (Func->hasError())
328 return; 338 return;
329 T_deletePhis.printElapsedUs(Context, "deletePhis()"); 339 T_deletePhis.printElapsedUs(Context, "deletePhis()");
330 Func->dump("After Phi lowering"); 340 Func->dump("After Phi lowering");
331 341
342 Timer T_argLowering;
343 Func->doArgLowering();
344 T_argLowering.printElapsedUs(Context, "lowerArguments()");
345
332 Timer T_genCode; 346 Timer T_genCode;
333 Func->genCode(); 347 Func->genCode();
334 if (Func->hasError()) 348 if (Func->hasError())
335 return; 349 return;
336 T_genCode.printElapsedUs(Context, "genCode()"); 350 T_genCode.printElapsedUs(Context, "genCode()");
337 Func->dump("After initial x8632 codegen"); 351 Func->dump("After initial x8632 codegen");
338 352
339 Timer T_genFrame; 353 Timer T_genFrame;
340 Func->genFrame(); 354 Func->genFrame();
341 if (Func->hasError()) 355 if (Func->hasError())
(...skipping 63 matching lines...) Expand 10 before | Expand all | Expand 10 after
405 if (!hasFramePointer()) 419 if (!hasFramePointer())
406 Offset += getStackAdjustment(); 420 Offset += getStackAdjustment();
407 if (Offset) { 421 if (Offset) {
408 if (Offset > 0) 422 if (Offset > 0)
409 Str << "+"; 423 Str << "+";
410 Str << Offset; 424 Str << Offset;
411 } 425 }
412 Str << "]"; 426 Str << "]";
413 } 427 }
414 428
415 // Helper function for addProlog(). Sets the frame offset for Arg, 429 void TargetX8632::lowerArguments() {
416 // updates InArgsSizeBytes according to Arg's width, and generates an 430 VarList &Args = Func->getArgs();
417 // instruction to copy Arg into its assigned register if applicable. 431 // The first four arguments of vector type, regardless of their
418 // For an I64 arg that has been split into Lo and Hi components, it 432 // position relative to the other arguments in the argument list, are
419 // calls itself recursively on the components, taking care to handle 433 // passed in registers xmm0 - xmm3.
420 // Lo first because of the little-endian architecture. 434 unsigned NumXmmArgs = 0;
421 void TargetX8632::setArgOffsetAndCopy(Variable *Arg, Variable *FramePtr, 435
422 size_t BasicFrameOffset, 436 Context.init(Func->getEntryNode());
423 size_t &InArgsSizeBytes) { 437 Context.setInsertPoint(Context.getCur());
438
439 for (SizeT I = 0, E = Args.size(); I < E && NumXmmArgs < X86_MAX_XMM_ARGS;
440 ++I) {
441 Variable *Arg = Args[I];
442 Type Ty = Arg->getType();
443 if (!isVectorType(Ty))
444 continue;
445 // Replace Arg in the argument list with the home register. Then
446 // generate an instruction in the prolog to copy the home register
447 // to the assigned location of Arg.
448 int32_t RegNum = Reg_xmm0 + NumXmmArgs;
449 ++NumXmmArgs;
450 IceString Name = "home_reg:" + Arg->getName();
451 const CfgNode *DefNode = NULL;
452 Variable *RegisterArg = Func->makeVariable(Ty, DefNode, Name);
453 RegisterArg->setRegNum(RegNum);
454 RegisterArg->setIsArg(Func);
455 Arg->setIsArg(Func, false);
456
457 Args[I] = RegisterArg;
458 Context.insert(InstAssign::create(Func, Arg, RegisterArg));
459 }
460 }
461
462 // Helper function for addProlog().
463 //
464 // This assumes Arg is an argument passed on the stack. This sets the
465 // frame offset for Arg and updates InArgsSizeBytes according to Arg's
466 // width. For an I64 arg that has been split into Lo and Hi components,
467 // it calls itself recursively on the components, taking care to handle
468 // Lo first because of the little-endian architecture. Lastly, this
469 // function generates an instruction to copy Arg into its assigned
470 // register if applicable.
