Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(120)

Side by Side Diff: cc/resources/tile_manager.cc

Issue 367833003: cc: Start using raster/eviction iterators. (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/src
Patch Set: update Created 6 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
OLDNEW
1 // Copyright 2012 The Chromium Authors. All rights reserved. 1 // Copyright 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be 2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file. 3 // found in the LICENSE file.
4 4
5 #include "cc/resources/tile_manager.h" 5 #include "cc/resources/tile_manager.h"
6 6
7 #include <algorithm> 7 #include <algorithm>
8 #include <limits> 8 #include <limits>
9 #include <string> 9 #include <string>
10 10
(...skipping 209 matching lines...) Expand 10 before | Expand all | Expand 10 after
220 skia::RefPtr<SkPixelRef> pixel_ref_; 220 skia::RefPtr<SkPixelRef> pixel_ref_;
221 int layer_id_; 221 int layer_id_;
222 RenderingStatsInstrumentation* rendering_stats_; 222 RenderingStatsInstrumentation* rendering_stats_;
223 const base::Callback<void(bool was_canceled)> reply_; 223 const base::Callback<void(bool was_canceled)> reply_;
224 224
225 DISALLOW_COPY_AND_ASSIGN(ImageDecodeTaskImpl); 225 DISALLOW_COPY_AND_ASSIGN(ImageDecodeTaskImpl);
226 }; 226 };
227 227
228 const size_t kScheduledRasterTasksLimit = 32u; 228 const size_t kScheduledRasterTasksLimit = 32u;
229 229
230 // Memory limit policy works by mapping some bin states to the NEVER bin.
231 const ManagedTileBin kBinPolicyMap[NUM_TILE_MEMORY_LIMIT_POLICIES][NUM_BINS] = {
232 // [ALLOW_NOTHING]
233 {NEVER_BIN, // [NOW_AND_READY_TO_DRAW_BIN]
234 NEVER_BIN, // [NOW_BIN]
235 NEVER_BIN, // [SOON_BIN]
236 NEVER_BIN, // [EVENTUALLY_AND_ACTIVE_BIN]
237 NEVER_BIN, // [EVENTUALLY_BIN]
238 NEVER_BIN, // [AT_LAST_AND_ACTIVE_BIN]
239 NEVER_BIN, // [AT_LAST_BIN]
240 NEVER_BIN // [NEVER_BIN]
241 },
242 // [ALLOW_ABSOLUTE_MINIMUM]
243 {NOW_AND_READY_TO_DRAW_BIN, // [NOW_AND_READY_TO_DRAW_BIN]
244 NOW_BIN, // [NOW_BIN]
245 NEVER_BIN, // [SOON_BIN]
246 NEVER_BIN, // [EVENTUALLY_AND_ACTIVE_BIN]
247 NEVER_BIN, // [EVENTUALLY_BIN]
248 NEVER_BIN, // [AT_LAST_AND_ACTIVE_BIN]
249 NEVER_BIN, // [AT_LAST_BIN]
250 NEVER_BIN // [NEVER_BIN]
251 },
252 // [ALLOW_PREPAINT_ONLY]
253 {NOW_AND_READY_TO_DRAW_BIN, // [NOW_AND_READY_TO_DRAW_BIN]
254 NOW_BIN, // [NOW_BIN]
255 SOON_BIN, // [SOON_BIN]
256 NEVER_BIN, // [EVENTUALLY_AND_ACTIVE_BIN]
257 NEVER_BIN, // [EVENTUALLY_BIN]
258 NEVER_BIN, // [AT_LAST_AND_ACTIVE_BIN]
259 NEVER_BIN, // [AT_LAST_BIN]
260 NEVER_BIN // [NEVER_BIN]
261 },
262 // [ALLOW_ANYTHING]
263 {NOW_AND_READY_TO_DRAW_BIN, // [NOW_AND_READY_TO_DRAW_BIN]
264 NOW_BIN, // [NOW_BIN]
265 SOON_BIN, // [SOON_BIN]
266 EVENTUALLY_AND_ACTIVE_BIN, // [EVENTUALLY_AND_ACTIVE_BIN]
267 EVENTUALLY_BIN, // [EVENTUALLY_BIN]
268 AT_LAST_AND_ACTIVE_BIN, // [AT_LAST_AND_ACTIVE_BIN]
269 AT_LAST_BIN, // [AT_LAST_BIN]
270 NEVER_BIN // [NEVER_BIN]
271 }};
272
273 // Ready to draw works by mapping NOW_BIN to NOW_AND_READY_TO_DRAW_BIN.
