| Index: src/mips64/assembler-mips64.cc
|
| diff --git a/src/mips/assembler-mips.cc b/src/mips64/assembler-mips64.cc
|
| similarity index 82%
|
| copy from src/mips/assembler-mips.cc
|
| copy to src/mips64/assembler-mips64.cc
|
| index c63714032c50904a5c1f2e6f746bb523b29e6ac9..2796c95b37dd51bb8458c93db81cb55205d964b7 100644
|
| --- a/src/mips/assembler-mips.cc
|
| +++ b/src/mips64/assembler-mips64.cc
|
| @@ -35,15 +35,16 @@
|
|
|
| #include "src/v8.h"
|
|
|
| -#if V8_TARGET_ARCH_MIPS
|
| +#if V8_TARGET_ARCH_MIPS64
|
|
|
| #include "src/base/cpu.h"
|
| -#include "src/mips/assembler-mips-inl.h"
|
| +#include "src/mips64/assembler-mips64-inl.h"
|
| #include "src/serialize.h"
|
|
|
| namespace v8 {
|
| namespace internal {
|
|
|
| +
|
| // Get the CPU features enabled by the build. For cross compilation the
|
| // preprocessor symbols CAN_USE_FPU_INSTRUCTIONS
|
| // can be defined to enable FPU instructions when building the
|
| @@ -121,14 +122,14 @@ int ToNumber(Register reg) {
|
| 5, // a1
|
| 6, // a2
|
| 7, // a3
|
| - 8, // t0
|
| - 9, // t1
|
| - 10, // t2
|
| - 11, // t3
|
| - 12, // t4
|
| - 13, // t5
|
| - 14, // t6
|
| - 15, // t7
|
| + 8, // a4
|
| + 9, // a5
|
| + 10, // a6
|
| + 11, // a7
|
| + 12, // t0
|
| + 13, // t1
|
| + 14, // t2
|
| + 15, // t3
|
| 16, // s0
|
| 17, // s1
|
| 18, // s2
|
| @@ -156,8 +157,8 @@ Register ToRegister(int num) {
|
| zero_reg,
|
| at,
|
| v0, v1,
|
| - a0, a1, a2, a3,
|
| - t0, t1, t2, t3, t4, t5, t6, t7,
|
| + a0, a1, a2, a3, a4, a5, a6, a7,
|
| + t0, t1, t2, t3,
|
| s0, s1, s2, s3, s4, s5, s6, s7,
|
| t8, t9,
|
| k0, k1,
|
| @@ -222,22 +223,22 @@ Operand::Operand(Handle<Object> handle) {
|
| Object* obj = *handle;
|
| if (obj->IsHeapObject()) {
|
| ASSERT(!HeapObject::cast(obj)->GetHeap()->InNewSpace(obj));
|
| - imm32_ = reinterpret_cast<intptr_t>(handle.location());
|
| + imm64_ = reinterpret_cast<intptr_t>(handle.location());
|
| rmode_ = RelocInfo::EMBEDDED_OBJECT;
|
| } else {
|
| // No relocation needed.
|
| - imm32_ = reinterpret_cast<intptr_t>(obj);
|
| - rmode_ = RelocInfo::NONE32;
|
| + imm64_ = reinterpret_cast<intptr_t>(obj);
|
| + rmode_ = RelocInfo::NONE64;
|
| }
|
| }
|
|
|
|
|
| -MemOperand::MemOperand(Register rm, int32_t offset) : Operand(rm) {
|
| +MemOperand::MemOperand(Register rm, int64_t offset) : Operand(rm) {
|
| offset_ = offset;
|
| }
|
|
|
|
|
| -MemOperand::MemOperand(Register rm, int32_t unit, int32_t multiplier,
|
| +MemOperand::MemOperand(Register rm, int64_t unit, int64_t multiplier,
|
| OffsetAddend offset_addend) : Operand(rm) {
|
| offset_ = unit * multiplier + offset_addend;
|
| }
|
| @@ -247,33 +248,33 @@ MemOperand::MemOperand(Register rm, int32_t unit, int32_t multiplier,
|
| // Specific instructions, constants, and masks.
|
|
|
| static const int kNegOffset = 0x00008000;
|
| -// addiu(sp, sp, 4) aka Pop() operation or part of Pop(r)
|
| +// daddiu(sp, sp, 8) aka Pop() operation or part of Pop(r)
|
| // operations as post-increment of sp.
|
| -const Instr kPopInstruction = ADDIU | (kRegister_sp_Code << kRsShift)
|
| +const Instr kPopInstruction = DADDIU | (kRegister_sp_Code << kRsShift)
|
| | (kRegister_sp_Code << kRtShift)
|
| | (kPointerSize & kImm16Mask); // NOLINT
|
| -// addiu(sp, sp, -4) part of Push(r) operation as pre-decrement of sp.
|
| -const Instr kPushInstruction = ADDIU | (kRegister_sp_Code << kRsShift)
|
| +// daddiu(sp, sp, -8) part of Push(r) operation as pre-decrement of sp.
|
| +const Instr kPushInstruction = DADDIU | (kRegister_sp_Code << kRsShift)
|
| | (kRegister_sp_Code << kRtShift)
|
| | (-kPointerSize & kImm16Mask); // NOLINT
|
| -// sw(r, MemOperand(sp, 0))
|
| -const Instr kPushRegPattern = SW | (kRegister_sp_Code << kRsShift)
|
| - | (0 & kImm16Mask); // NOLINT
|
| -// lw(r, MemOperand(sp, 0))
|
| -const Instr kPopRegPattern = LW | (kRegister_sp_Code << kRsShift)
|
| - | (0 & kImm16Mask); // NOLINT
|
| +// sd(r, MemOperand(sp, 0))
|
| +const Instr kPushRegPattern = SD | (kRegister_sp_Code << kRsShift)
|
| + | (0 & kImm16Mask); // NOLINT
|
| +// ld(r, MemOperand(sp, 0))
|
| +const Instr kPopRegPattern = LD | (kRegister_sp_Code << kRsShift)
|
| + | (0 & kImm16Mask); // NOLINT
|
|
|
| const Instr kLwRegFpOffsetPattern = LW | (kRegister_fp_Code << kRsShift)
|
| - | (0 & kImm16Mask); // NOLINT
|
| + | (0 & kImm16Mask); // NOLINT
|
|
|
| const Instr kSwRegFpOffsetPattern = SW | (kRegister_fp_Code << kRsShift)
|
| - | (0 & kImm16Mask); // NOLINT
|
| + | (0 & kImm16Mask); // NOLINT
|
|
|
| const Instr kLwRegFpNegOffsetPattern = LW | (kRegister_fp_Code << kRsShift)
|
| - | (kNegOffset & kImm16Mask); // NOLINT
|
| + | (kNegOffset & kImm16Mask); // NOLINT
|
|
|
| const Instr kSwRegFpNegOffsetPattern = SW | (kRegister_fp_Code << kRsShift)
|
| - | (kNegOffset & kImm16Mask); // NOLINT
|
| + | (kNegOffset & kImm16Mask); // NOLINT
|
| // A mask for the Rt register for push, pop, lw, sw instructions.
