OLD | NEW |
(Empty) | |
| 1 // Copyright 2014 The Chromium Authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. |
| 4 |
| 5 #include "cc/resources/tile_priority_queue.h" |
| 6 |
| 7 #include "cc/resources/tile.h" |
| 8 #include "cc/resources/tile_manager.h" |
| 9 |
| 10 namespace cc { |
| 11 |
| 12 PairedPictureLayer::PairedPictureLayer() |
| 13 : active_layer(NULL), pending_layer(NULL) { |
| 14 } |
| 15 |
| 16 PairedPictureLayer::~PairedPictureLayer() { |
| 17 } |
| 18 |
| 19 RasterTileQueue::RasterTileQueue() |
| 20 : tree_priority_(SAME_PRIORITY_FOR_BOTH_TREES), |
| 21 comparator_(tree_priority_) { |
| 22 } |
| 23 |
| 24 void RasterTileQueue::Prepare( |
| 25 const std::vector<PairedPictureLayer>& paired_picture_layers, |
| 26 TreePriority tree_priority) { |
| 27 paired_iterators_.clear(); |
| 28 iterator_heap_.clear(); |
| 29 |
| 30 tree_priority_ = tree_priority; |
| 31 comparator_ = RasterOrderComparator(tree_priority); |
| 32 |
| 33 bool prioritize_low_res = tree_priority_ == SMOOTHNESS_TAKES_PRIORITY; |
| 34 |
| 35 paired_iterators_.reserve(paired_picture_layers.size()); |
| 36 iterator_heap_.reserve(paired_picture_layers.size()); |
| 37 for (std::vector<PairedPictureLayer>::const_iterator it = |
| 38 paired_picture_layers.begin(); |
| 39 it != paired_picture_layers.end(); |
| 40 ++it) { |
| 41 PairedPictureLayerIterator paired_iterator; |
| 42 if (it->active_layer) { |
| 43 paired_iterator.active_iterator = |
| 44 PictureLayerImpl::LayerRasterTileIterator(it->active_layer, |
| 45 prioritize_low_res); |
| 46 } |
| 47 |
| 48 if (it->pending_layer) { |
| 49 paired_iterator.pending_iterator = |
| 50 PictureLayerImpl::LayerRasterTileIterator(it->pending_layer, |
| 51 prioritize_low_res); |
| 52 } |
| 53 |
| 54 if (paired_iterator.PeekTile(tree_priority_) != NULL) { |
| 55 paired_iterators_.push_back(paired_iterator); |
| 56 iterator_heap_.push_back(&paired_iterators_.back()); |
| 57 } |
| 58 } |
| 59 |
| 60 std::make_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_); |
| 61 } |
| 62 |
| 63 RasterTileQueue::~RasterTileQueue() { |
| 64 } |
| 65 |
| 66 void RasterTileQueue::Pop() { |
| 67 DCHECK(!IsEmpty()); |
| 68 |
| 69 std::pop_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_); |
| 70 PairedPictureLayerIterator* paired_iterator = iterator_heap_.back(); |
| 71 iterator_heap_.pop_back(); |
| 72 |
| 73 paired_iterator->PopTile(tree_priority_); |
| 74 if (paired_iterator->PeekTile(tree_priority_) != NULL) { |
| 75 iterator_heap_.push_back(paired_iterator); |
| 76 std::push_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_); |
| 77 } |
| 78 } |
| 79 |
| 80 bool RasterTileQueue::IsEmpty() { |
| 81 return iterator_heap_.empty(); |
| 82 } |
| 83 |
| 84 Tile* RasterTileQueue::Top() { |
| 85 DCHECK(!IsEmpty()); |
| 86 return iterator_heap_.front()->PeekTile(tree_priority_); |
| 87 } |
| 88 |
| 89 RasterTileQueue::PairedPictureLayerIterator::PairedPictureLayerIterator() { |
| 90 } |
| 91 |
| 92 RasterTileQueue::PairedPictureLayerIterator::~PairedPictureLayerIterator() { |
| 93 } |
| 94 |
| 95 Tile* RasterTileQueue::PairedPictureLayerIterator::PeekTile( |