274 const ManagedTileBin kBinReadyToDrawMap[2][NUM_BINS] = {
275 // Not ready
276 {NOW_AND_READY_TO_DRAW_BIN, // [NOW_AND_READY_TO_DRAW_BIN]
277 NOW_BIN, // [NOW_BIN]
278 SOON_BIN, // [SOON_BIN]
279 EVENTUALLY_AND_ACTIVE_BIN, // [EVENTUALLY_AND_ACTIVE_BIN]
280 EVENTUALLY_BIN, // [EVENTUALLY_BIN]
281 AT_LAST_AND_ACTIVE_BIN, // [AT_LAST_AND_ACTIVE_BIN]
282 AT_LAST_BIN, // [AT_LAST_BIN]
283 NEVER_BIN // [NEVER_BIN]
284 },
285 // Ready
286 {NOW_AND_READY_TO_DRAW_BIN, // [NOW_AND_READY_TO_DRAW_BIN]
287 NOW_AND_READY_TO_DRAW_BIN, // [NOW_BIN]
288 SOON_BIN, // [SOON_BIN]
289 EVENTUALLY_AND_ACTIVE_BIN, // [EVENTUALLY_AND_ACTIVE_BIN]
290 EVENTUALLY_BIN, // [EVENTUALLY_BIN]
291 AT_LAST_AND_ACTIVE_BIN, // [AT_LAST_AND_ACTIVE_BIN]
292 AT_LAST_BIN, // [AT_LAST_BIN]
293 NEVER_BIN // [NEVER_BIN]
294 }};
295
296 // Active works by mapping some bin stats to equivalent _ACTIVE_BIN state.
297 const ManagedTileBin kBinIsActiveMap[2][NUM_BINS] = {
298 // Inactive
299 {NOW_AND_READY_TO_DRAW_BIN, // [NOW_AND_READY_TO_DRAW_BIN]
300 NOW_BIN, // [NOW_BIN]
301 SOON_BIN, // [SOON_BIN]
302 EVENTUALLY_AND_ACTIVE_BIN, // [EVENTUALLY_AND_ACTIVE_BIN]
303 EVENTUALLY_BIN, // [EVENTUALLY_BIN]
304 AT_LAST_AND_ACTIVE_BIN, // [AT_LAST_AND_ACTIVE_BIN]
305 AT_LAST_BIN, // [AT_LAST_BIN]
306 NEVER_BIN // [NEVER_BIN]
307 },
308 // Active
309 {NOW_AND_READY_TO_DRAW_BIN, // [NOW_AND_READY_TO_DRAW_BIN]
310 NOW_BIN, // [NOW_BIN]
311 SOON_BIN, // [SOON_BIN]
312 EVENTUALLY_AND_ACTIVE_BIN, // [EVENTUALLY_AND_ACTIVE_BIN]
313 EVENTUALLY_AND_ACTIVE_BIN, // [EVENTUALLY_BIN]
314 AT_LAST_AND_ACTIVE_BIN, // [AT_LAST_AND_ACTIVE_BIN]
315 AT_LAST_AND_ACTIVE_BIN, // [AT_LAST_BIN]
316 NEVER_BIN // [NEVER_BIN]
317 }};
318
319 // Determine bin based on three categories of tiles: things we need now,
320 // things we need soon, and eventually.
