Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(126)

Side by Side Diff: cc/resources/tile_manager.cc

Issue 367833003: cc: Start using raster/eviction iterators. (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/src
Patch Set: update Created 6 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
OLDNEW
1 // Copyright 2012 The Chromium Authors. All rights reserved. 1 // Copyright 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be 2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file. 3 // found in the LICENSE file.
4 4
5 #include "cc/resources/tile_manager.h" 5 #include "cc/resources/tile_manager.h"
6 6
7 #include <algorithm> 7 #include <algorithm>
8 #include <limits> 8 #include <limits>
9 #include <string> 9 #include <string>
10 10
(...skipping 209 matching lines...) Expand 10 before | Expand all | Expand 10 after
220 skia::RefPtr<SkPixelRef> pixel_ref_; 220 skia::RefPtr<SkPixelRef> pixel_ref_;
221 int layer_id_; 221 int layer_id_;
222 RenderingStatsInstrumentation* rendering_stats_; 222 RenderingStatsInstrumentation* rendering_stats_;
223 const base::Callback<void(bool was_canceled)> reply_; 223 const base::Callback<void(bool was_canceled)> reply_;
224 224
225 DISALLOW_COPY_AND_ASSIGN(ImageDecodeTaskImpl); 225 DISALLOW_COPY_AND_ASSIGN(ImageDecodeTaskImpl);
226 }; 226 };
227 227
228 const size_t kScheduledRasterTasksLimit = 32u; 228 const size_t kScheduledRasterTasksLimit = 32u;
229 229
230 // Memory limit policy works by mapping some bin states to the NEVER bin.
231 const ManagedTileBin kBinPolicyMap[NUM_TILE_MEMORY_LIMIT_POLICIES][NUM_BINS] = {
232 // [ALLOW_NOTHING]
233 {NEVER_BIN, // [NOW_AND_READY_TO_DRAW_BIN]
234 NEVER_BIN, // [NOW_BIN]
235 NEVER_BIN, // [SOON_BIN]
236 NEVER_BIN, // [EVENTUALLY_AND_ACTIVE_BIN]
237 NEVER_BIN, // [EVENTUALLY_BIN]
238 NEVER_BIN, // [AT_LAST_AND_ACTIVE_BIN]
239 NEVER_BIN, // [AT_LAST_BIN]
240 NEVER_BIN // [NEVER_BIN]
241 },
242 // [ALLOW_ABSOLUTE_MINIMUM]
243 {NOW_AND_READY_TO_DRAW_BIN, // [NOW_AND_READY_TO_DRAW_BIN]
244 NOW_BIN, // [NOW_BIN]
245 NEVER_BIN, // [SOON_BIN]
246 NEVER_BIN, // [EVENTUALLY_AND_ACTIVE_BIN]
247 NEVER_BIN, // [EVENTUALLY_BIN]
248 NEVER_BIN, // [AT_LAST_AND_ACTIVE_BIN]
249 NEVER_BIN, // [AT_LAST_BIN]
250 NEVER_BIN // [NEVER_BIN]
251 },
252 // [ALLOW_PREPAINT_ONLY]
253 {NOW_AND_READY_TO_DRAW_BIN, // [NOW_AND_READY_TO_DRAW_BIN]
254 NOW_BIN, // [NOW_BIN]
255 SOON_BIN, // [SOON_BIN]
256 NEVER_BIN, // [EVENTUALLY_AND_ACTIVE_BIN]
257 NEVER_BIN, // [EVENTUALLY_BIN]
258 NEVER_BIN, // [AT_LAST_AND_ACTIVE_BIN]
259 NEVER_BIN, // [AT_LAST_BIN]
260 NEVER_BIN // [NEVER_BIN]
261 },
262 // [ALLOW_ANYTHING]
263 {NOW_AND_READY_TO_DRAW_BIN, // [NOW_AND_READY_TO_DRAW_BIN]
264 NOW_BIN, // [NOW_BIN]
265 SOON_BIN, // [SOON_BIN]
266 EVENTUALLY_AND_ACTIVE_BIN, // [EVENTUALLY_AND_ACTIVE_BIN]
267 EVENTUALLY_BIN, // [EVENTUALLY_BIN]
268 AT_LAST_AND_ACTIVE_BIN, // [AT_LAST_AND_ACTIVE_BIN]
269 AT_LAST_BIN, // [AT_LAST_BIN]
270 NEVER_BIN // [NEVER_BIN]
271 }};
272
273 // Ready to draw works by mapping NOW_BIN to NOW_AND_READY_TO_DRAW_BIN.
274 const ManagedTileBin kBinReadyToDrawMap[2][NUM_BINS] = {
275 // Not ready
276 {NOW_AND_READY_TO_DRAW_BIN, // [NOW_AND_READY_TO_DRAW_BIN]
277 NOW_BIN, // [NOW_BIN]
278 SOON_BIN, // [SOON_BIN]
279 EVENTUALLY_AND_ACTIVE_BIN, // [EVENTUALLY_AND_ACTIVE_BIN]
280 EVENTUALLY_BIN, // [EVENTUALLY_BIN]
281 AT_LAST_AND_ACTIVE_BIN, // [AT_LAST_AND_ACTIVE_BIN]
282 AT_LAST_BIN, // [AT_LAST_BIN]
283 NEVER_BIN // [NEVER_BIN]
284 },
285 // Ready
286 {NOW_AND_READY_TO_DRAW_BIN, // [NOW_AND_READY_TO_DRAW_BIN]
287 NOW_AND_READY_TO_DRAW_BIN, // [NOW_BIN]
288 SOON_BIN, // [SOON_BIN]
289 EVENTUALLY_AND_ACTIVE_BIN, // [EVENTUALLY_AND_ACTIVE_BIN]
290 EVENTUALLY_BIN, // [EVENTUALLY_BIN]
291 AT_LAST_AND_ACTIVE_BIN, // [AT_LAST_AND_ACTIVE_BIN]
292 AT_LAST_BIN, // [AT_LAST_BIN]
293 NEVER_BIN // [NEVER_BIN]
294 }};
295
296 // Active works by mapping some bin stats to equivalent _ACTIVE_BIN state.
297 const ManagedTileBin kBinIsActiveMap[2][NUM_BINS] = {
298 // Inactive
299 {NOW_AND_READY_TO_DRAW_BIN, // [NOW_AND_READY_TO_DRAW_BIN]
300 NOW_BIN, // [NOW_BIN]
301 SOON_BIN, // [SOON_BIN]
302 EVENTUALLY_AND_ACTIVE_BIN, // [EVENTUALLY_AND_ACTIVE_BIN]
303 EVENTUALLY_BIN, // [EVENTUALLY_BIN]
304 AT_LAST_AND_ACTIVE_BIN, // [AT_LAST_AND_ACTIVE_BIN]
305 AT_LAST_BIN, // [AT_LAST_BIN]
306 NEVER_BIN // [NEVER_BIN]
307 },
308 // Active
309 {NOW_AND_READY_TO_DRAW_BIN, // [NOW_AND_READY_TO_DRAW_BIN]
310 NOW_BIN, // [NOW_BIN]
311 SOON_BIN, // [SOON_BIN]
312 EVENTUALLY_AND_ACTIVE_BIN, // [EVENTUALLY_AND_ACTIVE_BIN]
313 EVENTUALLY_AND_ACTIVE_BIN, // [EVENTUALLY_BIN]
314 AT_LAST_AND_ACTIVE_BIN, // [AT_LAST_AND_ACTIVE_BIN]
315 AT_LAST_AND_ACTIVE_BIN, // [AT_LAST_BIN]
316 NEVER_BIN // [NEVER_BIN]
317 }};
318
319 // Determine bin based on three categories of tiles: things we need now,
320 // things we need soon, and eventually.