471 void TargetX8632::finishArgumentLowering(Variable *Arg, Variable *FramePtr,
472 size_t BasicFrameOffset,
473 size_t &InArgsSizeBytes) {
424 Variable *Lo = Arg->getLo(); 474 Variable *Lo = Arg->getLo();
425 Variable *Hi = Arg->getHi(); 475 Variable *Hi = Arg->getHi();
426 Type Ty = Arg->getType(); 476 Type Ty = Arg->getType();
427 if (Lo && Hi && Ty == IceType_i64) { 477 if (Lo && Hi && Ty == IceType_i64) {
428 assert(Lo->getType() != IceType_i64); // don't want infinite recursion 478 assert(Lo->getType() != IceType_i64); // don't want infinite recursion
429 assert(Hi->getType() != IceType_i64); // don't want infinite recursion 479 assert(Hi->getType() != IceType_i64); // don't want infinite recursion
430 setArgOffsetAndCopy(Lo, FramePtr, BasicFrameOffset, InArgsSizeBytes); 480 finishArgumentLowering(Lo, FramePtr, BasicFrameOffset, InArgsSizeBytes);
431 setArgOffsetAndCopy(Hi, FramePtr, BasicFrameOffset, InArgsSizeBytes); 481 finishArgumentLowering(Hi, FramePtr, BasicFrameOffset, InArgsSizeBytes);
432 return; 482 return;
433 } 483 }
434 Arg->setStackOffset(BasicFrameOffset + InArgsSizeBytes); 484 Arg->setStackOffset(BasicFrameOffset + InArgsSizeBytes);
485 InArgsSizeBytes += typeWidthInBytesOnStack(Ty);
435 if (Arg->hasReg()) { 486 if (Arg->hasReg()) {
436 assert(Ty != IceType_i64); 487 assert(Ty != IceType_i64);
437 OperandX8632Mem *Mem = OperandX8632Mem::create( 488 OperandX8632Mem *Mem = OperandX8632Mem::create(
438 Func, Ty, FramePtr, 489 Func, Ty, FramePtr,
439 Ctx->getConstantInt(IceType_i32, Arg->getStackOffset())); 490 Ctx->getConstantInt(IceType_i32, Arg->getStackOffset()));
440 _mov(Arg, Mem); 491 if (isVectorType(Arg->getType())) {
492 _movp(Arg, Mem);
493 } else {
494 _mov(Arg, Mem);
495 }
441 } 496 }
442 InArgsSizeBytes += typeWidthInBytesOnStack(Ty);
443 } 497 }
444 498
445 Type TargetX8632::stackSlotType() { return IceType_i32; } 499 Type TargetX8632::stackSlotType() { return IceType_i32; }
446 500
447 void TargetX8632::addProlog(CfgNode *Node) { 501 void TargetX8632::addProlog(CfgNode *Node) {
448 // If SimpleCoalescing is false, each variable without a register 502 // If SimpleCoalescing is false, each variable without a register
449 // gets its own unique stack slot, which leads to large stack 503 // gets its own unique stack slot, which leads to large stack
450 // frames. If SimpleCoalescing is true, then each "global" variable 504 // frames. If SimpleCoalescing is true, then each "global" variable
451 // without a register gets its own slot, but "local" variable slots 505 // without a register gets its own slot, but "local" variable slots
452 // are reused across basic blocks. E.g., if A and B are local to 506 // are reused across basic blocks. E.g., if A and B are local to
(...skipping 29 matching lines...) Expand all
482 RegsUsed = llvm::SmallBitVector(CalleeSaves.size()); 536 RegsUsed = llvm::SmallBitVector(CalleeSaves.size());
483 const VarList &Variables = Func->getVariables(); 537 const VarList &Variables = Func->getVariables();
484 const VarList &Args = Func->getArgs(); 538 const VarList &Args = Func->getArgs();
485 for (VarList::const_iterator I = Variables.begin(), E = Variables.end(); 539 for (VarList::const_iterator I = Variables.begin(), E = Variables.end();
486 I != E; ++I) { 540 I != E; ++I) {
487 Variable *Var = *I; 541 Variable *Var = *I;
488 if (Var->hasReg()) { 542 if (Var->hasReg()) {
489 RegsUsed[Var->getRegNum()] = true; 543 RegsUsed[Var->getRegNum()] = true;
490 continue; 544 continue;
491 } 545 }
492 // An argument passed on the stack already has a stack slot. 546 // An argument either does not need a stack slot (if passed in a
547 // register) or already has one (if passed on the stack).