| 96 TreePriority tree_priority) { |
| 97 PictureLayerImpl::LayerRasterTileIterator* next_iterator = |
| 98 NextTileIterator(tree_priority).first; |
| 99 if (!next_iterator) |
| 100 return NULL; |
| 101 |
| 102 DCHECK(*next_iterator); |
| 103 DCHECK(std::find(returned_shared_tiles.begin(), |
| 104 returned_shared_tiles.end(), |
| 105 **next_iterator) == returned_shared_tiles.end()); |
| 106 return **next_iterator; |
| 107 } |
| 108 |
| 109 void RasterTileQueue::PairedPictureLayerIterator::PopTile( |
| 110 TreePriority tree_priority) { |
| 111 PictureLayerImpl::LayerRasterTileIterator* next_iterator = |
| 112 NextTileIterator(tree_priority).first; |
| 113 DCHECK(next_iterator); |
| 114 DCHECK(*next_iterator); |
| 115 returned_shared_tiles.push_back(**next_iterator); |
| 116 ++(*next_iterator); |
| 117 |
| 118 next_iterator = NextTileIterator(tree_priority).first; |
| 119 while (next_iterator && |
| 120 std::find(returned_shared_tiles.begin(), |
| 121 returned_shared_tiles.end(), |
| 122 **next_iterator) != returned_shared_tiles.end()) { |
| 123 ++(*next_iterator); |
| 124 next_iterator = NextTileIterator(tree_priority).first; |
| 125 } |
| 126 } |
| 127 |
| 128 std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree> |
| 129 RasterTileQueue::PairedPictureLayerIterator::NextTileIterator( |
| 130 TreePriority tree_priority) { |
| 131 // If both iterators are out of tiles, return NULL. |
| 132 if (!active_iterator && !pending_iterator) { |
| 133 return std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree>( |
| 134 NULL, ACTIVE_TREE); |
| 135 } |
| 136 |
| 137 // If we only have one iterator with tiles, return it. |
| 138 if (!active_iterator) |
| 139 return std::make_pair(&pending_iterator, PENDING_TREE); |
| 140 if (!pending_iterator) |
| 141 return std::make_pair(&active_iterator, ACTIVE_TREE); |
| 142 |
| 143 // Now both iterators have tiles, so we have to decide based on tree priority. |
| 144 switch (tree_priority) { |
| 145 case SMOOTHNESS_TAKES_PRIORITY: |
| 146 return std::make_pair(&active_iterator, ACTIVE_TREE); |
| 147 case NEW_CONTENT_TAKES_PRIORITY: |
| 148 return std::make_pair(&pending_iterator, ACTIVE_TREE); |
| 149 case SAME_PRIORITY_FOR_BOTH_TREES: { |
| 150 Tile* active_tile = *active_iterator; |
| 151 Tile* pending_tile = *pending_iterator; |
| 152 if (active_tile == pending_tile) |
| 153 return std::make_pair(&active_iterator, ACTIVE_TREE); |
| 154 |
| 155 const TilePriority& active_priority = active_tile->priority(ACTIVE_TREE); |
| 156 const TilePriority& pending_priority = |
| 157 pending_tile->priority(PENDING_TREE); |
| 158 |
| 159 if (active_priority.IsHigherPriorityThan(pending_priority)) |
| 160 return std::make_pair(&active_iterator, ACTIVE_TREE); |
| 161 return std::make_pair(&pending_iterator, PENDING_TREE); |
| 162 } |
| 163 } |
| 164 |
| 165 NOTREACHED(); |
| 166 // Keep the compiler happy. |
| 167 return std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree>( |
| 168 NULL, ACTIVE_TREE); |
| 169 } |
| 170 |
| 171 RasterTileQueue::RasterOrderComparator::RasterOrderComparator( |