321 inline ManagedTileBin BinFromTilePriority(const TilePriority& prio) {
322 if (prio.priority_bin == TilePriority::NOW)
323 return NOW_BIN;
324
325 if (prio.priority_bin == TilePriority::SOON)
326 return SOON_BIN;
327
328 if (prio.distance_to_visible == std::numeric_limits<float>::infinity())
329 return NEVER_BIN;
330
331 return EVENTUALLY_BIN;
332 }
333
334 } // namespace 230 } // namespace
335 231
336 RasterTaskCompletionStats::RasterTaskCompletionStats() 232 RasterTaskCompletionStats::RasterTaskCompletionStats()
337 : completed_count(0u), canceled_count(0u) {} 233 : completed_count(0u), canceled_count(0u) {}
338 234
339 scoped_ptr<base::Value> RasterTaskCompletionStatsAsValue( 235 scoped_ptr<base::Value> RasterTaskCompletionStatsAsValue(
340 const RasterTaskCompletionStats& stats) { 236 const RasterTaskCompletionStats& stats) {
341 scoped_ptr<base::DictionaryValue> state(new base::DictionaryValue()); 237 scoped_ptr<base::DictionaryValue> state(new base::DictionaryValue());
342 state->SetInteger("completed_count", stats.completed_count); 238 state->SetInteger("completed_count", stats.completed_count);
343 state->SetInteger("canceled_count", stats.canceled_count); 239 state->SetInteger("canceled_count", stats.canceled_count);
(...skipping 17 matching lines...) Expand all
361 TileManager::TileManager( 257 TileManager::TileManager(
362 TileManagerClient* client, 258 TileManagerClient* client,
363 base::SequencedTaskRunner* task_runner, 259 base::SequencedTaskRunner* task_runner,
364 ResourcePool* resource_pool, 260 ResourcePool* resource_pool,
365 Rasterizer* rasterizer, 261 Rasterizer* rasterizer,
366 RenderingStatsInstrumentation* rendering_stats_instrumentation) 262 RenderingStatsInstrumentation* rendering_stats_instrumentation)
367 : client_(client), 263 : client_(client),
368 task_runner_(task_runner), 264 task_runner_(task_runner),
369 resource_pool_(resource_pool), 265 resource_pool_(resource_pool),
370 rasterizer_(rasterizer), 266 rasterizer_(rasterizer),
371 prioritized_tiles_dirty_(false), 267 all_tiles_that_need_to_be_rasterized_are_scheduled_(true),
372 all_tiles_that_need_to_be_rasterized_have_memory_(true),
373 all_tiles_required_for_activation_have_memory_(true),
374 bytes_releasable_(0),
375 resources_releasable_(0),
376 ever_exceeded_memory_budget_(false),
377 rendering_stats_instrumentation_(rendering_stats_instrumentation), 268 rendering_stats_instrumentation_(rendering_stats_instrumentation),
378 did_initialize_visible_tile_(false), 269 did_initialize_visible_tile_(false),
379 did_check_for_completed_tasks_since_last_schedule_tasks_(true), 270 did_check_for_completed_tasks_since_last_schedule_tasks_(true),
380 ready_to_activate_check_notifier_( 271 ready_to_activate_check_notifier_(
381 task_runner_, 272 task_runner_,
382 base::Bind(&TileManager::CheckIfReadyToActivate, 273 base::Bind(&TileManager::CheckIfReadyToActivate,
383 base::Unretained(this))) { 274 base::Unretained(this))) {
384 rasterizer_->SetClient(this); 275 rasterizer_->SetClient(this);
385 } 276 }
386 277
387 TileManager::~TileManager() { 278 TileManager::~TileManager() {
388 // Reset global state and manage. This should cause 279 // Reset global state and manage. This should cause
389 // our memory usage to drop to zero. 280 // our memory usage to drop to zero.
390 global_state_ = GlobalStateThatImpactsTilePriority(); 281 global_state_ = GlobalStateThatImpactsTilePriority();
391 282
392 CleanUpReleasedTiles(); 283 CleanUpReleasedTiles();
393 DCHECK_EQ(0u, tiles_.size()); 284 DCHECK_EQ(0u, tiles_.size());
394 285
395 RasterTaskQueue empty; 286 RasterTaskQueue empty;
396 rasterizer_->ScheduleTasks(&empty); 287 rasterizer_->ScheduleTasks(&empty);
397 orphan_raster_tasks_.clear(); 288 orphan_raster_tasks_.clear();
398 289
399 // This should finish all pending tasks and release any uninitialized 290 // This should finish all pending tasks and release any uninitialized
400 // resources. 291 // resources.
401 rasterizer_->Shutdown(); 292 rasterizer_->Shutdown();
402 rasterizer_->CheckForCompletedTasks(); 293 rasterizer_->CheckForCompletedTasks();
403
404 DCHECK_EQ(0u, bytes_releasable_);
405 DCHECK_EQ(0u, resources_releasable_);
406 } 294 }
407 295
408 void TileManager::Release(Tile* tile) { 296 void TileManager::Release(Tile* tile) {
409 prioritized_tiles_dirty_ = true;
410 released_tiles_.push_back(tile); 297 released_tiles_.push_back(tile);
411 } 298 }
412 299
413 void TileManager::DidChangeTilePriority(Tile* tile) {
414 prioritized_tiles_dirty_ = true;
415 }
416
417 bool TileManager::ShouldForceTasksRequiredForActivationToComplete() const { 300 bool TileManager::ShouldForceTasksRequiredForActivationToComplete() const {
418 return global_state_.tree_priority != SMOOTHNESS_TAKES_PRIORITY; 301 return global_state_.tree_priority != SMOOTHNESS_TAKES_PRIORITY;
419 } 302 }
420 303
421 void TileManager::CleanUpReleasedTiles() { 304 void TileManager::CleanUpReleasedTiles() {
422 for (std::vector<Tile*>::iterator it = released_tiles_.begin(); 305 for (std::vector<Tile*>::iterator it = released_tiles_.begin();
423 it != released_tiles_.end(); 306 it != released_tiles_.end();
424 ++it) { 307 ++it) {
425 Tile* tile = *it; 308 Tile* tile = *it;
426 ManagedTileState& mts = tile->managed_state(); 309 ManagedTileState& mts = tile->managed_state();
(...skipping 13 matching lines...) Expand all
440 used_layer_counts_.erase(layer_it); 323 used_layer_counts_.erase(layer_it);
441 image_decode_tasks_.erase(tile->layer_id()); 324 image_decode_tasks_.erase(tile->layer_id());
442 } 325 }
443 326
444 delete tile; 327 delete tile;
445 } 328 }
446 329
447 released_tiles_.clear(); 330 released_tiles_.clear();
448 } 331 }
449 332
450 void TileManager::UpdatePrioritizedTileSetIfNeeded() {
451 if (!prioritized_tiles_dirty_)
452 return;
453
454 CleanUpReleasedTiles();
455
456 prioritized_tiles_.Clear();
457 GetTilesWithAssignedBins(&prioritized_tiles_);
458 prioritized_tiles_dirty_ = false;
459 }
460
461 void TileManager::DidFinishRunningTasks() { 333 void TileManager::DidFinishRunningTasks() {
462 TRACE_EVENT0("cc", "TileManager::DidFinishRunningTasks"); 334 TRACE_EVENT0("cc", "TileManager::DidFinishRunningTasks");
463 335
464 bool memory_usage_above_limit = resource_pool_->total_memory_usage_bytes() > 336 bool memory_usage_above_limit = resource_pool_->total_memory_usage_bytes() >
465 global_state_.soft_memory_limit_in_bytes; 337 global_state_.soft_memory_limit_in_bytes;
466 338
467 // When OOM, keep re-assigning memory until we reach a steady state 339 // When OOM, keep re-assigning memory until we reach a steady state
468 // where top-priority tiles are initialized. 340 // where top-priority tiles are initialized.
469 if (all_tiles_that_need_to_be_rasterized_have_memory_ && 341 if (all_tiles_that_need_to_be_rasterized_are_scheduled_ &&
470 !memory_usage_above_limit) 342 !memory_usage_above_limit)
471 return; 343 return;
472 344
473 rasterizer_->CheckForCompletedTasks(); 345 rasterizer_->CheckForCompletedTasks();
474 did_check_for_completed_tasks_since_last_schedule_tasks_ = true; 346 did_check_for_completed_tasks_since_last_schedule_tasks_ = true;
475 347
476 TileVector tiles_that_need_to_be_rasterized; 348 TileVector tiles_that_need_to_be_rasterized;
477 AssignGpuMemoryToTiles(&prioritized_tiles_, 349 AssignGpuMemoryToTiles(&tiles_that_need_to_be_rasterized);
478 &tiles_that_need_to_be_rasterized);
479 350
480 // |tiles_that_need_to_be_rasterized| will be empty when we reach a 351 // |tiles_that_need_to_be_rasterized| will be empty when we reach a
481 // steady memory state. Keep scheduling tasks until we reach this state. 352 // steady memory state. Keep scheduling tasks until we reach this state.