493 if (Var->getIsArg()) 548 if (Var->getIsArg())
494 continue; 549 continue;
495 // An unreferenced variable doesn't need a stack slot. 550 // An unreferenced variable doesn't need a stack slot.
496 if (ComputedLiveRanges && Var->getLiveRange().isEmpty()) 551 if (ComputedLiveRanges && Var->getLiveRange().isEmpty())
497 continue; 552 continue;
498 // A spill slot linked to a variable with a stack slot should reuse 553 // A spill slot linked to a variable with a stack slot should reuse
499 // that stack slot. 554 // that stack slot.
500 if (Var->getWeight() == RegWeight::Zero && Var->getRegisterOverlap()) { 555 if (Var->getWeight() == RegWeight::Zero && Var->getRegisterOverlap()) {
501 if (Variable *Linked = Var->getPreferredRegister()) { 556 if (Variable *Linked = Var->getPreferredRegister()) {
502 if (!Linked->hasReg()) 557 if (!Linked->hasReg())
(...skipping 37 matching lines...) Expand 10 before | Expand all | Expand 10 after
540 _mov(ebp, esp); 595 _mov(ebp, esp);
541 } 596 }
542 597
543 // Generate "sub esp, LocalsSizeBytes" 598 // Generate "sub esp, LocalsSizeBytes"
544 if (LocalsSizeBytes) 599 if (LocalsSizeBytes)
545 _sub(getPhysicalRegister(Reg_esp), 600 _sub(getPhysicalRegister(Reg_esp),
546 Ctx->getConstantInt(IceType_i32, LocalsSizeBytes)); 601 Ctx->getConstantInt(IceType_i32, LocalsSizeBytes));
547 602
548 resetStackAdjustment(); 603 resetStackAdjustment();
549 604
550 // Fill in stack offsets for args, and copy args into registers for 605 // Fill in stack offsets for stack args, and copy args into registers
551 // those that were register-allocated. Args are pushed right to 606 // for those that were register-allocated. Args are pushed right to
552 // left, so Arg[0] is closest to the stack/frame pointer. 607 // left, so Arg[0] is closest to the stack/frame pointer.
553 //
554 // TODO: Make this right for different width args, calling
555 // conventions, etc. For one thing, args passed in registers will
556 // need to be copied/shuffled to their home registers (the
557 // RegManager code may have some permutation logic to leverage),
558 // and if they have no home register, home space will need to be
559 // allocated on the stack to copy into.
560 Variable *FramePtr = getPhysicalRegister(getFrameOrStackReg()); 608 Variable *FramePtr = getPhysicalRegister(getFrameOrStackReg());
561 size_t BasicFrameOffset = PreservedRegsSizeBytes + RetIpSizeBytes; 609 size_t BasicFrameOffset = PreservedRegsSizeBytes + RetIpSizeBytes;
562 if (!IsEbpBasedFrame) 610 if (!IsEbpBasedFrame)
563 BasicFrameOffset += LocalsSizeBytes; 611 BasicFrameOffset += LocalsSizeBytes;
612
613 unsigned NumXmmArgs = 0;
564 for (SizeT i = 0; i < Args.size(); ++i) { 614 for (SizeT i = 0; i < Args.size(); ++i) {
565 Variable *Arg = Args[i]; 615 Variable *Arg = Args[i];
566 setArgOffsetAndCopy(Arg, FramePtr, BasicFrameOffset, InArgsSizeBytes); 616 // Skip arguments passed in registers.