321 inline ManagedTileBin BinFromTilePriority(const TilePriority& prio) {
322 if (prio.priority_bin == TilePriority::NOW)
323 return NOW_BIN;
324
325 if (prio.priority_bin == TilePriority::SOON)
326 return SOON_BIN;
327
328 if (prio.distance_to_visible == std::numeric_limits<float>::infinity())
329 return NEVER_BIN;
330
331 return EVENTUALLY_BIN;
332 }
333
334 } // namespace 230 } // namespace
335 231
336 RasterTaskCompletionStats::RasterTaskCompletionStats() 232 RasterTaskCompletionStats::RasterTaskCompletionStats()
337 : completed_count(0u), canceled_count(0u) {} 233 : completed_count(0u), canceled_count(0u) {}
338 234
339 scoped_ptr<base::Value> RasterTaskCompletionStatsAsValue( 235 scoped_ptr<base::Value> RasterTaskCompletionStatsAsValue(
340 const RasterTaskCompletionStats& stats) { 236 const RasterTaskCompletionStats& stats) {
341 scoped_ptr<base::DictionaryValue> state(new base::DictionaryValue()); 237 scoped_ptr<base::DictionaryValue> state(new base::DictionaryValue());
342 state->SetInteger("completed_count", stats.completed_count); 238 state->SetInteger("completed_count", stats.completed_count);
343 state->SetInteger("canceled_count", stats.canceled_count); 239 state->SetInteger("canceled_count", stats.canceled_count);
(...skipping 17 matching lines...) Expand all
361 TileManager::TileManager( 257 TileManager::TileManager(
362 TileManagerClient* client, 258 TileManagerClient* client,
363 base::SequencedTaskRunner* task_runner, 259 base::SequencedTaskRunner* task_runner,
364 ResourcePool* resource_pool, 260 ResourcePool* resource_pool,
365 Rasterizer* rasterizer, 261 Rasterizer* rasterizer,
366 RenderingStatsInstrumentation* rendering_stats_instrumentation) 262 RenderingStatsInstrumentation* rendering_stats_instrumentation)
367 : client_(client), 263 : client_(client),
368 task_runner_(task_runner), 264 task_runner_(task_runner),
369 resource_pool_(resource_pool), 265 resource_pool_(resource_pool),
370 rasterizer_(rasterizer), 266 rasterizer_(rasterizer),
371 prioritized_tiles_dirty_(false), 267 all_tiles_that_need_to_be_rasterized_are_scheduled_(true),
372 all_tiles_that_need_to_be_rasterized_have_memory_(true),
373 all_tiles_required_for_activation_have_memory_(true),
374 bytes_releasable_(0),
375 resources_releasable_(0),
376 ever_exceeded_memory_budget_(false),
377 rendering_stats_instrumentation_(rendering_stats_instrumentation), 268 rendering_stats_instrumentation_(rendering_stats_instrumentation),
378 did_initialize_visible_tile_(false), 269 did_initialize_visible_tile_(false),
379 did_check_for_completed_tasks_since_last_schedule_tasks_(true), 270 did_check_for_completed_tasks_since_last_schedule_tasks_(true),
380 ready_to_activate_check_notifier_( 271 ready_to_activate_check_notifier_(
381 task_runner_, 272 task_runner_,
382 base::Bind(&TileManager::CheckIfReadyToActivate, 273 base::Bind(&TileManager::CheckIfReadyToActivate,
383 base::Unretained(this))) { 274 base::Unretained(this))) {
384 rasterizer_->SetClient(this); 275 rasterizer_->SetClient(this);
385 } 276 }
386 277
387 TileManager::~TileManager() { 278 TileManager::~TileManager() {
388 // Reset global state and manage. This should cause 279 // Reset global state and manage. This should cause
389 // our memory usage to drop to zero. 280 // our memory usage to drop to zero.
390 global_state_ = GlobalStateThatImpactsTilePriority(); 281 global_state_ = GlobalStateThatImpactsTilePriority();
391 282
392 CleanUpReleasedTiles(); 283 CleanUpReleasedTiles();
393 DCHECK_EQ(0u, tiles_.size()); 284 DCHECK_EQ(0u, tiles_.size());
394 285
395 RasterTaskQueue empty; 286 RasterTaskQueue empty;
396 rasterizer_->ScheduleTasks(&empty); 287 rasterizer_->ScheduleTasks(&empty);
397 orphan_raster_tasks_.clear(); 288 orphan_raster_tasks_.clear();
398 289
399 // This should finish all pending tasks and release any uninitialized 290 // This should finish all pending tasks and release any uninitialized
400 // resources. 291 // resources.