482 if (!tiles_that_need_to_be_rasterized.empty()) { 353 if (!tiles_that_need_to_be_rasterized.empty()) {
483 ScheduleTasks(tiles_that_need_to_be_rasterized); 354 ScheduleTasks(tiles_that_need_to_be_rasterized);
484 return; 355 return;
485 } 356 }
486 357
487 resource_pool_->ReduceResourceUsage(); 358 resource_pool_->ReduceResourceUsage();
488 359
(...skipping 20 matching lines...) Expand all
509 tile_version.set_rasterize_on_demand(); 380 tile_version.set_rasterize_on_demand();
510 client_->NotifyTileStateChanged(tile); 381 client_->NotifyTileStateChanged(tile);
511 } 382 }
512 } 383 }
513 384
514 DCHECK(IsReadyToActivate()); 385 DCHECK(IsReadyToActivate());
515 ready_to_activate_check_notifier_.Schedule(); 386 ready_to_activate_check_notifier_.Schedule();
516 } 387 }
517 388
518 void TileManager::DidFinishRunningTasksRequiredForActivation() { 389 void TileManager::DidFinishRunningTasksRequiredForActivation() {
519 // This is only a true indication that all tiles required for
520 // activation are initialized when no tiles are OOM. We need to
521 // wait for DidFinishRunningTasks() to be called, try to re-assign
522 // memory and in worst case use on-demand raster when tiles
523 // required for activation are OOM.
524 if (!all_tiles_required_for_activation_have_memory_)
525 return;
526
527 ready_to_activate_check_notifier_.Schedule(); 390 ready_to_activate_check_notifier_.Schedule();
528 } 391 }
529 392
530 void TileManager::GetTilesWithAssignedBins(PrioritizedTileSet* tiles) {
531 TRACE_EVENT0("cc", "TileManager::GetTilesWithAssignedBins");
532
533 const TileMemoryLimitPolicy memory_policy = global_state_.memory_limit_policy;
534 const TreePriority tree_priority = global_state_.tree_priority;
535
536 // For each tree, bin into different categories of tiles.
537 for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it) {
538 Tile* tile = it->second;
539 ManagedTileState& mts = tile->managed_state();
540
541 const ManagedTileState::TileVersion& tile_version =
542 tile->GetTileVersionForDrawing();
543 bool tile_is_ready_to_draw = tile_version.IsReadyToDraw();
544 bool tile_is_active = tile_is_ready_to_draw ||
545 mts.tile_versions[mts.raster_mode].raster_task_;
546
547 // Get the active priority and bin.
548 TilePriority active_priority = tile->priority(ACTIVE_TREE);
549 ManagedTileBin active_bin = BinFromTilePriority(active_priority);
550
551 // Get the pending priority and bin.
552 TilePriority pending_priority = tile->priority(PENDING_TREE);
553 ManagedTileBin pending_bin = BinFromTilePriority(pending_priority);
554
555 bool pending_is_low_res = pending_priority.resolution == LOW_RESOLUTION;
556 bool pending_is_non_ideal =
557 pending_priority.resolution == NON_IDEAL_RESOLUTION;
558 bool active_is_non_ideal =
559 active_priority.resolution == NON_IDEAL_RESOLUTION;
560
561 // Adjust bin state based on if ready to draw.
562 active_bin = kBinReadyToDrawMap[tile_is_ready_to_draw][active_bin];
563 pending_bin = kBinReadyToDrawMap[tile_is_ready_to_draw][pending_bin];
564
565 // Adjust bin state based on if active.
566 active_bin = kBinIsActiveMap[tile_is_active][active_bin];
567 pending_bin = kBinIsActiveMap[tile_is_active][pending_bin];
568
569 // We never want to paint new non-ideal tiles, as we always have
570 // a high-res tile covering that content (paint that instead).
571 if (!tile_is_ready_to_draw && active_is_non_ideal)
572 active_bin = NEVER_BIN;
573 if (!tile_is_ready_to_draw && pending_is_non_ideal)
574 pending_bin = NEVER_BIN;
575
576 ManagedTileBin tree_bin[NUM_TREES];
577 tree_bin[ACTIVE_TREE] = kBinPolicyMap[memory_policy][active_bin];
578 tree_bin[PENDING_TREE] = kBinPolicyMap[memory_policy][pending_bin];
579
580 // Adjust pending bin state for low res tiles. This prevents pending tree
581 // low-res tiles from being initialized before high-res tiles.
582 if (pending_is_low_res)
583 tree_bin[PENDING_TREE] = std::max(tree_bin[PENDING_TREE], EVENTUALLY_BIN);
584
585 TilePriority tile_priority;
586 switch (tree_priority) {
587 case SAME_PRIORITY_FOR_BOTH_TREES:
588 mts.bin = std::min(tree_bin[ACTIVE_TREE], tree_bin[PENDING_TREE]);
589 tile_priority = tile->combined_priority();
590 break;
591 case SMOOTHNESS_TAKES_PRIORITY:
592 mts.bin = tree_bin[ACTIVE_TREE];
593 tile_priority = active_priority;
594 break;
595 case NEW_CONTENT_TAKES_PRIORITY:
596 mts.bin = tree_bin[PENDING_TREE];
597 tile_priority = pending_priority;
598 break;
599 }
600
601 // Bump up the priority if we determined it's NEVER_BIN on one tree,
602 // but is still required on the other tree.
603 bool is_in_never_bin_on_both_trees = tree_bin[ACTIVE_TREE] == NEVER_BIN &&
604 tree_bin[PENDING_TREE] == NEVER_BIN;
605
606 if (mts.bin == NEVER_BIN && !is_in_never_bin_on_both_trees)
607 mts.bin = tile_is_active ? AT_LAST_AND_ACTIVE_BIN : AT_LAST_BIN;
608
609 mts.resolution = tile_priority.resolution;
610 mts.priority_bin = tile_priority.priority_bin;
611 mts.distance_to_visible = tile_priority.distance_to_visible;
612 mts.required_for_activation = tile_priority.required_for_activation;
613
614 mts.visible_and_ready_to_draw =
615 tree_bin[ACTIVE_TREE] == NOW_AND_READY_TO_DRAW_BIN;
616
617 // Tiles that are required for activation shouldn't be in NEVER_BIN unless
618 // smoothness takes priority or memory policy allows nothing to be
619 // initialized.
620 DCHECK(!mts.required_for_activation || mts.bin != NEVER_BIN ||
621 tree_priority == SMOOTHNESS_TAKES_PRIORITY ||
622 memory_policy == ALLOW_NOTHING);
623
624 // If the tile is in NEVER_BIN and it does not have an active task, then we
625 // can release the resources early. If it does have the task however, we
626 // should keep it in the prioritized tile set to ensure that AssignGpuMemory
627 // can visit it.
628 if (mts.bin == NEVER_BIN &&
629 !mts.tile_versions[mts.raster_mode].raster_task_) {
630 FreeResourcesForTileAndNotifyClientIfTileWasReadyToDraw(tile);
631 continue;
632 }
633
634 // Insert the tile into a priority set.
635 tiles->InsertTile(tile, mts.bin);
636 }
637 }
638
639 void TileManager::ManageTiles(const GlobalStateThatImpactsTilePriority& state) { 393 void TileManager::ManageTiles(const GlobalStateThatImpactsTilePriority& state) {
640 TRACE_EVENT0("cc", "TileManager::ManageTiles"); 394 TRACE_EVENT0("cc", "TileManager::ManageTiles");
641 395
642 // Update internal state. 396 global_state_ = state;
643 if (state != global_state_) {
644 global_state_ = state;
645 prioritized_tiles_dirty_ = true;
646 }
647 397
648 // We need to call CheckForCompletedTasks() once in-between each call 398 // We need to call CheckForCompletedTasks() once in-between each call
649 // to ScheduleTasks() to prevent canceled tasks from being scheduled. 399 // to ScheduleTasks() to prevent canceled tasks from being scheduled.
650 if (!did_check_for_completed_tasks_since_last_schedule_tasks_) { 400 if (!did_check_for_completed_tasks_since_last_schedule_tasks_) {
651 rasterizer_->CheckForCompletedTasks(); 401 rasterizer_->CheckForCompletedTasks();
652 did_check_for_completed_tasks_since_last_schedule_tasks_ = true; 402 did_check_for_completed_tasks_since_last_schedule_tasks_ = true;
653 } 403 }
654 404
655 UpdatePrioritizedTileSetIfNeeded(); 405 // TODO(vmpstr): See if we still need to keep tiles alive when layers release
406 // them.