617 if (isVectorType(Arg->getType()) && NumXmmArgs < X86_MAX_XMM_ARGS) {
618 ++NumXmmArgs;
619 continue;
620 }
621 finishArgumentLowering(Arg, FramePtr, BasicFrameOffset, InArgsSizeBytes);
567 } 622 }
568 623
569 // Fill in stack offsets for locals. 624 // Fill in stack offsets for locals.
570 size_t TotalGlobalsSize = GlobalsSize; 625 size_t TotalGlobalsSize = GlobalsSize;
571 GlobalsSize = 0; 626 GlobalsSize = 0;
572 LocalsSize.assign(LocalsSize.size(), 0); 627 LocalsSize.assign(LocalsSize.size(), 0);
573 size_t NextStackOffset = 0; 628 size_t NextStackOffset = 0;
574 for (VarList::const_iterator I = Variables.begin(), E = Variables.end(); 629 for (VarList::const_iterator I = Variables.begin(), E = Variables.end();
575 I != E; ++I) { 630 I != E; ++I) {
576 Variable *Var = *I; 631 Variable *Var = *I;
(...skipping 669 matching lines...) Expand 10 before | Expand all | Expand 10 after
1246 Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest)); 1301 Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest));
1247 Variable *T_Lo = NULL, *T_Hi = NULL; 1302 Variable *T_Lo = NULL, *T_Hi = NULL;
1248 _mov(T_Lo, Src0Lo); 1303 _mov(T_Lo, Src0Lo);
1249 _mov(DestLo, T_Lo); 1304 _mov(DestLo, T_Lo);
1250 _mov(T_Hi, Src0Hi); 1305 _mov(T_Hi, Src0Hi);
1251 _mov(DestHi, T_Hi); 1306 _mov(DestHi, T_Hi);
1252 } else { 1307 } else {
1253 const bool AllowOverlap = true; 1308 const bool AllowOverlap = true;
1254 // RI is either a physical register or an immediate. 1309 // RI is either a physical register or an immediate.
1255 Operand *RI = legalize(Src0, Legal_Reg | Legal_Imm, AllowOverlap); 1310 Operand *RI = legalize(Src0, Legal_Reg | Legal_Imm, AllowOverlap);
1256 _mov(Dest, RI); 1311 if (isVectorType(Dest->getType()))
1312 _movp(Dest, RI);
1313 else
1314 _mov(Dest, RI);
1257 } 1315 }
1258 } 1316 }
1259 1317
1260 void TargetX8632::lowerBr(const InstBr *Inst) { 1318 void TargetX8632::lowerBr(const InstBr *Inst) {
1261 if (Inst->isUnconditional()) { 1319 if (Inst->isUnconditional()) {
1262 _br(Inst->getTargetUnconditional()); 1320 _br(Inst->getTargetUnconditional());
1263 } else { 1321 } else {
1264 Operand *Src0 = legalize(Inst->getCondition()); 1322 Operand *Src0 = legalize(Inst->getCondition());
1265 Constant *Zero = Ctx->getConstantZero(IceType_i32); 1323 Constant *Zero = Ctx->getConstantZero(IceType_i32);
1266 _cmp(Src0, Zero); 1324 _cmp(Src0, Zero);
1267 _br(InstX8632Br::Br_ne, Inst->getTargetTrue(), Inst->getTargetFalse()); 1325 _br(InstX8632Br::Br_ne, Inst->getTargetTrue(), Inst->getTargetFalse());
1268 } 1326 }
1269 } 1327 }
1270 1328
1271 void TargetX8632::lowerCall(const InstCall *Instr) { 1329 void TargetX8632::lowerCall(const InstCall *Instr) {
1272 // Generate a sequence of push instructions, pushing right to left, 1330 // Classify each argument operand according to the location where the
1273 // keeping track of stack offsets in case a push involves a stack 1331 // argument is passed.