401 rasterizer_->Shutdown(); 292 rasterizer_->Shutdown();
402 rasterizer_->CheckForCompletedTasks(); 293 rasterizer_->CheckForCompletedTasks();
403
404 DCHECK_EQ(0u, bytes_releasable_);
405 DCHECK_EQ(0u, resources_releasable_);
406 } 294 }
407 295
408 void TileManager::Release(Tile* tile) { 296 void TileManager::Release(Tile* tile) {
409 prioritized_tiles_dirty_ = true;
410 released_tiles_.push_back(tile); 297 released_tiles_.push_back(tile);
411 } 298 }
412 299
413 void TileManager::DidChangeTilePriority(Tile* tile) {
414 prioritized_tiles_dirty_ = true;
415 }
416
417 bool TileManager::ShouldForceTasksRequiredForActivationToComplete() const { 300 bool TileManager::ShouldForceTasksRequiredForActivationToComplete() const {
418 return global_state_.tree_priority != SMOOTHNESS_TAKES_PRIORITY; 301 return global_state_.tree_priority != SMOOTHNESS_TAKES_PRIORITY;
419 } 302 }
420 303
421 void TileManager::CleanUpReleasedTiles() { 304 void TileManager::CleanUpReleasedTiles() {
422 for (std::vector<Tile*>::iterator it = released_tiles_.begin(); 305 for (std::vector<Tile*>::iterator it = released_tiles_.begin();
423 it != released_tiles_.end(); 306 it != released_tiles_.end();
424 ++it) { 307 ++it) {
425 Tile* tile = *it; 308 Tile* tile = *it;
426 ManagedTileState& mts = tile->managed_state(); 309 ManagedTileState& mts = tile->managed_state();
(...skipping 13 matching lines...) Expand all
440 used_layer_counts_.erase(layer_it); 323 used_layer_counts_.erase(layer_it);
441 image_decode_tasks_.erase(tile->layer_id()); 324 image_decode_tasks_.erase(tile->layer_id());
442 } 325 }
443 326
444 delete tile; 327 delete tile;
445 } 328 }
446 329
447 released_tiles_.clear(); 330 released_tiles_.clear();
448 } 331 }
449 332
450 void TileManager::UpdatePrioritizedTileSetIfNeeded() {
451 if (!prioritized_tiles_dirty_)
452 return;
453
454 CleanUpReleasedTiles();
455
456 prioritized_tiles_.Clear();
457 GetTilesWithAssignedBins(&prioritized_tiles_);
458 prioritized_tiles_dirty_ = false;
459 }
460
461 void TileManager::DidFinishRunningTasks() { 333 void TileManager::DidFinishRunningTasks() {
462 TRACE_EVENT0("cc", "TileManager::DidFinishRunningTasks"); 334 TRACE_EVENT0("cc", "TileManager::DidFinishRunningTasks");
463 335
464 bool memory_usage_above_limit = resource_pool_->total_memory_usage_bytes() > 336 bool memory_usage_above_limit = resource_pool_->total_memory_usage_bytes() >
465 global_state_.soft_memory_limit_in_bytes; 337 global_state_.soft_memory_limit_in_bytes;
466 338
467 // When OOM, keep re-assigning memory until we reach a steady state 339 // When OOM, keep re-assigning memory until we reach a steady state
468 // where top-priority tiles are initialized. 340 // where top-priority tiles are initialized.