407 CleanUpReleasedTiles();
656 408
657 TileVector tiles_that_need_to_be_rasterized; 409 TileVector tiles_that_need_to_be_rasterized;
658 AssignGpuMemoryToTiles(&prioritized_tiles_, 410 AssignGpuMemoryToTiles(&tiles_that_need_to_be_rasterized);
659 &tiles_that_need_to_be_rasterized);
660 411
661 // Finally, schedule rasterizer tasks. 412 // Finally, schedule rasterizer tasks.
662 ScheduleTasks(tiles_that_need_to_be_rasterized); 413 ScheduleTasks(tiles_that_need_to_be_rasterized);
663 414
664 TRACE_EVENT_INSTANT1("cc", 415 TRACE_EVENT_INSTANT1("cc",
665 "DidManage", 416 "DidManage",
666 TRACE_EVENT_SCOPE_THREAD, 417 TRACE_EVENT_SCOPE_THREAD,
667 "state", 418 "state",
668 TracedValue::FromValue(BasicStateAsValue().release())); 419 TracedValue::FromValue(BasicStateAsValue().release()));
669 420
(...skipping 32 matching lines...) Expand 10 before | Expand all | Expand 10 after
702 } 453 }
703 454
704 scoped_ptr<base::Value> TileManager::AllTilesAsValue() const { 455 scoped_ptr<base::Value> TileManager::AllTilesAsValue() const {
705 scoped_ptr<base::ListValue> state(new base::ListValue()); 456 scoped_ptr<base::ListValue> state(new base::ListValue());
706 for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it) 457 for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it)
707 state->Append(it->second->AsValue().release()); 458 state->Append(it->second->AsValue().release());
708 459
709 return state.PassAs<base::Value>(); 460 return state.PassAs<base::Value>();
710 } 461 }
711 462
463 bool TileManager::FreeTileResourcesUntilUsageIsWithinLimit(
464 TilePriorityQueue* queue,
465 const MemoryUsage& limit,
466 MemoryUsage* usage) {
467 while (usage->Exceeds(limit)) {
468 if (queue->IsEmpty())
469 return false;
470
471 Tile* tile = queue->Top();
472
473 *usage -= MemoryUsage::FromTile(tile);
474 FreeResourcesForTileAndNotifyClientIfTileWasReadyToDraw(tile);
475 queue->Pop();
476 }
477 return true;
478 }
479
480 bool TileManager::FreeTileResourcesWithLowerPriorityUntilUsageIsWithinLimit(
481 TilePriorityQueue* queue,
482 const MemoryUsage& limit,
483 const TilePriority& other_priority,
484 MemoryUsage* usage) {
485 while (usage->Exceeds(limit)) {
486 if (queue->IsEmpty())
487 return false;
488
489 Tile* tile = queue->Top();
490 if (!other_priority.IsHigherPriorityThan(
491 tile->priority_for_tree_priority(global_state_.tree_priority))) {
492 return false;
493 }
494
495 *usage -= MemoryUsage::FromTile(tile);
496 FreeResourcesForTileAndNotifyClientIfTileWasReadyToDraw(tile);
497 queue->Pop();
498 }
499 return true;
500 }
501
502 bool TileManager::TilePriorityViolatesMemoryPolicy(
503 const TilePriority& priority) {
504 switch (global_state_.memory_limit_policy) {
505 case ALLOW_NOTHING:
506 return true;
507 case ALLOW_ABSOLUTE_MINIMUM:
508 return priority.priority_bin > TilePriority::NOW;
509 case ALLOW_PREPAINT_ONLY:
510 return priority.priority_bin > TilePriority::SOON;
511 case ALLOW_ANYTHING:
512 return priority.distance_to_visible ==
513 std::numeric_limits<float>::infinity();
514 }
515 NOTREACHED();
516 return true;
517 }
518
712 void TileManager::AssignGpuMemoryToTiles( 519 void TileManager::AssignGpuMemoryToTiles(
713 PrioritizedTileSet* tiles,
714 TileVector* tiles_that_need_to_be_rasterized) { 520 TileVector* tiles_that_need_to_be_rasterized) {
715 TRACE_EVENT0("cc", "TileManager::AssignGpuMemoryToTiles"); 521 TRACE_EVENT0("cc", "TileManager::AssignGpuMemoryToTiles");
716 522
717 // Maintain the list of released resources that can potentially be re-used 523 // Maintain the list of released resources that can potentially be re-used
718 // or deleted. 524 // or deleted.
719 // If this operation becomes expensive too, only do this after some 525 // If this operation becomes expensive too, only do this after some
720 // resource(s) was returned. Note that in that case, one also need to 526 // resource(s) was returned. Note that in that case, one also need to
721 // invalidate when releasing some resource from the pool. 527 // invalidate when releasing some resource from the pool.
722 resource_pool_->CheckBusyResources(); 528 resource_pool_->CheckBusyResources();
723 529
724 // Now give memory out to the tiles until we're out, and build 530 // Now give memory out to the tiles until we're out, and build
725 // the needs-to-be-rasterized queue. 531 // the needs-to-be-rasterized queue.
726 all_tiles_that_need_to_be_rasterized_have_memory_ = true; 532 all_tiles_that_need_to_be_rasterized_are_scheduled_ = true;
727 all_tiles_required_for_activation_have_memory_ = true;
728 533
729 // Cast to prevent overflow. 534 MemoryUsage hard_memory_limit(global_state_.hard_memory_limit_in_bytes,
730 int64 soft_bytes_available = 535 global_state_.num_resources_limit);
731 static_cast<int64>(bytes_releasable_) + 536 MemoryUsage soft_memory_limit(global_state_.soft_memory_limit_in_bytes,
732 static_cast<int64>(global_state_.soft_memory_limit_in_bytes) - 537 global_state_.num_resources_limit);
733 static_cast<int64>(resource_pool_->acquired_memory_usage_bytes()); 538 MemoryUsage memory_usage(resource_pool_->acquired_memory_usage_bytes(),
734 int64 hard_bytes_available = 539 resource_pool_->acquired_resource_count());
735 static_cast<int64>(bytes_releasable_) +
736 static_cast<int64>(global_state_.hard_memory_limit_in_bytes) -
737 static_cast<int64>(resource_pool_->acquired_memory_usage_bytes());
738 int resources_available = resources_releasable_ +
739 global_state_.num_resources_limit -
740 resource_pool_->acquired_resource_count();
741 size_t soft_bytes_allocatable =
742 std::max(static_cast<int64>(0), soft_bytes_available);
743 size_t hard_bytes_allocatable =
744 std::max(static_cast<int64>(0), hard_bytes_available);
745 size_t resources_allocatable = std::max(0, resources_available);
746 540
747 size_t bytes_that_exceeded_memory_budget = 0; 541 eviction_priority_queue_.Reset();
748 size_t soft_bytes_left = soft_bytes_allocatable; 542 client_->BuildEvictionQueue(&eviction_priority_queue_,
749 size_t hard_bytes_left = hard_bytes_allocatable; 543 global_state_.tree_priority);
750 544
751 size_t resources_left = resources_allocatable; 545 bool had_enough_memory_to_schedule_tiles_needed_now = true;
752 bool oomed_soft = false;
753 bool oomed_hard = false;
754 bool have_hit_soft_memory = false; // Soft memory comes after hard.
755 546
756 unsigned schedule_priority = 1u; 547 unsigned schedule_priority = 1u;
757 for (PrioritizedTileSet::Iterator it(tiles, true); it; ++it) { 548 raster_priority_queue_.Reset();
758 Tile* tile = *it; 549 client_->BuildRasterQueue(&raster_priority_queue_,
550 global_state_.tree_priority);
551 while (!raster_priority_queue_.IsEmpty()) {
552 Tile* tile = raster_priority_queue_.Top();
553 TilePriority priority =
554 tile->priority_for_tree_priority(global_state_.tree_priority);
555
556 if (TilePriorityViolatesMemoryPolicy(priority))
557 break;
558
559 // We won't be able to schedule this tile, so break out early.