1274 // operand and we are using an esp-based frame. 1332 OperandList XmmArgs;
1333 OperandList StackArgs;
1334 for (SizeT i = 0, NumArgs = Instr->getNumArgs(); i < NumArgs; ++i) {
1335 Operand *Arg = Instr->getArg(i);
1336 if (isVectorType(Arg->getType()) && XmmArgs.size() < X86_MAX_XMM_ARGS) {
1337 XmmArgs.push_back(Arg);
1338 } else {
1339 StackArgs.push_back(Arg);
1340 }
1341 }
1342 // For stack arguments, generate a sequence of push instructions,
1343 // pushing right to left, keeping track of stack offsets in case a
1344 // push involves a stack operand and we are using an esp-based frame.
1275 uint32_t StackOffset = 0; 1345 uint32_t StackOffset = 0;
1346 // TODO: Consolidate the stack adjustment for function calls by
1347 // reserving enough space for the arguments only once.
1348 //
1276 // TODO: If for some reason the call instruction gets dead-code 1349 // TODO: If for some reason the call instruction gets dead-code
1277 // eliminated after lowering, we would need to ensure that the 1350 // eliminated after lowering, we would need to ensure that the
1278 // pre-call push instructions and the post-call esp adjustment get 1351 // pre-call push instructions and the post-call esp adjustment get
1279 // eliminated as well. 1352 // eliminated as well.
1280 for (SizeT NumArgs = Instr->getNumArgs(), i = 0; i < NumArgs; ++i) { 1353 for (OperandList::reverse_iterator I = StackArgs.rbegin(),
1281 Operand *Arg = legalize(Instr->getArg(NumArgs - i - 1)); 1354 E = StackArgs.rend(); I != E; ++I) {
1355 Operand *Arg = legalize(*I);
1282 if (Arg->getType() == IceType_i64) { 1356 if (Arg->getType() == IceType_i64) {
1283 _push(hiOperand(Arg)); 1357 _push(hiOperand(Arg));
1284 _push(loOperand(Arg)); 1358 _push(loOperand(Arg));
1285 } else if (Arg->getType() == IceType_f64) { 1359 } else if (Arg->getType() == IceType_f64 || isVectorType(Arg->getType())) {
1286 // If the Arg turns out to be a memory operand, we need to push 1360 // If the Arg turns out to be a memory operand, more than one push
1287 // 8 bytes, which requires two push instructions. This ends up 1361 // instruction is required. This ends up being somewhat clumsy in
1288 // being somewhat clumsy in the current IR, so we use a 1362 // the current IR, so we use a workaround. Force the operand into
1289 // workaround. Force the operand into a (xmm) register, and 1363 // a (xmm) register, and then push the register. An xmm register
1290 // then push the register. An xmm register push is actually not 1364 // push is actually not possible in x86, but the Push instruction
1291 // possible in x86, but the Push instruction emitter handles 1365 // emitter handles this by decrementing the stack pointer and
1292 // this by decrementing the stack pointer and directly writing 1366 // directly writing the xmm register value.
1293 // the xmm register value. 1367 _push(legalize(Arg, Legal_Reg));
1294 Variable *T = NULL;
1295 _mov(T, Arg);
1296 _push(T);
1297 } else { 1368 } else {
1298 // Otherwise PNaCl requires parameter types to be at least 32-bits. 1369 // Otherwise PNaCl requires parameter types to be at least 32-bits.