|
| const Instr kRtMask = kRtFieldMask;
|
| const Instr kLwSwInstrTypeMask = 0xffe00000;
|
| @@ -616,7 +617,7 @@ Instr Assembler::SetSwOffset(Instr instr, int16_t offset) {
|
|
|
|
|
| bool Assembler::IsAddImmediate(Instr instr) {
|
| - return ((instr & kOpcodeMask) == ADDIU);
|
| + return ((instr & kOpcodeMask) == ADDIU || (instr & kOpcodeMask) == DADDIU);
|
| }
|
|
|
|
|
| @@ -631,7 +632,7 @@ bool Assembler::IsAndImmediate(Instr instr) {
|
| }
|
|
|
|
|
| -int Assembler::target_at(int32_t pos) {
|
| +int64_t Assembler::target_at(int64_t pos) {
|
| Instr instr = instr_at(pos);
|
| if ((instr & ~kImm16Mask) == 0) {
|
| // Emitted label constant, not part of a branch.
|
| @@ -645,10 +646,9 @@ int Assembler::target_at(int32_t pos) {
|
| // Check we have a branch or jump instruction.
|
| ASSERT(IsBranch(instr) || IsJ(instr) || IsLui(instr));
|
| // Do NOT change this to <<2. We rely on arithmetic shifts here, assuming
|
| - // the compiler uses arithmectic shifts for signed integers.
|
| + // the compiler uses arithmetic shifts for signed integers.
|
| if (IsBranch(instr)) {
|
| int32_t imm18 = ((instr & static_cast<int32_t>(kImm16Mask)) << 16) >> 14;
|
| -
|
| if (imm18 == kEndOfChain) {
|
| // EndOfChain sentinel is returned directly, not relative to pc or pos.
|
| return kEndOfChain;
|
| @@ -658,16 +658,23 @@ int Assembler::target_at(int32_t pos) {
|
| } else if (IsLui(instr)) {
|
| Instr instr_lui = instr_at(pos + 0 * Assembler::kInstrSize);
|
| Instr instr_ori = instr_at(pos + 1 * Assembler::kInstrSize);
|
| + Instr instr_ori2 = instr_at(pos + 3 * Assembler::kInstrSize);
|
| ASSERT(IsOri(instr_ori));
|
| - int32_t imm = (instr_lui & static_cast<int32_t>(kImm16Mask)) << kLuiShift;
|
| - imm |= (instr_ori & static_cast<int32_t>(kImm16Mask));
|
| + ASSERT(IsOri(instr_ori2));
|
| +
|
| + // TODO(plind) create named constants for shift values.
|
| + int64_t imm = static_cast<int64_t>(instr_lui & kImm16Mask) << 48;
|
| + imm |= static_cast<int64_t>(instr_ori & kImm16Mask) << 32;
|
| + imm |= static_cast<int64_t>(instr_ori2 & kImm16Mask) << 16;
|
| + // Sign extend address;
|
| + imm >>= 16;
|
|
|
| if (imm == kEndOfJumpChain) {
|
| // EndOfChain sentinel is returned directly, not relative to pc or pos.
|
| return kEndOfChain;
|
| } else {
|
| - uint32_t instr_address = reinterpret_cast<int32_t>(buffer_ + pos);
|
| - int32_t delta = instr_address - imm;
|
| + uint64_t instr_address = reinterpret_cast<int64_t>(buffer_ + pos);
|
| + int64_t delta = instr_address - imm;
|
| ASSERT(pos > delta);
|
| return pos - delta;
|
| }
|
| @@ -677,9 +684,9 @@ int Assembler::target_at(int32_t pos) {
|
| // EndOfChain sentinel is returned directly, not relative to pc or pos.
|
| return kEndOfChain;
|
| } else {
|
| - uint32_t instr_address = reinterpret_cast<int32_t>(buffer_ + pos);
|
| + uint64_t instr_address = reinterpret_cast<int64_t>(buffer_ + pos);
|
| instr_address &= kImm28Mask;
|
| - int32_t delta = instr_address - imm28;
|
| + int64_t delta = instr_address - imm28;
|
| ASSERT(pos > delta);
|
| return pos - delta;
|
| }
|
| @@ -687,7 +694,7 @@ int Assembler::target_at(int32_t pos) {
|
| }
|
|
|
|
|
| -void Assembler::target_at_put(int32_t pos, int32_t target_pos) {
|
| +void Assembler::target_at_put(int64_t pos, int64_t target_pos) {
|
| Instr instr = instr_at(pos);
|
| if ((instr & ~kImm16Mask) == 0) {
|
| ASSERT(target_pos == kEndOfChain || target_pos >= 0);
|
| @@ -710,19 +717,25 @@ void Assembler::target_at_put(int32_t pos, int32_t target_pos) {
|
| } else if (IsLui(instr)) {
|
| Instr instr_lui = instr_at(pos + 0 * Assembler::kInstrSize);
|
| Instr instr_ori = instr_at(pos + 1 * Assembler::kInstrSize);
|
| + Instr instr_ori2 = instr_at(pos + 3 * Assembler::kInstrSize);
|
| ASSERT(IsOri(instr_ori));
|
| - uint32_t imm = reinterpret_cast<uint32_t>(buffer_) + target_pos;
|
| + ASSERT(IsOri(instr_ori2));
|
| +
|
| + uint64_t imm = reinterpret_cast<uint64_t>(buffer_) + target_pos;
|
| ASSERT((imm & 3) == 0);
|
|
|
| instr_lui &= ~kImm16Mask;
|
| instr_ori &= ~kImm16Mask;
|
| + instr_ori2 &= ~kImm16Mask;
|
|
|
| instr_at_put(pos + 0 * Assembler::kInstrSize,
|
| - instr_lui | ((imm & kHiMask) >> kLuiShift));
|
| + instr_lui | ((imm >> 32) & kImm16Mask));
|
| instr_at_put(pos + 1 * Assembler::kInstrSize,
|
| - instr_ori | (imm & kImm16Mask));
|
| + instr_ori | ((imm >> 16) & kImm16Mask));
|
| + instr_at_put(pos + 3 * Assembler::kInstrSize,
|
| + instr_ori2 | (imm & kImm16Mask));
|
| } else {
|
| - uint32_t imm28 = reinterpret_cast<uint32_t>(buffer_) + target_pos;
|
| + uint64_t imm28 = reinterpret_cast<uint64_t>(buffer_) + target_pos;
|
| imm28 &= kImm28Mask;
|
| ASSERT((imm28 & 3) == 0);
|
|
|
| @@ -970,8 +983,8 @@ int32_t Assembler::get_trampoline_entry(int32_t pos) {
|
| }
|
|
|
|
|
| -uint32_t Assembler::jump_address(Label* L) {
|
| - int32_t target_pos;
|
| +uint64_t Assembler::jump_address(Label* L) {
|
| + int64_t target_pos;
|
|
|
| if (L->is_bound()) {
|
| target_pos = L->pos();
|
| @@ -985,7 +998,7 @@ uint32_t Assembler::jump_address(Label* L) {
|
| }
|
| }
|
|
|
| - uint32_t imm = reinterpret_cast<uint32_t>(buffer_) + target_pos;
|
| + uint64_t imm = reinterpret_cast<uint64_t>(buffer_) + target_pos;
|
| ASSERT((imm & 3) == 0);
|
|
|
| return imm;
|
| @@ -1116,11 +1129,11 @@ void Assembler::bne(Register rs, Register rt, int16_t offset) {
|
| }
|
|
|
|
|
| -void Assembler::j(int32_t target) {
|
| +void Assembler::j(int64_t target) {
|
| #if DEBUG
|
| // Get pc of delay slot.