560 if (tiles_that_need_to_be_rasterized->size() >=
561 kScheduledRasterTasksLimit) {
562 all_tiles_that_need_to_be_rasterized_are_scheduled_ = false;
563 break;
564 }
565
759 ManagedTileState& mts = tile->managed_state(); 566 ManagedTileState& mts = tile->managed_state();
760
761 mts.scheduled_priority = schedule_priority++; 567 mts.scheduled_priority = schedule_priority++;
762
763 mts.raster_mode = tile->DetermineOverallRasterMode(); 568 mts.raster_mode = tile->DetermineOverallRasterMode();
764
765 ManagedTileState::TileVersion& tile_version = 569 ManagedTileState::TileVersion& tile_version =
766 mts.tile_versions[mts.raster_mode]; 570 mts.tile_versions[mts.raster_mode];
767 571
768 // If this tile doesn't need a resource, then nothing to do. 572 DCHECK(!tile_version.IsReadyToDraw());
769 if (!tile_version.requires_resource())
770 continue;
771 573
772 // If the tile is not needed, free it up. 574 // If the tile already has a raster_task, then the memory used by it is
773 if (mts.bin == NEVER_BIN) { 575 // already accounted for in memory_usage. Otherwise, we'll have to acquire
774 FreeResourcesForTileAndNotifyClientIfTileWasReadyToDraw(tile); 576 // more memory to create a raster task.
775 continue; 577 MemoryUsage memory_required_by_tile_to_be_scheduled;
578 if (!tile_version.raster_task_) {
579 memory_required_by_tile_to_be_scheduled = MemoryUsage::FromConfig(
580 tile->size(), resource_pool_->resource_format());
776 } 581 }
777 582
778 const bool tile_uses_hard_limit = mts.bin <= NOW_BIN; 583 bool tile_is_needed_now = priority.priority_bin == TilePriority::NOW;
779 const size_t bytes_if_allocated = BytesConsumedIfAllocated(tile);
780 const size_t tile_bytes_left =
781 (tile_uses_hard_limit) ? hard_bytes_left : soft_bytes_left;
782 584
783 // Hard-limit is reserved for tiles that would cause a calamity 585 // This is the memory limit that will be used by this tile. Depending on
784 // if they were to go away, so by definition they are the highest 586 // the tile priority, it will be one of hard_memory_limit or
785 // priority memory, and must be at the front of the list. 587 // soft_memory_limit.
786 DCHECK(!(have_hit_soft_memory && tile_uses_hard_limit)); 588 MemoryUsage& tile_memory_limit =
787 have_hit_soft_memory |= !tile_uses_hard_limit; 589 tile_is_needed_now ? hard_memory_limit : soft_memory_limit;
788 590
789 size_t tile_bytes = 0; 591 bool memory_usage_is_within_limit =
790 size_t tile_resources = 0; 592 FreeTileResourcesWithLowerPriorityUntilUsageIsWithinLimit(
593 &eviction_priority_queue_,
594 tile_memory_limit - memory_required_by_tile_to_be_scheduled,
595 priority,
596 &memory_usage);
791 597
792 // It costs to maintain a resource. 598 // If we couldn't fit the tile into our current memory limit, then we're
793 for (int mode = 0; mode < NUM_RASTER_MODES; ++mode) { 599 // done.
794 if (mts.tile_versions[mode].resource_) { 600 if (!memory_usage_is_within_limit) {
795 tile_bytes += bytes_if_allocated; 601 if (tile_is_needed_now)
796 tile_resources++; 602 had_enough_memory_to_schedule_tiles_needed_now = false;
797 } 603 all_tiles_that_need_to_be_rasterized_are_scheduled_ = false;
604 break;
798 } 605 }
799 606
800 // Allow lower priority tiles with initialized resources to keep 607 memory_usage += memory_required_by_tile_to_be_scheduled;
801 // their memory by only assigning memory to new raster tasks if
802 // they can be scheduled.
803 bool reached_scheduled_raster_tasks_limit =
804 tiles_that_need_to_be_rasterized->size() >= kScheduledRasterTasksLimit;
805 if (!reached_scheduled_raster_tasks_limit) {
806 // If we don't have the required version, and it's not in flight
807 // then we'll have to pay to create a new task.
808 if (!tile_version.resource_ && !tile_version.raster_task_) {
809 tile_bytes += bytes_if_allocated;
810 tile_resources++;
811 }
812 }
813
814 // Tile is OOM.
815 if (tile_bytes > tile_bytes_left || tile_resources > resources_left) {
816 bool was_ready_to_draw = tile->IsReadyToDraw();
817
818 FreeResourcesForTile(tile);
819
820 // This tile was already on screen and now its resources have been
821 // released. In order to prevent checkerboarding, set this tile as
822 // rasterize on demand immediately.
823 if (mts.visible_and_ready_to_draw)
824 tile_version.set_rasterize_on_demand();
825
826 if (was_ready_to_draw)
827 client_->NotifyTileStateChanged(tile);
828
829 oomed_soft = true;
830 if (tile_uses_hard_limit) {
831 oomed_hard = true;
832 bytes_that_exceeded_memory_budget += tile_bytes;
833 }
834 } else {
835 resources_left -= tile_resources;
836 hard_bytes_left -= tile_bytes;
837 soft_bytes_left =
838 (soft_bytes_left > tile_bytes) ? soft_bytes_left - tile_bytes : 0;
839 if (tile_version.resource_)
840 continue;
841 }
842
843 DCHECK(!tile_version.resource_);
844
845 // Tile shouldn't be rasterized if |tiles_that_need_to_be_rasterized|
846 // has reached it's limit or we've failed to assign gpu memory to this
847 // or any higher priority tile. Preventing tiles that fit into memory
848 // budget to be rasterized when higher priority tile is oom is
849 // important for two reasons:
850 // 1. Tile size should not impact raster priority.
851 // 2. Tiles with existing raster task could otherwise incorrectly
852 // be added as they are not affected by |bytes_allocatable|.
853 bool can_schedule_tile =
854 !oomed_soft && !reached_scheduled_raster_tasks_limit;
855
856 if (!can_schedule_tile) {
857 all_tiles_that_need_to_be_rasterized_have_memory_ = false;
858 if (tile->required_for_activation())
859 all_tiles_required_for_activation_have_memory_ = false;
860 it.DisablePriorityOrdering();
861 continue;
862 }
863
864 tiles_that_need_to_be_rasterized->push_back(tile); 608 tiles_that_need_to_be_rasterized->push_back(tile);
609 raster_priority_queue_.Pop();
865 } 610 }
866 611
867 // OOM reporting uses hard-limit, soft-OOM is normal depending on limit. 612 // Note that we should try and further reduce memory in case the above loop
868 ever_exceeded_memory_budget_ |= oomed_hard; 613 // didn't reduce memory. This ensures that we always release as many resources
869 if (ever_exceeded_memory_budget_) { 614 // as possible to stay within the memory limit.