| 172 TreePriority tree_priority) |
| 173 : tree_priority_(tree_priority) { |
| 174 } |
| 175 |
| 176 bool RasterTileQueue::RasterOrderComparator::operator()( |
| 177 PairedPictureLayerIterator* a, |
| 178 PairedPictureLayerIterator* b) const { |
| 179 std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree> a_pair = |
| 180 a->NextTileIterator(tree_priority_); |
| 181 DCHECK(a_pair.first); |
| 182 DCHECK(*a_pair.first); |
| 183 |
| 184 std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree> b_pair = |
| 185 b->NextTileIterator(tree_priority_); |
| 186 DCHECK(b_pair.first); |
| 187 DCHECK(*b_pair.first); |
| 188 |
| 189 Tile* a_tile = **a_pair.first; |
| 190 Tile* b_tile = **b_pair.first; |
| 191 |
| 192 const TilePriority& a_priority = |
| 193 a_tile->priority_for_tree_priority(tree_priority_); |
| 194 const TilePriority& b_priority = |
| 195 b_tile->priority_for_tree_priority(tree_priority_); |
| 196 bool prioritize_low_res = tree_priority_ == SMOOTHNESS_TAKES_PRIORITY; |
| 197 |
| 198 // Now we have to return true iff b is higher priority than a. |
| 199 |
| 200 // If the bin is the same but the resolution is not, then the order will be |
| 201 // determined by whether we prioritize low res or not. |
| 202 // TODO(vmpstr): Remove this when TilePriority is no longer a member of Tile |
| 203 // class but instead produced by the iterators. |
| 204 if (b_priority.priority_bin == a_priority.priority_bin && |
| 205 b_priority.resolution != a_priority.resolution) { |
| 206 // Non ideal resolution should be sorted lower than other resolutions. |
| 207 if (a_priority.resolution == NON_IDEAL_RESOLUTION) |
| 208 return true; |
| 209 |
| 210 if (b_priority.resolution == NON_IDEAL_RESOLUTION) |
| 211 return false; |
| 212 |
| 213 if (prioritize_low_res) |
| 214 return b_priority.resolution == LOW_RESOLUTION; |
| 215 |
| 216 return b_priority.resolution == HIGH_RESOLUTION; |
| 217 } |
| 218 |
| 219 return b_priority.IsHigherPriorityThan(a_priority); |
| 220 } |
| 221 |
| 222 EvictionTileQueue::EvictionTileQueue() |
| 223 : tree_priority_(SAME_PRIORITY_FOR_BOTH_TREES), |
| 224 comparator_(tree_priority_), |
| 225 initialized_(true) { |
| 226 } |
| 227 |
| 228 void EvictionTileQueue::Prepare( |
| 229 const std::vector<PairedPictureLayer>& paired_picture_layers, |
| 230 TreePriority tree_priority) { |
| 231 paired_iterators_.clear(); |
| 232 iterator_heap_.clear(); |
| 233 paired_picture_layers_ = paired_picture_layers; |
| 234 tree_priority_ = tree_priority; |
| 235 comparator_ = EvictionOrderComparator(tree_priority); |
| 236 initialized_ = false; |
| 237 } |
| 238 |
| 239 void EvictionTileQueue::Initialize() { |
| 240 paired_iterators_.reserve(paired_picture_layers_.size()); |
| 241 iterator_heap_.reserve(paired_picture_layers_.size()); |
| 242 for (std::vector<PairedPictureLayer>::iterator it = |
| 243 paired_picture_layers_.begin(); |
| 244 it != paired_picture_layers_.end(); |
| 245 ++it) { |
| 246 PairedPictureLayerIterator paired_iterator; |
| 247 if (it->active_layer) { |
| 248 paired_iterator.active_iterator = |