|
| - uint32_t ipc = reinterpret_cast<uint32_t>(pc_ + 1 * kInstrSize);
|
| - bool in_range = (ipc ^ static_cast<uint32_t>(target) >>
|
| + uint64_t ipc = reinterpret_cast<uint64_t>(pc_ + 1 * kInstrSize);
|
| + bool in_range = (ipc ^ static_cast<uint64_t>(target) >>
|
| (kImm26Bits + kImmFieldShift)) == 0;
|
| ASSERT(in_range && ((target & 3) == 0));
|
| #endif
|
| @@ -1138,11 +1151,11 @@ void Assembler::jr(Register rs) {
|
| }
|
|
|
|
|
| -void Assembler::jal(int32_t target) {
|
| +void Assembler::jal(int64_t target) {
|
| #ifdef DEBUG
|
| // Get pc of delay slot.
|
| - uint32_t ipc = reinterpret_cast<uint32_t>(pc_ + 1 * kInstrSize);
|
| - bool in_range = (ipc ^ static_cast<uint32_t>(target) >>
|
| + uint64_t ipc = reinterpret_cast<uint64_t>(pc_ + 1 * kInstrSize);
|
| + bool in_range = (ipc ^ static_cast<uint64_t>(target) >>
|
| (kImm26Bits + kImmFieldShift)) == 0;
|
| ASSERT(in_range && ((target & 3) == 0));
|
| #endif
|
| @@ -1159,10 +1172,10 @@ void Assembler::jalr(Register rs, Register rd) {
|
| }
|
|
|
|
|
| -void Assembler::j_or_jr(int32_t target, Register rs) {
|
| +void Assembler::j_or_jr(int64_t target, Register rs) {
|
| // Get pc of delay slot.
|
| - uint32_t ipc = reinterpret_cast<uint32_t>(pc_ + 1 * kInstrSize);
|
| - bool in_range = (ipc ^ static_cast<uint32_t>(target) >>
|
| + uint64_t ipc = reinterpret_cast<uint64_t>(pc_ + 1 * kInstrSize);
|
| + bool in_range = (ipc ^ static_cast<uint64_t>(target) >>
|
| (kImm26Bits + kImmFieldShift)) == 0;
|
| if (in_range) {
|
| j(target);
|
| @@ -1172,10 +1185,10 @@ void Assembler::j_or_jr(int32_t target, Register rs) {
|
| }
|
|
|
|
|
| -void Assembler::jal_or_jalr(int32_t target, Register rs) {
|
| +void Assembler::jal_or_jalr(int64_t target, Register rs) {
|
| // Get pc of delay slot.
|
| - uint32_t ipc = reinterpret_cast<uint32_t>(pc_ + 1 * kInstrSize);
|
| - bool in_range = (ipc ^ static_cast<uint32_t>(target) >>
|
| + uint64_t ipc = reinterpret_cast<uint64_t>(pc_ + 1 * kInstrSize);
|
| + bool in_range = (ipc ^ static_cast<uint64_t>(target) >>
|
| (kImm26Bits+kImmFieldShift)) == 0;
|
| if (in_range) {
|
| jal(target);
|
| @@ -1219,6 +1232,11 @@ void Assembler::multu(Register rs, Register rt) {
|
| }
|
|
|
|
|
| +void Assembler::daddiu(Register rd, Register rs, int32_t j) {
|
| + GenInstrImmediate(DADDIU, rs, rd, j);
|
| +}
|
| +
|
| +
|
| void Assembler::div(Register rs, Register rt) {
|
| GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIV);
|
| }
|
| @@ -1229,6 +1247,36 @@ void Assembler::divu(Register rs, Register rt) {
|
| }
|
|
|
|
|
| +void Assembler::daddu(Register rd, Register rs, Register rt) {
|
| + GenInstrRegister(SPECIAL, rs, rt, rd, 0, DADDU);
|
| +}
|
| +
|
| +
|
| +void Assembler::dsubu(Register rd, Register rs, Register rt) {
|
| + GenInstrRegister(SPECIAL, rs, rt, rd, 0, DSUBU);
|
| +}
|
| +
|
| +
|
| +void Assembler::dmult(Register rs, Register rt) {
|
| + GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DMULT);
|
| +}
|
| +
|
| +
|
| +void Assembler::dmultu(Register rs, Register rt) {
|
| + GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DMULTU);
|
| +}
|
| +
|
| +
|
| +void Assembler::ddiv(Register rs, Register rt) {
|
| + GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DDIV);
|
| +}
|
| +
|
| +
|
| +void Assembler::ddivu(Register rs, Register rt) {
|
| + GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DDIVU);
|
| +}
|
| +
|
| +
|
| // Logical.
|
|
|
| void Assembler::and_(Register rd, Register rs, Register rt) {
|
| @@ -1311,7 +1359,7 @@ void Assembler::srav(Register rd, Register rt, Register rs) {
|
| void Assembler::rotr(Register rd, Register rt, uint16_t sa) {
|
| // Should be called via MacroAssembler::Ror.