870 TRACE_COUNTER_ID2("cc", 615 FreeTileResourcesUntilUsageIsWithinLimit(
871 "over_memory_budget", 616 &eviction_priority_queue_, hard_memory_limit, &memory_usage);
872 this, 617
873 "budget", 618 UMA_HISTOGRAM_BOOLEAN("TileManager.ExceededMemoryBudget",
874 global_state_.hard_memory_limit_in_bytes, 619 !had_enough_memory_to_schedule_tiles_needed_now);
875 "over", 620
876 bytes_that_exceeded_memory_budget);
877 }
878 UMA_HISTOGRAM_BOOLEAN("TileManager.ExceededMemoryBudget", oomed_hard);
879 memory_stats_from_last_assign_.total_budget_in_bytes = 621 memory_stats_from_last_assign_.total_budget_in_bytes =
880 global_state_.hard_memory_limit_in_bytes; 622 global_state_.hard_memory_limit_in_bytes;
881 memory_stats_from_last_assign_.bytes_allocated = 623 memory_stats_from_last_assign_.total_bytes_used = memory_usage.memory_bytes();
882 hard_bytes_allocatable - hard_bytes_left; 624 memory_stats_from_last_assign_.had_enough_memory =
883 memory_stats_from_last_assign_.bytes_unreleasable = 625 had_enough_memory_to_schedule_tiles_needed_now;
884 resource_pool_->acquired_memory_usage_bytes() - bytes_releasable_;
885 memory_stats_from_last_assign_.bytes_over = bytes_that_exceeded_memory_budget;
886 } 626 }
887 627
888 void TileManager::FreeResourceForTile(Tile* tile, RasterMode mode) { 628 void TileManager::FreeResourceForTile(Tile* tile, RasterMode mode) {
889 ManagedTileState& mts = tile->managed_state(); 629 ManagedTileState& mts = tile->managed_state();
890 if (mts.tile_versions[mode].resource_) { 630 if (mts.tile_versions[mode].resource_)
891 resource_pool_->ReleaseResource(mts.tile_versions[mode].resource_.Pass()); 631 resource_pool_->ReleaseResource(mts.tile_versions[mode].resource_.Pass());
892
893 DCHECK_GE(bytes_releasable_, BytesConsumedIfAllocated(tile));
894 DCHECK_GE(resources_releasable_, 1u);
895
896 bytes_releasable_ -= BytesConsumedIfAllocated(tile);
897 --resources_releasable_;
898 }
899 } 632 }
900 633
901 void TileManager::FreeResourcesForTile(Tile* tile) { 634 void TileManager::FreeResourcesForTile(Tile* tile) {
902 for (int mode = 0; mode < NUM_RASTER_MODES; ++mode) { 635 for (int mode = 0; mode < NUM_RASTER_MODES; ++mode) {
903 FreeResourceForTile(tile, static_cast<RasterMode>(mode)); 636 FreeResourceForTile(tile, static_cast<RasterMode>(mode));
904 } 637 }
905 } 638 }
906 639
907 void TileManager::FreeUnusedResourcesForTile(Tile* tile) { 640 void TileManager::FreeUnusedResourcesForTile(Tile* tile) {
908 DCHECK(tile->IsReadyToDraw()); 641 DCHECK(tile->IsReadyToDraw());
(...skipping 181 matching lines...) Expand 10 before | Expand all | Expand 10 after
1090 } 823 }
1091 824
1092 ++update_visible_tiles_stats_.completed_count; 825 ++update_visible_tiles_stats_.completed_count;
1093 826
1094 if (analysis.is_solid_color) { 827 if (analysis.is_solid_color) {
1095 tile_version.set_solid_color(analysis.solid_color); 828 tile_version.set_solid_color(analysis.solid_color);
1096 resource_pool_->ReleaseResource(resource.Pass()); 829 resource_pool_->ReleaseResource(resource.Pass());
1097 } else { 830 } else {
1098 tile_version.set_use_resource(); 831 tile_version.set_use_resource();
1099 tile_version.resource_ = resource.Pass(); 832 tile_version.resource_ = resource.Pass();
1100
1101 bytes_releasable_ += BytesConsumedIfAllocated(tile);
1102 ++resources_releasable_;
1103 } 833 }
1104 834
1105 FreeUnusedResourcesForTile(tile); 835 FreeUnusedResourcesForTile(tile);
1106 if (tile->priority(ACTIVE_TREE).distance_to_visible == 0.f) 836 if (tile->priority(ACTIVE_TREE).distance_to_visible == 0.f)
1107 did_initialize_visible_tile_ = true; 837 did_initialize_visible_tile_ = true;
1108 838
1109 client_->NotifyTileStateChanged(tile); 839 client_->NotifyTileStateChanged(tile);
1110 } 840 }
1111 841
1112 scoped_refptr<Tile> TileManager::CreateTile(PicturePileImpl* picture_pile, 842 scoped_refptr<Tile> TileManager::CreateTile(PicturePileImpl* picture_pile,
(...skipping 10 matching lines...) Expand all
1123 content_rect, 853 content_rect,
1124 opaque_rect, 854 opaque_rect,
1125 contents_scale, 855 contents_scale,
1126 layer_id, 856 layer_id,
1127 source_frame_number, 857 source_frame_number,
1128 flags)); 858 flags));
1129 DCHECK(tiles_.find(tile->id()) == tiles_.end()); 859 DCHECK(tiles_.find(tile->id()) == tiles_.end());
1130 860
1131 tiles_[tile->id()] = tile; 861 tiles_[tile->id()] = tile;
1132 used_layer_counts_[tile->layer_id()]++; 862 used_layer_counts_[tile->layer_id()]++;
1133 prioritized_tiles_dirty_ = true;
1134 return tile; 863 return tile;
1135 } 864 }
1136 865
1137 void TileManager::GetPairedPictureLayers(
1138 std::vector<PairedPictureLayer>* paired_layers) const {
1139 const std::vector<PictureLayerImpl*>& layers = client_->GetPictureLayers();
1140
1141 paired_layers->clear();
1142 // Reserve a maximum possible paired layers.
1143 paired_layers->reserve(layers.size());
1144
1145 for (std::vector<PictureLayerImpl*>::const_iterator it = layers.begin();
1146 it != layers.end();
1147 ++it) {
1148 PictureLayerImpl* layer = *it;
1149
1150 // TODO(vmpstr): Iterators and should handle this instead. crbug.com/381704
1151 if (!layer->HasValidTilePriorities())
1152 continue;
1153
1154 PictureLayerImpl* twin_layer = layer->GetTwinLayer();
1155
1156 // Ignore the twin layer when tile priorities are invalid.
1157 // TODO(vmpstr): Iterators should handle this instead. crbug.com/381704
1158 if (twin_layer && !twin_layer->HasValidTilePriorities())
1159 twin_layer = NULL;
1160
1161 PairedPictureLayer paired_layer;
1162 WhichTree tree = layer->GetTree();
1163
1164 // If the current tree is ACTIVE_TREE, then always generate a paired_layer.
1165 // If current tree is PENDING_TREE, then only generate a paired_layer if
1166 // there is no twin layer.
1167 if (tree == ACTIVE_TREE) {
1168 DCHECK(!twin_layer || twin_layer->GetTree() == PENDING_TREE);
1169 paired_layer.active_layer = layer;
1170 paired_layer.pending_layer = twin_layer;
1171 paired_layers->push_back(paired_layer);
1172 } else if (!twin_layer) {
1173 paired_layer.active_layer = NULL;
1174 paired_layer.pending_layer = layer;
1175 paired_layers->push_back(paired_layer);
1176 }
1177 }
1178 }
1179
1180 TileManager::PairedPictureLayer::PairedPictureLayer()
1181 : active_layer(NULL), pending_layer(NULL) {}
1182
1183 TileManager::PairedPictureLayer::~PairedPictureLayer() {}
1184
1185 TileManager::RasterTileIterator::RasterTileIterator(TileManager* tile_manager,
1186 TreePriority tree_priority)
1187 : tree_priority_(tree_priority), comparator_(tree_priority) {
1188 std::vector<TileManager::PairedPictureLayer> paired_layers;
1189 tile_manager->GetPairedPictureLayers(&paired_layers);
1190 bool prioritize_low_res = tree_priority_ == SMOOTHNESS_TAKES_PRIORITY;
1191
1192 paired_iterators_.reserve(paired_layers.size());
1193 iterator_heap_.reserve(paired_layers.size());
1194 for (std::vector<TileManager::PairedPictureLayer>::iterator it =
1195 paired_layers.begin();
1196 it != paired_layers.end();
1197 ++it) {
1198 PairedPictureLayerIterator paired_iterator;
1199 if (it->active_layer) {
1200 paired_iterator.active_iterator =
1201 PictureLayerImpl::LayerRasterTileIterator(it->active_layer,
1202 prioritize_low_res);
1203 }
1204
1205 if (it->pending_layer) {
1206 paired_iterator.pending_iterator =
1207 PictureLayerImpl::LayerRasterTileIterator(it->pending_layer,
1208 prioritize_low_res);
1209 }
1210
1211 if (paired_iterator.PeekTile(tree_priority_) != NULL) {
1212 paired_iterators_.push_back(paired_iterator);
1213 iterator_heap_.push_back(&paired_iterators_.back());
1214 }
1215 }
1216
1217 std::make_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_);
1218 }
1219
1220 TileManager::RasterTileIterator::~RasterTileIterator() {}
1221
1222 TileManager::RasterTileIterator& TileManager::RasterTileIterator::operator++() {
1223 DCHECK(*this);
1224
1225 std::pop_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_);
1226 PairedPictureLayerIterator* paired_iterator = iterator_heap_.back();
1227 iterator_heap_.pop_back();
1228
1229 paired_iterator->PopTile(tree_priority_);
1230 if (paired_iterator->PeekTile(tree_priority_) != NULL) {
1231 iterator_heap_.push_back(paired_iterator);
1232 std::push_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_);
1233 }
1234 return *this;
1235 }
1236
1237 TileManager::RasterTileIterator::operator bool() const {
1238 return !iterator_heap_.empty();
1239 }
1240
1241 Tile* TileManager::RasterTileIterator::operator*() {
1242 DCHECK(*this);
1243 return iterator_heap_.front()->PeekTile(tree_priority_);
1244 }
1245
1246 TileManager::RasterTileIterator::PairedPictureLayerIterator::
1247 PairedPictureLayerIterator() {}
1248
1249 TileManager::RasterTileIterator::PairedPictureLayerIterator::
1250 ~PairedPictureLayerIterator() {}
1251
1252 Tile* TileManager::RasterTileIterator::PairedPictureLayerIterator::PeekTile(
1253 TreePriority tree_priority) {
1254 PictureLayerImpl::LayerRasterTileIterator* next_iterator =
1255 NextTileIterator(tree_priority).first;
1256 if (!next_iterator)
1257 return NULL;
1258
1259 DCHECK(*next_iterator);
1260 DCHECK(std::find(returned_shared_tiles.begin(),
1261 returned_shared_tiles.end(),
1262 **next_iterator) == returned_shared_tiles.end());
1263 return **next_iterator;
1264 }
1265
1266 void TileManager::RasterTileIterator::PairedPictureLayerIterator::PopTile(
1267 TreePriority tree_priority) {
1268 PictureLayerImpl::LayerRasterTileIterator* next_iterator =
1269 NextTileIterator(tree_priority).first;
1270 DCHECK(next_iterator);
1271 DCHECK(*next_iterator);
1272 returned_shared_tiles.push_back(**next_iterator);
1273 ++(*next_iterator);
1274
1275 next_iterator = NextTileIterator(tree_priority).first;
1276 while (next_iterator &&
1277 std::find(returned_shared_tiles.begin(),
1278 returned_shared_tiles.end(),
1279 **next_iterator) != returned_shared_tiles.end()) {
1280 ++(*next_iterator);
1281 next_iterator = NextTileIterator(tree_priority).first;
1282 }
1283 }
1284
1285 std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree>
1286 TileManager::RasterTileIterator::PairedPictureLayerIterator::NextTileIterator(
1287 TreePriority tree_priority) {
1288 // If both iterators are out of tiles, return NULL.