| 249 PictureLayerImpl::LayerEvictionTileIterator(it->active_layer, |
| 250 tree_priority_); |
| 251 } |
| 252 |
| 253 if (it->pending_layer) { |
| 254 paired_iterator.pending_iterator = |
| 255 PictureLayerImpl::LayerEvictionTileIterator(it->pending_layer, |
| 256 tree_priority_); |
| 257 } |
| 258 |
| 259 if (paired_iterator.PeekTile(tree_priority_) != NULL) { |
| 260 paired_iterators_.push_back(paired_iterator); |
| 261 iterator_heap_.push_back(&paired_iterators_.back()); |
| 262 } |
| 263 } |
| 264 |
| 265 std::make_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_); |
| 266 initialized_ = true; |
| 267 } |
| 268 |
| 269 EvictionTileQueue::~EvictionTileQueue() { |
| 270 } |
| 271 |
| 272 void EvictionTileQueue::Pop() { |
| 273 if (!initialized_) |
| 274 Initialize(); |
| 275 |
| 276 std::pop_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_); |
| 277 PairedPictureLayerIterator* paired_iterator = iterator_heap_.back(); |
| 278 iterator_heap_.pop_back(); |
| 279 |
| 280 paired_iterator->PopTile(tree_priority_); |
| 281 if (paired_iterator->PeekTile(tree_priority_) != NULL) { |
| 282 iterator_heap_.push_back(paired_iterator); |
| 283 std::push_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_); |
| 284 } |
| 285 } |
| 286 |
| 287 bool EvictionTileQueue::IsEmpty() { |
| 288 if (!initialized_) |
| 289 Initialize(); |
| 290 |
| 291 return !iterator_heap_.empty(); |
| 292 } |
| 293 |
| 294 Tile* EvictionTileQueue::Top() { |
| 295 if (!initialized_) |
| 296 Initialize(); |
| 297 |
| 298 DCHECK(!IsEmpty()); |
| 299 return iterator_heap_.front()->PeekTile(tree_priority_); |
| 300 } |
| 301 |
| 302 EvictionTileQueue::PairedPictureLayerIterator::PairedPictureLayerIterator() { |
| 303 } |
| 304 |
| 305 EvictionTileQueue::PairedPictureLayerIterator::~PairedPictureLayerIterator() { |
| 306 } |
| 307 |
| 308 Tile* EvictionTileQueue::PairedPictureLayerIterator::PeekTile( |
| 309 TreePriority tree_priority) { |
| 310 PictureLayerImpl::LayerEvictionTileIterator* next_iterator = |
| 311 NextTileIterator(tree_priority); |
| 312 if (!next_iterator) |
| 313 return NULL; |
| 314 |
| 315 DCHECK(*next_iterator); |
| 316 DCHECK(std::find(returned_shared_tiles.begin(), |
| 317 returned_shared_tiles.end(), |
| 318 **next_iterator) == returned_shared_tiles.end()); |
| 319 return **next_iterator; |
| 320 } |
| 321 |
| 322 void EvictionTileQueue::PairedPictureLayerIterator::PopTile( |
| 323 TreePriority tree_priority) { |
| 324 PictureLayerImpl::LayerEvictionTileIterator* next_iterator = |
| 325 NextTileIterator(tree_priority); |
| 326 DCHECK(next_iterator); |
| 327 DCHECK(*next_iterator); |
| 328 returned_shared_tiles.push_back(**next_iterator); |
| 329 ++(*next_iterator); |
| 330 |
| 331 next_iterator = NextTileIterator(tree_priority); |
| 332 while (next_iterator && |
| 333 std::find(returned_shared_tiles.begin(), |
| 334 returned_shared_tiles.end(), |
| 335 **next_iterator) != returned_shared_tiles.end()) { |
| 336 ++(*next_iterator); |
| 337 next_iterator = NextTileIterator(tree_priority); |
| 338 } |
| 339 } |
| 340 |
| 341 PictureLayerImpl::LayerEvictionTileIterator* |