1299 assert(Arg->getType() == IceType_f32 || Arg->getType() == IceType_i32); 1370 assert(Arg->getType() == IceType_f32 || Arg->getType() == IceType_i32);
1300 _push(Arg); 1371 _push(Arg);
1301 } 1372 }
1302 StackOffset += typeWidthInBytesOnStack(Arg->getType()); 1373 StackOffset += typeWidthInBytesOnStack(Arg->getType());
1303 } 1374 }
1375 // Copy arguments to be passed in registers to the appropriate
1376 // registers.
1377 // TODO: Investigate the impact of lowering arguments passed in
1378 // registers after lowering stack arguments as opposed to the other
1379 // way around. Lowering register arguments after stack arguments may
1380 // reduce register pressure. On the other hand, lowering register
1381 // arguments first (before stack arguments) may result in more compact
1382 // code, as the memory operand displacements may end up being smaller
1383 // before any stack adjustment is done.
1384 for (SizeT i = 0, NumXmmArgs = XmmArgs.size(); i < NumXmmArgs; ++i) {
1385 Variable *Reg = legalizeToVar(XmmArgs[i], false, Reg_xmm0 + i);
1386 // Generate a FakeUse of register arguments so that they do not get
1387 // dead code eliminated as a result of the FakeKill of scratch
1388 // registers after the call.
1389 Context.insert(InstFakeUse::create(Func, Reg));
1390 }
1304 // Generate the call instruction. Assign its result to a temporary 1391 // Generate the call instruction. Assign its result to a temporary
1305 // with high register allocation weight. 1392 // with high register allocation weight.
1306 Variable *Dest = Instr->getDest(); 1393 Variable *Dest = Instr->getDest();
1307 Variable *eax = NULL; // doubles as RegLo as necessary 1394 // ReturnReg doubles as ReturnRegLo as necessary.
1308 Variable *edx = NULL; 1395 Variable *ReturnReg = NULL;
1396 Variable *ReturnRegHi = NULL;
1309 if (Dest) { 1397 if (Dest) {
1310 switch (Dest->getType()) { 1398 switch (Dest->getType()) {
1311 case IceType_NUM: 1399 case IceType_NUM:
1312 llvm_unreachable("Invalid Call dest type"); 1400 llvm_unreachable("Invalid Call dest type");
1313 break; 1401 break;
1314 case IceType_void: 1402 case IceType_void:
1315 break; 1403 break;
1316 case IceType_i1: 1404 case IceType_i1:
1317 case IceType_i8: 1405 case IceType_i8:
1318 case IceType_i16: 1406 case IceType_i16:
1319 case IceType_i32: 1407 case IceType_i32:
1320 eax = makeReg(Dest->getType(), Reg_eax); 1408 ReturnReg = makeReg(Dest->getType(), Reg_eax);
1321 break; 1409 break;
1322 case IceType_i64: 1410 case IceType_i64:
1323 eax = makeReg(IceType_i32, Reg_eax); 1411 ReturnReg = makeReg(IceType_i32, Reg_eax);
1324 edx = makeReg(IceType_i32, Reg_edx); 1412 ReturnRegHi = makeReg(IceType_i32, Reg_edx);
1325 break; 1413 break;
1326 case IceType_f32: 1414 case IceType_f32:
1327 case IceType_f64: 1415 case IceType_f64:
1328 // Leave eax==edx==NULL, and capture the result with the fstp 1416 // Leave ReturnReg==ReturnRegHi==NULL, and capture the result with
1329 // instruction. 1417 // the fstp instruction.