|
| ASSERT(rd.is_valid() && rt.is_valid() && is_uint5(sa));
|
| - ASSERT(kArchVariant == kMips32r2);
|
| + ASSERT(kArchVariant == kMips64r2);
|
| Instr instr = SPECIAL | (1 << kRsShift) | (rt.code() << kRtShift)
|
| | (rd.code() << kRdShift) | (sa << kSaShift) | SRL;
|
| emit(instr);
|
| @@ -1321,21 +1369,84 @@ void Assembler::rotr(Register rd, Register rt, uint16_t sa) {
|
| void Assembler::rotrv(Register rd, Register rt, Register rs) {
|
| // Should be called via MacroAssembler::Ror.
|
| ASSERT(rd.is_valid() && rt.is_valid() && rs.is_valid() );
|
| - ASSERT(kArchVariant == kMips32r2);
|
| + ASSERT(kArchVariant == kMips64r2);
|
| Instr instr = SPECIAL | (rs.code() << kRsShift) | (rt.code() << kRtShift)
|
| | (rd.code() << kRdShift) | (1 << kSaShift) | SRLV;
|
| emit(instr);
|
| }
|
|
|
|
|
| +void Assembler::dsll(Register rd, Register rt, uint16_t sa) {
|
| + GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa, DSLL);
|
| +}
|
| +
|
| +
|
| +void Assembler::dsllv(Register rd, Register rt, Register rs) {
|
| + GenInstrRegister(SPECIAL, rs, rt, rd, 0, DSLLV);
|
| +}
|
| +
|
| +
|
| +void Assembler::dsrl(Register rd, Register rt, uint16_t sa) {
|
| + GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa, DSRL);
|
| +}
|
| +
|
| +
|
| +void Assembler::dsrlv(Register rd, Register rt, Register rs) {
|
| + GenInstrRegister(SPECIAL, rs, rt, rd, 0, DSRLV);
|
| +}
|
| +
|
| +
|
| +void Assembler::drotr(Register rd, Register rt, uint16_t sa) {
|
| + ASSERT(rd.is_valid() && rt.is_valid() && is_uint5(sa));
|
| + Instr instr = SPECIAL | (1 << kRsShift) | (rt.code() << kRtShift)
|
| + | (rd.code() << kRdShift) | (sa << kSaShift) | DSRL;
|
| + emit(instr);
|
| +}
|
| +
|
| +
|
| +void Assembler::drotrv(Register rd, Register rt, Register rs) {
|
| + ASSERT(rd.is_valid() && rt.is_valid() && rs.is_valid() );
|
| + Instr instr = SPECIAL | (rs.code() << kRsShift) | (rt.code() << kRtShift)
|
| + | (rd.code() << kRdShift) | (1 << kSaShift) | DSRLV;
|
| + emit(instr);
|
| +}
|
| +
|
| +
|
| +void Assembler::dsra(Register rd, Register rt, uint16_t sa) {
|
| + GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa, DSRA);
|
| +}
|
| +
|
| +
|
| +void Assembler::dsrav(Register rd, Register rt, Register rs) {
|
| + GenInstrRegister(SPECIAL, rs, rt, rd, 0, DSRAV);
|
| +}
|
| +
|
| +
|
| +void Assembler::dsll32(Register rd, Register rt, uint16_t sa) {
|
| + GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa, DSLL32);
|
| +}
|
| +
|
| +
|
| +void Assembler::dsrl32(Register rd, Register rt, uint16_t sa) {
|
| + GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa, DSRL32);
|
| +}
|
| +
|
| +
|
| +void Assembler::dsra32(Register rd, Register rt, uint16_t sa) {
|
| + GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa, DSRA32);
|
| +}
|
| +
|
| +
|
| // ------------Memory-instructions-------------
|
|
|
| // Helper for base-reg + offset, when offset is larger than int16.
|
| void Assembler::LoadRegPlusOffsetToAt(const MemOperand& src) {
|
| ASSERT(!src.rm().is(at));
|
| - lui(at, (src.offset_ >> kLuiShift) & kImm16Mask);
|
| + ASSERT(is_int32(src.offset_));
|
| + daddiu(at, zero_reg, (src.offset_ >> kLuiShift) & kImm16Mask);
|
| + dsll(at, at, kLuiShift);
|
| ori(at, at, src.offset_ & kImm16Mask); // Load 32-bit offset.
|
| - addu(at, at, src.rm()); // Add base register.
|
| + daddu(at, at, src.rm()); // Add base register.
|
| }
|
|
|
|
|
| @@ -1389,6 +1500,16 @@ void Assembler::lw(Register rd, const MemOperand& rs) {
|
| }
|
|
|
|
|
| +void Assembler::lwu(Register rd, const MemOperand& rs) {
|
| + if (is_int16(rs.offset_)) {
|
| + GenInstrImmediate(LWU, rs.rm(), rd, rs.offset_);
|
| + } else { // Offset > 16 bits, use multiple instructions to load.
|
| + LoadRegPlusOffsetToAt(rs);
|
| + GenInstrImmediate(LWU, at, rd, 0); // Equiv to lwu(rd, MemOperand(at, 0));
|
| + }
|
| +}
|
| +
|
| +
|
| void Assembler::lwl(Register rd, const MemOperand& rs) {
|
| GenInstrImmediate(LWL, rs.rm(), rd, rs.offset_);
|
| }
|
| @@ -1445,6 +1566,46 @@ void Assembler::lui(Register rd, int32_t j) {
|
| }
|
|
|
|
|
| +void Assembler::ldl(Register rd, const MemOperand& rs) {
|
| + GenInstrImmediate(LDL, rs.rm(), rd, rs.offset_);
|
| +}
|
| +
|
| +
|
| +void Assembler::ldr(Register rd, const MemOperand& rs) {
|
| + GenInstrImmediate(LDR, rs.rm(), rd, rs.offset_);
|
| +}
|
| +
|
| +
|
| +void Assembler::sdl(Register rd, const MemOperand& rs) {
|
| + GenInstrImmediate(SDL, rs.rm(), rd, rs.offset_);
|
| +}
|
| +
|
| +
|
| +void Assembler::sdr(Register rd, const MemOperand& rs) {
|
| + GenInstrImmediate(SDR, rs.rm(), rd, rs.offset_);
|
| +}
|
| +
|
| +
|
| +void Assembler::ld(Register rd, const MemOperand& rs) {
|
| + if (is_int16(rs.offset_)) {
|
| + GenInstrImmediate(LD, rs.rm(), rd, rs.offset_);
|
| + } else { // Offset > 16 bits, use multiple instructions to load.