| 342 EvictionTileQueue::PairedPictureLayerIterator::NextTileIterator( |
| 343 TreePriority tree_priority) { |
| 344 // If both iterators are out of tiles, return NULL. |
| 345 if (!active_iterator && !pending_iterator) |
| 346 return NULL; |
| 347 |
| 348 // If we only have one iterator with tiles, return it. |
| 349 if (!active_iterator) |
| 350 return &pending_iterator; |
| 351 if (!pending_iterator) |
| 352 return &active_iterator; |
| 353 |
| 354 Tile* active_tile = *active_iterator; |
| 355 Tile* pending_tile = *pending_iterator; |
| 356 if (active_tile == pending_tile) |
| 357 return &active_iterator; |
| 358 |
| 359 const TilePriority& active_priority = |
| 360 active_tile->priority_for_tree_priority(tree_priority); |
| 361 const TilePriority& pending_priority = |
| 362 pending_tile->priority_for_tree_priority(tree_priority); |
| 363 |
| 364 if (pending_priority.IsHigherPriorityThan(active_priority)) |
| 365 return &active_iterator; |
| 366 return &pending_iterator; |
| 367 } |
| 368 |
| 369 EvictionTileQueue::EvictionOrderComparator::EvictionOrderComparator( |
| 370 TreePriority tree_priority) |
| 371 : tree_priority_(tree_priority) { |
| 372 } |
| 373 |
| 374 bool EvictionTileQueue::EvictionOrderComparator::operator()( |
| 375 PairedPictureLayerIterator* a, |
| 376 PairedPictureLayerIterator* b) const { |
| 377 PictureLayerImpl::LayerEvictionTileIterator* a_iterator = |
| 378 a->NextTileIterator(tree_priority_); |
| 379 DCHECK(a_iterator); |
| 380 DCHECK(*a_iterator); |
| 381 |
| 382 PictureLayerImpl::LayerEvictionTileIterator* b_iterator = |
| 383 b->NextTileIterator(tree_priority_); |
| 384 DCHECK(b_iterator); |
| 385 DCHECK(*b_iterator); |
| 386 |
| 387 Tile* a_tile = **a_iterator; |
| 388 Tile* b_tile = **b_iterator; |
| 389 |
| 390 const TilePriority& a_priority = |
| 391 a_tile->priority_for_tree_priority(tree_priority_); |
| 392 const TilePriority& b_priority = |
| 393 b_tile->priority_for_tree_priority(tree_priority_); |
| 394 bool prioritize_low_res = tree_priority_ == SMOOTHNESS_TAKES_PRIORITY; |
| 395 |
| 396 // Now we have to return true iff b is lower priority than a. |
| 397 |
| 398 // If the bin is the same but the resolution is not, then the order will be |
| 399 // determined by whether we prioritize low res or not. |
| 400 // TODO(vmpstr): Remove this when TilePriority is no longer a member of Tile |
| 401 // class but instead produced by the iterators. |
| 402 if (b_priority.priority_bin == a_priority.priority_bin && |
| 403 b_priority.resolution != a_priority.resolution) { |
| 404 // Non ideal resolution should be sorted higher than other resolutions. |
| 405 if (a_priority.resolution == NON_IDEAL_RESOLUTION) |
| 406 return false; |
| 407 |
| 408 if (b_priority.resolution == NON_IDEAL_RESOLUTION) |
| 409 return true; |
| 410 |
| 411 if (prioritize_low_res) |
| 412 return a_priority.resolution == LOW_RESOLUTION; |
| 413 |
| 414 return a_priority.resolution == HIGH_RESOLUTION; |
| 415 } |
| 416 return a_priority.IsHigherPriorityThan(b_priority); |
| 417 } |
| 418 |
| 419 } // namespace cc |
OLD | NEW |