1330 break; 1418 break;
1331 case IceType_v4i1: 1419 case IceType_v4i1:
1332 case IceType_v8i1: 1420 case IceType_v8i1:
1333 case IceType_v16i1: 1421 case IceType_v16i1:
1334 case IceType_v16i8: 1422 case IceType_v16i8:
1335 case IceType_v8i16: 1423 case IceType_v8i16:
1336 case IceType_v4i32: 1424 case IceType_v4i32:
1337 case IceType_v4f32: { 1425 case IceType_v4f32:
1338 // TODO(wala): Handle return values of vector type in the caller. 1426 ReturnReg = makeReg(Dest->getType(), Reg_xmm0);
1339 IceString Ty; 1427 break;
1340 llvm::raw_string_ostream BaseOS(Ty);
1341 Ostream OS(&BaseOS);
1342 OS << Dest->getType();
1343 Func->setError("Unhandled dest type: " + BaseOS.str());
1344 return;
1345 }
1346 } 1428 }
1347 } 1429 }
1348 // TODO(stichnot): LEAHACK: remove Legal_All (and use default) once 1430 // TODO(stichnot): LEAHACK: remove Legal_All (and use default) once
1349 // a proper emitter is used. 1431 // a proper emitter is used.
1350 Operand *CallTarget = legalize(Instr->getCallTarget(), Legal_All); 1432 Operand *CallTarget = legalize(Instr->getCallTarget(), Legal_All);
1351 Inst *NewCall = InstX8632Call::create(Func, eax, CallTarget); 1433 Inst *NewCall = InstX8632Call::create(Func, ReturnReg, CallTarget);
1352 Context.insert(NewCall); 1434 Context.insert(NewCall);
1353 if (edx) 1435 if (ReturnRegHi)
1354 Context.insert(InstFakeDef::create(Func, edx)); 1436 Context.insert(InstFakeDef::create(Func, ReturnRegHi));
1355 1437
1356 // Add the appropriate offset to esp. 1438 // Add the appropriate offset to esp.
1357 if (StackOffset) { 1439 if (StackOffset) {
1358 Variable *esp = Func->getTarget()->getPhysicalRegister(Reg_esp); 1440 Variable *esp = Func->getTarget()->getPhysicalRegister(Reg_esp);
1359 _add(esp, Ctx->getConstantInt(IceType_i32, StackOffset)); 1441 _add(esp, Ctx->getConstantInt(IceType_i32, StackOffset));
1360 } 1442 }
1361 1443
1362 // Insert a register-kill pseudo instruction. 1444 // Insert a register-kill pseudo instruction.
1363 VarList KilledRegs; 1445 VarList KilledRegs;
1364 for (SizeT i = 0; i < ScratchRegs.size(); ++i) { 1446 for (SizeT i = 0; i < ScratchRegs.size(); ++i) {
1365 if (ScratchRegs[i]) 1447 if (ScratchRegs[i])
1366 KilledRegs.push_back(Func->getTarget()->getPhysicalRegister(i)); 1448 KilledRegs.push_back(Func->getTarget()->getPhysicalRegister(i));
1367 } 1449 }
1368 Context.insert(InstFakeKill::create(Func, KilledRegs, NewCall)); 1450 Context.insert(InstFakeKill::create(Func, KilledRegs, NewCall));
1369 1451
1370 // Generate a FakeUse to keep the call live if necessary. 1452 // Generate a FakeUse to keep the call live if necessary.
1371 if (Instr->hasSideEffects() && eax) { 1453 if (Instr->hasSideEffects() && ReturnReg) {
1372 Inst *FakeUse = InstFakeUse::create(Func, eax); 1454 Inst *FakeUse = InstFakeUse::create(Func, ReturnReg);
1373 Context.insert(FakeUse); 1455 Context.insert(FakeUse);
1374 } 1456 }
1457
1458 if (!Dest)
1459 return;
1375 1460
1376 // Generate Dest=eax assignment. 1461 // Assign the result of the call to Dest.