1289 if (!active_iterator && !pending_iterator) {
1290 return std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree>(
1291 NULL, ACTIVE_TREE);
1292 }
1293
1294 // If we only have one iterator with tiles, return it.
1295 if (!active_iterator)
1296 return std::make_pair(&pending_iterator, PENDING_TREE);
1297 if (!pending_iterator)
1298 return std::make_pair(&active_iterator, ACTIVE_TREE);
1299
1300 // Now both iterators have tiles, so we have to decide based on tree priority.
1301 switch (tree_priority) {
1302 case SMOOTHNESS_TAKES_PRIORITY:
1303 return std::make_pair(&active_iterator, ACTIVE_TREE);
1304 case NEW_CONTENT_TAKES_PRIORITY:
1305 return std::make_pair(&pending_iterator, ACTIVE_TREE);
1306 case SAME_PRIORITY_FOR_BOTH_TREES: {
1307 Tile* active_tile = *active_iterator;
1308 Tile* pending_tile = *pending_iterator;
1309 if (active_tile == pending_tile)
1310 return std::make_pair(&active_iterator, ACTIVE_TREE);
1311
1312 const TilePriority& active_priority = active_tile->priority(ACTIVE_TREE);
1313 const TilePriority& pending_priority =
1314 pending_tile->priority(PENDING_TREE);
1315
1316 if (active_priority.IsHigherPriorityThan(pending_priority))
1317 return std::make_pair(&active_iterator, ACTIVE_TREE);
1318 return std::make_pair(&pending_iterator, PENDING_TREE);
1319 }
1320 }
1321
1322 NOTREACHED();
1323 // Keep the compiler happy.
1324 return std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree>(
1325 NULL, ACTIVE_TREE);
1326 }
1327
1328 TileManager::RasterTileIterator::RasterOrderComparator::RasterOrderComparator(
1329 TreePriority tree_priority)
1330 : tree_priority_(tree_priority) {}
1331
1332 bool TileManager::RasterTileIterator::RasterOrderComparator::operator()(
1333 PairedPictureLayerIterator* a,
1334 PairedPictureLayerIterator* b) const {
1335 std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree> a_pair =
1336 a->NextTileIterator(tree_priority_);
1337 DCHECK(a_pair.first);
1338 DCHECK(*a_pair.first);
1339
1340 std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree> b_pair =
1341 b->NextTileIterator(tree_priority_);
1342 DCHECK(b_pair.first);
1343 DCHECK(*b_pair.first);
1344
1345 Tile* a_tile = **a_pair.first;
1346 Tile* b_tile = **b_pair.first;
1347
1348 const TilePriority& a_priority =
1349 a_tile->priority_for_tree_priority(tree_priority_);
1350 const TilePriority& b_priority =
1351 b_tile->priority_for_tree_priority(tree_priority_);
1352 bool prioritize_low_res = tree_priority_ == SMOOTHNESS_TAKES_PRIORITY;
1353
1354 // Now we have to return true iff b is higher priority than a.
1355
1356 // If the bin is the same but the resolution is not, then the order will be
1357 // determined by whether we prioritize low res or not.
1358 // TODO(vmpstr): Remove this when TilePriority is no longer a member of Tile
1359 // class but instead produced by the iterators.
1360 if (b_priority.priority_bin == a_priority.priority_bin &&
1361 b_priority.resolution != a_priority.resolution) {
1362 // Non ideal resolution should be sorted lower than other resolutions.
1363 if (a_priority.resolution == NON_IDEAL_RESOLUTION)
1364 return true;
1365
1366 if (b_priority.resolution == NON_IDEAL_RESOLUTION)
1367 return false;
1368
1369 if (prioritize_low_res)
1370 return b_priority.resolution == LOW_RESOLUTION;
1371
1372 return b_priority.resolution == HIGH_RESOLUTION;
1373 }
1374
1375 return b_priority.IsHigherPriorityThan(a_priority);
1376 }
1377
1378 TileManager::EvictionTileIterator::EvictionTileIterator()
1379 : comparator_(SAME_PRIORITY_FOR_BOTH_TREES) {}
1380
1381 TileManager::EvictionTileIterator::EvictionTileIterator(
1382 TileManager* tile_manager,
1383 TreePriority tree_priority)
1384 : tree_priority_(tree_priority), comparator_(tree_priority) {
1385 std::vector<TileManager::PairedPictureLayer> paired_layers;
1386
1387 tile_manager->GetPairedPictureLayers(&paired_layers);
1388
1389 paired_iterators_.reserve(paired_layers.size());
1390 iterator_heap_.reserve(paired_layers.size());
1391 for (std::vector<TileManager::PairedPictureLayer>::iterator it =
1392 paired_layers.begin();
1393 it != paired_layers.end();
1394 ++it) {
1395 PairedPictureLayerIterator paired_iterator;
1396 if (it->active_layer) {
1397 paired_iterator.active_iterator =
1398 PictureLayerImpl::LayerEvictionTileIterator(it->active_layer,
1399 tree_priority_);
1400 }
1401
1402 if (it->pending_layer) {
1403 paired_iterator.pending_iterator =
1404 PictureLayerImpl::LayerEvictionTileIterator(it->pending_layer,
1405 tree_priority_);
1406 }
1407
1408 if (paired_iterator.PeekTile(tree_priority_) != NULL) {
1409 paired_iterators_.push_back(paired_iterator);
1410 iterator_heap_.push_back(&paired_iterators_.back());
1411 }
1412 }
1413
1414 std::make_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_);
1415 }
1416
1417 TileManager::EvictionTileIterator::~EvictionTileIterator() {}
1418
1419 TileManager::EvictionTileIterator& TileManager::EvictionTileIterator::
1420 operator++() {
1421 std::pop_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_);
1422 PairedPictureLayerIterator* paired_iterator = iterator_heap_.back();
1423 iterator_heap_.pop_back();
1424
1425 paired_iterator->PopTile(tree_priority_);
1426 if (paired_iterator->PeekTile(tree_priority_) != NULL) {
1427 iterator_heap_.push_back(paired_iterator);
1428 std::push_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_);
1429 }
1430 return *this;
1431 }
1432
1433 TileManager::EvictionTileIterator::operator bool() const {
1434 return !iterator_heap_.empty();
1435 }
1436
1437 Tile* TileManager::EvictionTileIterator::operator*() {
1438 DCHECK(*this);
1439 return iterator_heap_.front()->PeekTile(tree_priority_);
1440 }
1441
1442 TileManager::EvictionTileIterator::PairedPictureLayerIterator::
1443 PairedPictureLayerIterator() {}
1444
1445 TileManager::EvictionTileIterator::PairedPictureLayerIterator::
1446 ~PairedPictureLayerIterator() {}
1447
1448 Tile* TileManager::EvictionTileIterator::PairedPictureLayerIterator::PeekTile(
1449 TreePriority tree_priority) {
1450 PictureLayerImpl::LayerEvictionTileIterator* next_iterator =
1451 NextTileIterator(tree_priority);
1452 if (!next_iterator)
1453 return NULL;
1454
1455 DCHECK(*next_iterator);
1456 DCHECK(std::find(returned_shared_tiles.begin(),
1457 returned_shared_tiles.end(),
1458 **next_iterator) == returned_shared_tiles.end());
1459 return **next_iterator;
1460 }
1461
1462 void TileManager::EvictionTileIterator::PairedPictureLayerIterator::PopTile(
1463 TreePriority tree_priority) {
1464 PictureLayerImpl::LayerEvictionTileIterator* next_iterator =
1465 NextTileIterator(tree_priority);
1466 DCHECK(next_iterator);
1467 DCHECK(*next_iterator);
1468 returned_shared_tiles.push_back(**next_iterator);
1469 ++(*next_iterator);
1470
1471 next_iterator = NextTileIterator(tree_priority);
1472 while (next_iterator &&
1473 std::find(returned_shared_tiles.begin(),
1474 returned_shared_tiles.end(),
1475 **next_iterator) != returned_shared_tiles.end()) {
1476 ++(*next_iterator);
1477 next_iterator = NextTileIterator(tree_priority);
1478 }
1479 }
1480
1481 PictureLayerImpl::LayerEvictionTileIterator*
1482 TileManager::EvictionTileIterator::PairedPictureLayerIterator::NextTileIterator(
1483 TreePriority tree_priority) {
1484 // If both iterators are out of tiles, return NULL.