|
| + LoadRegPlusOffsetToAt(rs);
|
| + GenInstrImmediate(LD, at, rd, 0); // Equiv to lw(rd, MemOperand(at, 0));
|
| + }
|
| +}
|
| +
|
| +
|
| +void Assembler::sd(Register rd, const MemOperand& rs) {
|
| + if (is_int16(rs.offset_)) {
|
| + GenInstrImmediate(SD, rs.rm(), rd, rs.offset_);
|
| + } else { // Offset > 16 bits, use multiple instructions to store.
|
| + LoadRegPlusOffsetToAt(rs);
|
| + GenInstrImmediate(SD, at, rd, 0); // Equiv to sw(rd, MemOperand(at, 0));
|
| + }
|
| +}
|
| +
|
| +
|
| // -------------Misc-instructions--------------
|
|
|
| // Break / Trap instructions.
|
| @@ -1467,14 +1628,14 @@ void Assembler::break_(uint32_t code, bool break_as_stop) {
|
| void Assembler::stop(const char* msg, uint32_t code) {
|
| ASSERT(code > kMaxWatchpointCode);
|
| ASSERT(code <= kMaxStopCode);
|
| -#if V8_HOST_ARCH_MIPS
|
| +#if defined(V8_HOST_ARCH_MIPS) || defined(V8_HOST_ARCH_MIPS64)
|
| break_(0x54321);
|
| #else // V8_HOST_ARCH_MIPS
|
| - BlockTrampolinePoolFor(2);
|
| + BlockTrampolinePoolFor(3);
|
| // The Simulator will handle the stop instruction and get the message address.
|
| // On MIPS stop() is just a special kind of break_().
|
| break_(code, true);
|
| - emit(reinterpret_cast<Instr>(msg));
|
| + emit(reinterpret_cast<uint64_t>(msg));
|
| #endif
|
| }
|
|
|
| @@ -1596,7 +1757,7 @@ void Assembler::clz(Register rd, Register rs) {
|
| void Assembler::ins_(Register rt, Register rs, uint16_t pos, uint16_t size) {
|
| // Should be called via MacroAssembler::Ins.
|
| // Ins instr has 'rt' field as dest, and two uint5: msb, lsb.
|
| - ASSERT(kArchVariant == kMips32r2);
|
| + ASSERT(kArchVariant == kMips64r2);
|
| GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1, pos, INS);
|
| }
|
|
|
| @@ -1604,7 +1765,7 @@ void Assembler::ins_(Register rt, Register rs, uint16_t pos, uint16_t size) {
|
| void Assembler::ext_(Register rt, Register rs, uint16_t pos, uint16_t size) {
|
| // Should be called via MacroAssembler::Ext.
|
| // Ext instr has 'rt' field as dest, and two uint5: msb, lsb.
|
| - ASSERT(kArchVariant == kMips32r2);
|
| + ASSERT(kArchVariant == kMips64r2);
|
| GenInstrRegister(SPECIAL3, rs, rt, size - 1, pos, EXT);
|
| }
|
|
|
| @@ -1627,14 +1788,7 @@ void Assembler::lwc1(FPURegister fd, const MemOperand& src) {
|
|
|
|
|
| void Assembler::ldc1(FPURegister fd, const MemOperand& src) {
|
| - // Workaround for non-8-byte alignment of HeapNumber, convert 64-bit
|
| - // load to two 32-bit loads.
|
| - GenInstrImmediate(LWC1, src.rm(), fd, src.offset_ +
|
| - Register::kMantissaOffset);
|
| - FPURegister nextfpreg;
|
| - nextfpreg.setcode(fd.code() + 1);
|
| - GenInstrImmediate(LWC1, src.rm(), nextfpreg, src.offset_ +
|
| - Register::kExponentOffset);
|
| + GenInstrImmediate(LDC1, src.rm(), fd, src.offset_);
|
| }
|
|
|
|
|
| @@ -1644,14 +1798,7 @@ void Assembler::swc1(FPURegister fd, const MemOperand& src) {
|
|
|
|
|
| void Assembler::sdc1(FPURegister fd, const MemOperand& src) {
|
| - // Workaround for non-8-byte alignment of HeapNumber, convert 64-bit
|
| - // store to two 32-bit stores.
|
| - GenInstrImmediate(SWC1, src.rm(), fd, src.offset_ +
|
| - Register::kMantissaOffset);
|
| - FPURegister nextfpreg;
|
| - nextfpreg.setcode(fd.code() + 1);
|
| - GenInstrImmediate(SWC1, src.rm(), nextfpreg, src.offset_ +
|
| - Register::kExponentOffset);
|
| + GenInstrImmediate(SDC1, src.rm(), fd, src.offset_);
|
| }
|
|
|
|
|
| @@ -1660,11 +1807,31 @@ void Assembler::mtc1(Register rt, FPURegister fs) {
|
| }
|
|
|
|
|
| +void Assembler::mthc1(Register rt, FPURegister fs) {
|
| + GenInstrRegister(COP1, MTHC1, rt, fs, f0);
|
| +}
|
| +
|
| +
|
| +void Assembler::dmtc1(Register rt, FPURegister fs) {
|
| + GenInstrRegister(COP1, DMTC1, rt, fs, f0);
|
| +}
|
| +
|
| +
|
| void Assembler::mfc1(Register rt, FPURegister fs) {
|
| GenInstrRegister(COP1, MFC1, rt, fs, f0);
|
| }
|
|
|
|
|
| +void Assembler::mfhc1(Register rt, FPURegister fs) {
|
| + GenInstrRegister(COP1, MFHC1, rt, fs, f0);
|
| +}
|
| +
|
| +
|
| +void Assembler::dmfc1(Register rt, FPURegister fs) {
|
| + GenInstrRegister(COP1, DMFC1, rt, fs, f0);
|
| +}
|
| +
|
| +
|
| void Assembler::ctc1(Register rt, FPUControlRegister fs) {
|
| GenInstrRegister(COP1, CTC1, rt, fs);
|
| }
|
| @@ -1703,6 +1870,7 @@ void Assembler::mul_d(FPURegister fd, FPURegister fs, FPURegister ft) {
|
|
|
| void Assembler::madd_d(FPURegister fd, FPURegister fr, FPURegister fs,
|
| FPURegister ft) {
|
| + ASSERT(kArchVariant != kLoongson);
|
| GenInstrRegister(COP1X, fr, ft, fs, fd, MADD_D);
|
| }
|
|
|
| @@ -1785,25 +1953,25 @@ void Assembler::ceil_w_d(FPURegister fd, FPURegister fs) {
|
|
|
|
|
| void Assembler::cvt_l_s(FPURegister fd, FPURegister fs) {
|
| - ASSERT(kArchVariant == kMips32r2);
|
| + ASSERT(kArchVariant == kMips64r2);
|