1377 if (Dest && eax) { 1462 if (ReturnReg) {
1378 if (edx) { 1463 if (ReturnRegHi) {
1464 assert(Dest->getType() == IceType_i64);
1379 split64(Dest); 1465 split64(Dest);
1380 Variable *DestLo = Dest->getLo(); 1466 Variable *DestLo = Dest->getLo();
1381 Variable *DestHi = Dest->getHi(); 1467 Variable *DestHi = Dest->getHi();
1382 DestLo->setPreferredRegister(eax, false); 1468 DestLo->setPreferredRegister(ReturnReg, false);
1383 DestHi->setPreferredRegister(edx, false); 1469 DestHi->setPreferredRegister(ReturnRegHi, false);
1384 _mov(DestLo, eax); 1470 _mov(DestLo, ReturnReg);
1385 _mov(DestHi, edx); 1471 _mov(DestHi, ReturnRegHi);
1386 } else { 1472 } else {
1387 Dest->setPreferredRegister(eax, false); 1473 assert(Dest->getType() == IceType_i32 || Dest->getType() == IceType_i16 ||
1388 _mov(Dest, eax); 1474 Dest->getType() == IceType_i8 || Dest->getType() == IceType_i1 ||
1475 isVectorType(Dest->getType()));
1476 Dest->setPreferredRegister(ReturnReg, false);
1477 if (isVectorType(Dest->getType())) {
1478 _movp(Dest, ReturnReg);
1479 } else {
1480 _mov(Dest, ReturnReg);
1481 }
1389 } 1482 }
1390 } 1483 } else if (Dest->getType() == IceType_f32 || Dest->getType() == IceType_f64) {
1391 1484 // Special treatment for an FP function which returns its result in
1392 // Special treatment for an FP function which returns its result in 1485 // st(0).
1393 // st(0).
1394 if (Dest &&
1395 (Dest->getType() == IceType_f32 || Dest->getType() == IceType_f64)) {
1396 _fstp(Dest); 1486 _fstp(Dest);
1397 // If Dest ends up being a physical xmm register, the fstp emit 1487 // If Dest ends up being a physical xmm register, the fstp emit code
1398 // code will route st(0) through a temporary stack slot. 1488 // will route st(0) through a temporary stack slot.
1399 } 1489 }
1400 } 1490 }
1401 1491
1402 void TargetX8632::lowerCast(const InstCast *Inst) { 1492 void TargetX8632::lowerCast(const InstCast *Inst) {
1403 // a = cast(b) ==> t=cast(b); a=t; (link t->b, link a->t, no overlap) 1493 // a = cast(b) ==> t=cast(b); a=t; (link t->b, link a->t, no overlap)
1404 InstCast::OpKind CastKind = Inst->getCastKind(); 1494 InstCast::OpKind CastKind = Inst->getCastKind();
1405 Variable *Dest = Inst->getDest(); 1495 Variable *Dest = Inst->getDest();
1406 switch (CastKind) { 1496 switch (CastKind) {
1407 default: 1497 default:
1408 Func->setError("Cast type not supported"); 1498 Func->setError("Cast type not supported");
(...skipping 1325 matching lines...) Expand 10 before | Expand all | Expand 10 after
2734 for (SizeT i = 0; i < Size; ++i) { 2824 for (SizeT i = 0; i < Size; ++i) {
2735 Str << "\t.byte\t" << (((unsigned)Data[i]) & 0xff) << "\n"; 2825 Str << "\t.byte\t" << (((unsigned)Data[i]) & 0xff) << "\n";
2736 } 2826 }
2737 Str << "\t.size\t" << MangledName << ", " << Size << "\n"; 2827 Str << "\t.size\t" << MangledName << ", " << Size << "\n";
2738 } 2828 }
2739 Str << "\t" << (IsInternal ? ".local" : ".global") << "\t" << MangledName 2829 Str << "\t" << (IsInternal ? ".local" : ".global") << "\t" << MangledName
2740 << "\n"; 2830 << "\n";
2741 } 2831 }
2742 2832
2743 } // end of namespace Ice 2833 } // end of namespace Ice
OLDNEW
« no previous file with comments | « src/IceTargetLoweringX8632.h ('k') | tests_lit/llvm2ice_tests/vector-arg.ll » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698