1485 if (!active_iterator && !pending_iterator)
1486 return NULL;
1487
1488 // If we only have one iterator with tiles, return it.
1489 if (!active_iterator)
1490 return &pending_iterator;
1491 if (!pending_iterator)
1492 return &active_iterator;
1493
1494 Tile* active_tile = *active_iterator;
1495 Tile* pending_tile = *pending_iterator;
1496 if (active_tile == pending_tile)
1497 return &active_iterator;
1498
1499 const TilePriority& active_priority =
1500 active_tile->priority_for_tree_priority(tree_priority);
1501 const TilePriority& pending_priority =
1502 pending_tile->priority_for_tree_priority(tree_priority);
1503
1504 if (pending_priority.IsHigherPriorityThan(active_priority))
1505 return &active_iterator;
1506 return &pending_iterator;
1507 }
1508
1509 TileManager::EvictionTileIterator::EvictionOrderComparator::
1510 EvictionOrderComparator(TreePriority tree_priority)
1511 : tree_priority_(tree_priority) {}
1512
1513 bool TileManager::EvictionTileIterator::EvictionOrderComparator::operator()(
1514 PairedPictureLayerIterator* a,
1515 PairedPictureLayerIterator* b) const {
1516 PictureLayerImpl::LayerEvictionTileIterator* a_iterator =
1517 a->NextTileIterator(tree_priority_);
1518 DCHECK(a_iterator);
1519 DCHECK(*a_iterator);
1520
1521 PictureLayerImpl::LayerEvictionTileIterator* b_iterator =
1522 b->NextTileIterator(tree_priority_);
1523 DCHECK(b_iterator);
1524 DCHECK(*b_iterator);
1525
1526 Tile* a_tile = **a_iterator;
1527 Tile* b_tile = **b_iterator;
1528
1529 const TilePriority& a_priority =
1530 a_tile->priority_for_tree_priority(tree_priority_);
1531 const TilePriority& b_priority =
1532 b_tile->priority_for_tree_priority(tree_priority_);
1533 bool prioritize_low_res = tree_priority_ == SMOOTHNESS_TAKES_PRIORITY;
1534
1535 // Now we have to return true iff b is lower priority than a.
1536
1537 // If the bin is the same but the resolution is not, then the order will be
1538 // determined by whether we prioritize low res or not.
1539 // TODO(vmpstr): Remove this when TilePriority is no longer a member of Tile
1540 // class but instead produced by the iterators.
1541 if (b_priority.priority_bin == a_priority.priority_bin &&
1542 b_priority.resolution != a_priority.resolution) {
1543 // Non ideal resolution should be sorted higher than other resolutions.
1544 if (a_priority.resolution == NON_IDEAL_RESOLUTION)
1545 return false;
1546
1547 if (b_priority.resolution == NON_IDEAL_RESOLUTION)
1548 return true;
1549
1550 if (prioritize_low_res)
1551 return a_priority.resolution == LOW_RESOLUTION;
1552
1553 return a_priority.resolution == HIGH_RESOLUTION;
1554 }
1555 return a_priority.IsHigherPriorityThan(b_priority);
1556 }
1557
1558 void TileManager::SetRasterizerForTesting(Rasterizer* rasterizer) { 866 void TileManager::SetRasterizerForTesting(Rasterizer* rasterizer) {
1559 rasterizer_ = rasterizer; 867 rasterizer_ = rasterizer;
1560 rasterizer_->SetClient(this); 868 rasterizer_->SetClient(this);
1561 } 869 }
1562 870
1563 bool TileManager::IsReadyToActivate() const { 871 bool TileManager::IsReadyToActivate() const {
1564 const std::vector<PictureLayerImpl*>& layers = client_->GetPictureLayers(); 872 const std::vector<PictureLayerImpl*>& layers = client_->GetPictureLayers();
1565 873
1566 for (std::vector<PictureLayerImpl*>::const_iterator it = layers.begin(); 874 for (std::vector<PictureLayerImpl*>::const_iterator it = layers.begin();
1567 it != layers.end(); 875 it != layers.end();
1568 ++it) { 876 ++it) {
1569 if (!(*it)->AllTilesRequiredForActivationAreReadyToDraw()) 877 if (!(*it)->AllTilesRequiredForActivationAreReadyToDraw())
1570 return false; 878 return false;
1571 } 879 }
1572 880
1573 return true; 881 return true;
1574 } 882 }
1575 883
1576 void TileManager::CheckIfReadyToActivate() { 884 void TileManager::CheckIfReadyToActivate() {
1577 TRACE_EVENT0("cc", "TileManager::CheckIfReadyToActivate"); 885 TRACE_EVENT0("cc", "TileManager::CheckIfReadyToActivate");
1578 886
1579 rasterizer_->CheckForCompletedTasks(); 887 rasterizer_->CheckForCompletedTasks();
1580 did_check_for_completed_tasks_since_last_schedule_tasks_ = true; 888 did_check_for_completed_tasks_since_last_schedule_tasks_ = true;
1581 889
1582 if (IsReadyToActivate()) 890 if (IsReadyToActivate())
1583 client_->NotifyReadyToActivate(); 891 client_->NotifyReadyToActivate();
1584 } 892 }
1585 893
894 TileManager::MemoryUsage::MemoryUsage() : memory_bytes_(0), resource_count_(0) {
895 }
896
897 TileManager::MemoryUsage::MemoryUsage(int64 memory_bytes, int resource_count)
898 : memory_bytes_(memory_bytes), resource_count_(resource_count) {
899 }
900
901 // static
902 TileManager::MemoryUsage TileManager::MemoryUsage::FromConfig(
903 const gfx::Size& size,
904 ResourceFormat format) {
905 return MemoryUsage(Resource::MemorySizeBytes(size, format), 1);
906 }
907
908 // static
909 TileManager::MemoryUsage TileManager::MemoryUsage::FromTile(const Tile* tile) {
910 const ManagedTileState& mts = tile->managed_state();
911 MemoryUsage total_usage;
912 for (int mode = 0; mode < NUM_RASTER_MODES; ++mode) {
913 if (mts.tile_versions[mode].resource_) {
914 total_usage += MemoryUsage::FromConfig(
915 tile->size(), mts.tile_versions[mode].resource_->format());
916 }
917 }
918 return total_usage;
919 }
920
921 TileManager::MemoryUsage& TileManager::MemoryUsage::operator+=(
922 const MemoryUsage& other) {
923 memory_bytes_ += other.memory_bytes_;
924 resource_count_ += other.resource_count_;
925 return *this;
926 }
927
928 TileManager::MemoryUsage& TileManager::MemoryUsage::operator-=(
929 const MemoryUsage& other) {
930 memory_bytes_ -= other.memory_bytes_;
931 resource_count_ -= other.resource_count_;
932 return *this;
933 }
934
935 TileManager::MemoryUsage TileManager::MemoryUsage::operator-(
936 const MemoryUsage& other) {
937 MemoryUsage result = *this;
938 result -= other;
939 return result;
940 }
941
942 bool TileManager::MemoryUsage::Exceeds(const MemoryUsage& limit) const {
943 return memory_bytes_ > limit.memory_bytes_ ||
944 resource_count_ > limit.resource_count_;
945 }
946
1586 } // namespace cc 947 } // namespace cc
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698