| GenInstrRegister(COP1, S, f0, fs, fd, CVT_L_S);
|
| }
|
|
|
|
|
| void Assembler::cvt_l_d(FPURegister fd, FPURegister fs) {
|
| - ASSERT(kArchVariant == kMips32r2);
|
| + ASSERT(kArchVariant == kMips64r2);
|
| GenInstrRegister(COP1, D, f0, fs, fd, CVT_L_D);
|
| }
|
|
|
|
|
| void Assembler::trunc_l_s(FPURegister fd, FPURegister fs) {
|
| - ASSERT(kArchVariant == kMips32r2);
|
| + ASSERT(kArchVariant == kMips64r2);
|
| GenInstrRegister(COP1, S, f0, fs, fd, TRUNC_L_S);
|
| }
|
|
|
|
|
| void Assembler::trunc_l_d(FPURegister fd, FPURegister fs) {
|
| - ASSERT(kArchVariant == kMips32r2);
|
| + ASSERT(kArchVariant == kMips64r2);
|
| GenInstrRegister(COP1, D, f0, fs, fd, TRUNC_L_D);
|
| }
|
|
|
| @@ -1844,7 +2012,7 @@ void Assembler::cvt_s_w(FPURegister fd, FPURegister fs) {
|
|
|
|
|
| void Assembler::cvt_s_l(FPURegister fd, FPURegister fs) {
|
| - ASSERT(kArchVariant == kMips32r2);
|
| + ASSERT(kArchVariant == kMips64r2);
|
| GenInstrRegister(COP1, L, f0, fs, fd, CVT_S_L);
|
| }
|
|
|
| @@ -1860,7 +2028,7 @@ void Assembler::cvt_d_w(FPURegister fd, FPURegister fs) {
|
|
|
|
|
| void Assembler::cvt_d_l(FPURegister fd, FPURegister fs) {
|
| - ASSERT(kArchVariant == kMips32r2);
|
| + ASSERT(kArchVariant == kMips64r2);
|
| GenInstrRegister(COP1, L, f0, fs, fd, CVT_D_L);
|
| }
|
|
|
| @@ -1933,9 +2101,16 @@ int Assembler::RelocateInternalReference(byte* pc, intptr_t pc_delta) {
|
| if (IsLui(instr)) {
|
| Instr instr_lui = instr_at(pc + 0 * Assembler::kInstrSize);
|
| Instr instr_ori = instr_at(pc + 1 * Assembler::kInstrSize);
|
| + Instr instr_ori2 = instr_at(pc + 3 * Assembler::kInstrSize);
|
| ASSERT(IsOri(instr_ori));
|
| - int32_t imm = (instr_lui & static_cast<int32_t>(kImm16Mask)) << kLuiShift;
|
| - imm |= (instr_ori & static_cast<int32_t>(kImm16Mask));
|
| + ASSERT(IsOri(instr_ori2));
|
| + // TODO(plind): symbolic names for the shifts.
|
| + int64_t imm = (instr_lui & static_cast<int64_t>(kImm16Mask)) << 48;
|
| + imm |= (instr_ori & static_cast<int64_t>(kImm16Mask)) << 32;
|
| + imm |= (instr_ori2 & static_cast<int64_t>(kImm16Mask)) << 16;
|
| + // Sign extend address.
|
| + imm >>= 16;
|
| +
|
| if (imm == kEndOfJumpChain) {
|
| return 0; // Number of instructions patched.
|
| }
|
| @@ -1944,17 +2119,21 @@ int Assembler::RelocateInternalReference(byte* pc, intptr_t pc_delta) {
|
|
|
| instr_lui &= ~kImm16Mask;
|
| instr_ori &= ~kImm16Mask;
|
| + instr_ori2 &= ~kImm16Mask;
|
|
|
| instr_at_put(pc + 0 * Assembler::kInstrSize,
|
| - instr_lui | ((imm >> kLuiShift) & kImm16Mask));
|
| + instr_lui | ((imm >> 32) & kImm16Mask));
|
| instr_at_put(pc + 1 * Assembler::kInstrSize,
|
| - instr_ori | (imm & kImm16Mask));
|
| - return 2; // Number of instructions patched.
|
| + instr_ori | (imm >> 16 & kImm16Mask));
|
| + instr_at_put(pc + 3 * Assembler::kInstrSize,
|
| + instr_ori2 | (imm & kImm16Mask));
|
| + return 4; // Number of instructions patched.
|
| } else {
|
| uint32_t imm28 = (instr & static_cast<int32_t>(kImm26Mask)) << 2;
|
| if (static_cast<int32_t>(imm28) == kEndOfJumpChain) {
|
| return 0; // Number of instructions patched.
|
| }
|
| +
|
| imm28 += pc_delta;
|
| imm28 &= kImm28Mask;
|
| ASSERT((imm28 & 3) == 0);
|
| @@ -1990,11 +2169,12 @@ void Assembler::GrowBuffer() {
|
| desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
|
|
|
| // Copy the data.
|
| - int pc_delta = desc.buffer - buffer_;
|
| - int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
|
| + intptr_t pc_delta = desc.buffer - buffer_;
|
| + intptr_t rc_delta = (desc.buffer + desc.buffer_size) -
|
| + (buffer_ + buffer_size_);
|
| MemMove(desc.buffer, buffer_, desc.instr_size);
|
| - MemMove(reloc_info_writer.pos() + rc_delta, reloc_info_writer.pos(),
|
| - desc.reloc_size);
|
| + MemMove(reloc_info_writer.pos() + rc_delta,
|
| + reloc_info_writer.pos(), desc.reloc_size);
|
|
|
| // Switch buffers.
|
| DeleteArray(buffer_);
|
| @@ -2033,9 +2213,9 @@ void Assembler::dd(uint32_t data) {
|
|
|
| void Assembler::emit_code_stub_address(Code* stub) {
|
| CheckBuffer();
|
| - *reinterpret_cast<uint32_t*>(pc_) =
|
| - reinterpret_cast<uint32_t>(stub->instruction_start());
|
| - pc_ += sizeof(uint32_t);
|
| + *reinterpret_cast<uint64_t*>(pc_) =
|
| + reinterpret_cast<uint64_t>(stub->instruction_start());
|
| + pc_ += sizeof(uint64_t);
|
| }
|
|
|
|
|
| @@ -2105,15 +2285,19 @@ void Assembler::CheckTrampolinePool() {
|
|
|
| int pool_start = pc_offset();
|
| for (int i = 0; i < unbound_labels_count_; i++) {
|
| - uint32_t imm32;
|
| - imm32 = jump_address(&after_pool);
|
| + uint64_t imm64;
|
| + imm64 = jump_address(&after_pool);
|
| { BlockGrowBufferScope block_buf_growth(this);
|
| // Buffer growth (and relocation) must be blocked for internal
|
| // references until associated instructions are emitted and available
|
| // to be patched.
|
| RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
|
| - lui(at, (imm32 & kHiMask) >> kLuiShift);
|
| - ori(at, at, (imm32 & kImm16Mask));
|
| + // TODO(plind): Verify this, presume I cannot use macro-assembler
|
| + // here.
|
| + lui(at, (imm64 >> 32) & kImm16Mask);
|
| + ori(at, at, (imm64 >> 16) & kImm16Mask);
|
| + dsll(at, at, 16);
|
| + ori(at, at, imm64 & kImm16Mask);
|
| }
|
| jr(at);
|
| nop();
|
| @@ -2137,15 +2321,24 @@ void Assembler::CheckTrampolinePool() {
|
|
|
|
|
| Address Assembler::target_address_at(Address pc) {
|
| - Instr instr1 = instr_at(pc);
|
| - Instr instr2 = instr_at(pc + kInstrSize);
|
| - // Interpret 2 instructions generated by li: lui/ori
|
| - if ((GetOpcodeField(instr1) == LUI) && (GetOpcodeField(instr2) == ORI)) {
|
| - // Assemble the 32 bit value.
|
| - return reinterpret_cast<Address>(
|
| - (GetImmediate16(instr1) << 16) | GetImmediate16(instr2));
|
| + Instr instr0 = instr_at(pc);
|
| + Instr instr1 = instr_at(pc + 1 * kInstrSize);
|
| + Instr instr3 = instr_at(pc + 3 * kInstrSize);
|
| +
|
| + // Interpret 4 instructions for address generated by li: See listing in
|
| + // Assembler::set_target_address_at() just below.
|
| + if ((GetOpcodeField(instr0) == LUI) && (GetOpcodeField(instr1) == ORI) &&
|
| + (GetOpcodeField(instr3) == ORI)) {
|
| + // Assemble the 48 bit value.
|
| + int64_t addr = static_cast<int64_t>(
|
| + ((uint64_t)(GetImmediate16(instr0)) << 32) |
|
| + ((uint64_t)(GetImmediate16(instr1)) << 16) |
|
| + ((uint64_t)(GetImmediate16(instr3))));
|
| +
|
| + // Sign extend to get canonical address.
|
| + addr = (addr << 16) >> 16;
|
| + return reinterpret_cast<Address>(addr);
|
| }
|
| -
|
| // We should never get here, force a bad address if we do.
|
| UNREACHABLE();
|
| return (Address)0x0;
|
| @@ -2161,9 +2354,14 @@ void Assembler::QuietNaN(HeapObject* object) {
|
| }
|
|
|
|
|
| -// On Mips, a target address is stored in a lui/ori instruction pair, each
|
| -// of which load 16 bits of the 32-bit address to a register.
|
| -// Patching the address must replace both instr, and flush the i-cache.
|
| +// On Mips64, a target address is stored in a 4-instruction sequence:
|
| +// 0: lui(rd, (j.imm64_ >> 32) & kImm16Mask);
|
| +// 1: ori(rd, rd, (j.imm64_ >> 16) & kImm16Mask);
|
| +// 2: dsll(rd, rd, 16);
|
| +// 3: ori(rd, rd, j.imm32_ & kImm16Mask);
|
| +//
|
| +// Patching the address must replace all the lui & ori instructions,
|
| +// and flush the i-cache.
|
| //
|
| // There is an optimization below, which emits a nop when the address
|
| // fits in just 16 bits. This is unlikely to help, and should be benchmarked,
|
| @@ -2171,101 +2369,37 @@ void Assembler::QuietNaN(HeapObject* object) {
|
| void Assembler::set_target_address_at(Address pc,
|
| Address target,
|
| ICacheFlushMode icache_flush_mode) {
|
| - Instr instr2 = instr_at(pc + kInstrSize);
|
| - uint32_t rt_code = GetRtField(instr2);
|
| +// There is an optimization where only 4 instructions are used to load address
|
| +// in code on MIP64 because only 48-bits of address is effectively used.
|
| +// It relies on fact the upper [63:48] bits are not used for virtual address
|
| +// translation and they have to be set according to value of bit 47 in order
|
| +// get canonical address.
|
| + Instr instr1 = instr_at(pc + kInstrSize);
|
| + uint32_t rt_code = GetRt(instr1);
|
| uint32_t* p = reinterpret_cast<uint32_t*>(pc);
|
| - uint32_t itarget = reinterpret_cast<uint32_t>(target);
|
| + uint64_t itarget = reinterpret_cast<uint64_t>(target);
|
|
|
| #ifdef DEBUG
|
| - // Check we have the result from a li macro-instruction, using instr pair.
|
| - Instr instr1 = instr_at(pc);
|
| - CHECK((GetOpcodeField(instr1) == LUI && GetOpcodeField(instr2) == ORI));
|
| + // Check we have the result from a li macro-instruction.
|
| + Instr instr0 = instr_at(pc);
|
| + Instr instr3 = instr_at(pc + kInstrSize * 3);
|
| + CHECK((GetOpcodeField(instr0) == LUI && GetOpcodeField(instr1) == ORI &&
|
| + GetOpcodeField(instr3) == ORI));
|
| #endif
|
|
|
| - // Must use 2 instructions to insure patchable code => just use lui and ori.
|
| + // Must use 4 instructions to insure patchable code.
|
| // lui rt, upper-16.
|
| + // ori rt, rt, lower-16.
|
| + // dsll rt, rt, 16.
|
| // ori rt rt, lower-16.
|
| - *p = LUI | rt_code | ((itarget & kHiMask) >> kLuiShift);
|
| - *(p+1) = ORI | rt_code | (rt_code << 5) | (itarget & kImm16Mask);
|
| -
|
| - // The following code is an optimization for the common case of Call()
|
| - // or Jump() which is load to register, and jump through register:
|
| - // li(t9, address); jalr(t9) (or jr(t9)).
|
| - // If the destination address is in the same 256 MB page as the call, it
|
| - // is faster to do a direct jal, or j, rather than jump thru register, since
|
| - // that lets the cpu pipeline prefetch the target address. However each
|
| - // time the address above is patched, we have to patch the direct jal/j
|
| - // instruction, as well as possibly revert to jalr/jr if we now cross a
|
| - // 256 MB page. Note that with the jal/j instructions, we do not need to
|
| - // load the register, but that code is left, since it makes it easy to
|
| - // revert this process. A further optimization could try replacing the
|
| - // li sequence with nops.
|
| - // This optimization can only be applied if the rt-code from instr2 is the
|
| - // register used for the jalr/jr. Finally, we have to skip 'jr ra', which is
|
| - // mips return. Occasionally this lands after an li().
|
| -
|
| - Instr instr3 = instr_at(pc + 2 * kInstrSize);
|
| - uint32_t ipc = reinterpret_cast<uint32_t>(pc + 3 * kInstrSize);
|
| - bool in_range = ((ipc ^ itarget) >> (kImm26Bits + kImmFieldShift)) == 0;
|
| - uint32_t target_field =
|
| - static_cast<uint32_t>(itarget & kJumpAddrMask) >> kImmFieldShift;
|
| - bool patched_jump = false;
|
| -
|
| -#ifndef ALLOW_JAL_IN_BOUNDARY_REGION
|
| - // This is a workaround to the 24k core E156 bug (affect some 34k cores also).
|
| - // Since the excluded space is only 64KB out of 256MB (0.02 %), we will just
|
| - // apply this workaround for all cores so we don't have to identify the core.
|
| - if (in_range) {
|
| - // The 24k core E156 bug has some very specific requirements, we only check
|
| - // the most simple one: if the address of the delay slot instruction is in
|
| - // the first or last 32 KB of the 256 MB segment.
|
| - uint32_t segment_mask = ((256 * MB) - 1) ^ ((32 * KB) - 1);
|
| - uint32_t ipc_segment_addr = ipc & segment_mask;
|
| - if (ipc_segment_addr == 0 || ipc_segment_addr == segment_mask)
|
| - in_range = false;
|
| - }
|
| -#endif
|
| -
|
| - if (IsJalr(instr3)) {
|
| - // Try to convert JALR to JAL.
|
| - if (in_range && GetRt(instr2) == GetRs(instr3)) {
|
| - *(p+2) = JAL | target_field;
|
| - patched_jump = true;
|
| - }
|
| - } else if (IsJr(instr3)) {
|
| - // Try to convert JR to J, skip returns (jr ra).
|
| - bool is_ret = static_cast<int>(GetRs(instr3)) == ra.code();
|
| - if (in_range && !is_ret && GetRt(instr2) == GetRs(instr3)) {
|
| - *(p+2) = J | target_field;
|
| - patched_jump = true;
|
| - }
|
| - } else if (IsJal(instr3)) {
|
| - if (in_range) {
|
| - // We are patching an already converted JAL.
|
| - *(p+2) = JAL | target_field;
|
| - } else {
|
| - // Patch JAL, but out of range, revert to JALR.
|
| - // JALR rs reg is the rt reg specified in the ORI instruction.
|
| - uint32_t rs_field = GetRt(instr2) << kRsShift;
|
| - uint32_t rd_field = ra.code() << kRdShift; // Return-address (ra) reg.
|
| - *(p+2) = SPECIAL | rs_field | rd_field | JALR;
|
| - }
|
| - patched_jump = true;
|
| - } else if (IsJ(instr3)) {
|
| - if (in_range) {
|
| - // We are patching an already converted J (jump).
|
| - *(p+2) = J | target_field;
|
| - } else {
|
| - // Trying patch J, but out of range, just go back to JR.
|
| - // JR 'rs' reg is the 'rt' reg specified in the ORI instruction (instr2).
|
| - uint32_t rs_field = GetRt(instr2) << kRsShift;
|
| - *(p+2) = SPECIAL | rs_field | JR;
|
| - }
|
| - patched_jump = true;
|
| - }
|
| + *p = LUI | (rt_code << kRtShift) | ((itarget >> 32) & kImm16Mask);
|
| + *(p + 1) = ORI | (rt_code << kRtShift) | (rt_code << kRsShift)
|
| + | ((itarget >> 16) & kImm16Mask);
|
| + *(p + 3) = ORI | (rt_code << kRsShift) | (rt_code << kRtShift)
|
| + | (itarget & kImm16Mask);
|
|
|
| if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
|
| - CpuFeatures::FlushICache(pc, (patched_jump ? 3 : 2) * sizeof(int32_t));
|
| + CpuFeatures::FlushICache(pc, 4 * Assembler::kInstrSize);
|
| }
|
| }
|
|
|
| @@ -2278,7 +2412,7 @@ void Assembler::JumpLabelToJumpRegister(Address pc) {
|
| Instr instr1 = instr_at(pc);
|
| #endif
|
| Instr instr2 = instr_at(pc + 1 * kInstrSize);
|
| - Instr instr3 = instr_at(pc + 2 * kInstrSize);
|
| + Instr instr3 = instr_at(pc + 6 * kInstrSize);
|
| bool patched = false;
|
|
|
| if (IsJal(instr3)) {
|
| @@ -2287,19 +2421,19 @@ void Assembler::JumpLabelToJumpRegister(Address pc) {
|
|
|
| uint32_t rs_field = GetRt(instr2) << kRsShift;
|
| uint32_t rd_field = ra.code() << kRdShift; // Return-address (ra) reg.
|
| - *(p+2) = SPECIAL | rs_field | rd_field | JALR;
|
| + *(p+6) = SPECIAL | rs_field | rd_field | JALR;
|
| patched = true;
|
| } else if (IsJ(instr3)) {
|
| ASSERT(GetOpcodeField(instr1) == LUI);
|
| ASSERT(GetOpcodeField(instr2) == ORI);
|
|
|
| uint32_t rs_field = GetRt(instr2) << kRsShift;
|
| - *(p+2) = SPECIAL | rs_field | JR;
|
| + *(p+6) = SPECIAL | rs_field | JR;
|
| patched = true;
|
| }
|
|
|
| if (patched) {
|
| - CpuFeatures::FlushICache(pc+2, sizeof(Address));
|
| + CpuFeatures::FlushICache(pc+6, sizeof(int32_t));
|
| }
|
| }
|
|
|
| @@ -2320,4 +2454,4 @@ void Assembler::PopulateConstantPool(ConstantPoolArray* constant_pool) {
|
|
|
| } } // namespace v8::internal
|
|
|
| -#endif // V8_TARGET_ARCH_MIPS
|
| +#endif // V8_TARGET_ARCH_MIPS64
|
|
|