469 if (all_tiles_that_need_to_be_rasterized_have_memory_ && 341 if (all_tiles_that_need_to_be_rasterized_are_scheduled_ &&
470 !memory_usage_above_limit) 342 !memory_usage_above_limit)
471 return; 343 return;
472 344
473 rasterizer_->CheckForCompletedTasks(); 345 rasterizer_->CheckForCompletedTasks();
474 did_check_for_completed_tasks_since_last_schedule_tasks_ = true; 346 did_check_for_completed_tasks_since_last_schedule_tasks_ = true;
475 347
476 TileVector tiles_that_need_to_be_rasterized; 348 TileVector tiles_that_need_to_be_rasterized;
477 AssignGpuMemoryToTiles(&prioritized_tiles_, 349 AssignGpuMemoryToTiles(&tiles_that_need_to_be_rasterized);
478 &tiles_that_need_to_be_rasterized);
479 350
480 // |tiles_that_need_to_be_rasterized| will be empty when we reach a 351 // |tiles_that_need_to_be_rasterized| will be empty when we reach a
481 // steady memory state. Keep scheduling tasks until we reach this state. 352 // steady memory state. Keep scheduling tasks until we reach this state.
482 if (!tiles_that_need_to_be_rasterized.empty()) { 353 if (!tiles_that_need_to_be_rasterized.empty()) {
483 ScheduleTasks(tiles_that_need_to_be_rasterized); 354 ScheduleTasks(tiles_that_need_to_be_rasterized);
484 return; 355 return;
485 } 356 }
486 357
487 resource_pool_->ReduceResourceUsage(); 358 resource_pool_->ReduceResourceUsage();
488 359
(...skipping 20 matching lines...) Expand all
509 tile_version.set_rasterize_on_demand(); 380 tile_version.set_rasterize_on_demand();
510 client_->NotifyTileStateChanged(tile); 381 client_->NotifyTileStateChanged(tile);
511 } 382 }
512 } 383 }
513 384
514 DCHECK(IsReadyToActivate()); 385 DCHECK(IsReadyToActivate());
515 ready_to_activate_check_notifier_.Schedule(); 386 ready_to_activate_check_notifier_.Schedule();
516 } 387 }
517 388
518 void TileManager::DidFinishRunningTasksRequiredForActivation() { 389 void TileManager::DidFinishRunningTasksRequiredForActivation() {
519 // This is only a true indication that all tiles required for
520 // activation are initialized when no tiles are OOM. We need to
521 // wait for DidFinishRunningTasks() to be called, try to re-assign
522 // memory and in worst case use on-demand raster when tiles
523 // required for activation are OOM.
524 if (!all_tiles_required_for_activation_have_memory_)
525 return;
526
527 ready_to_activate_check_notifier_.Schedule(); 390 ready_to_activate_check_notifier_.Schedule();
528 } 391 }
529 392
530 void TileManager::GetTilesWithAssignedBins(PrioritizedTileSet* tiles) {
531 TRACE_EVENT0("cc", "TileManager::GetTilesWithAssignedBins");
532
533 const TileMemoryLimitPolicy memory_policy = global_state_.memory_limit_policy;
534 const TreePriority tree_priority = global_state_.tree_priority;
535
536 // For each tree, bin into different categories of tiles.
537 for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it) {
538 Tile* tile = it->second;
539 ManagedTileState& mts = tile->managed_state();
540
541 const ManagedTileState::TileVersion& tile_version =
542 tile->GetTileVersionForDrawing();
543 bool tile_is_ready_to_draw = tile_version.IsReadyToDraw();
544 bool tile_is_active = tile_is_ready_to_draw ||
545 mts.tile_versions[mts.raster_mode].raster_task_;
546
547 // Get the active priority and bin.
548 TilePriority active_priority = tile->priority(ACTIVE_TREE);
549 ManagedTileBin active_bin = BinFromTilePriority(active_priority);
550
551 // Get the pending priority and bin.
552 TilePriority pending_priority = tile->priority(PENDING_TREE);
553 ManagedTileBin pending_bin = BinFromTilePriority(pending_priority);
554
555 bool pending_is_low_res = pending_priority.resolution == LOW_RESOLUTION;
556 bool pending_is_non_ideal =
557 pending_priority.resolution == NON_IDEAL_RESOLUTION;
558 bool active_is_non_ideal =
559 active_priority.resolution == NON_IDEAL_RESOLUTION;
560
561 // Adjust bin state based on if ready to draw.
562 active_bin = kBinReadyToDrawMap[tile_is_ready_to_draw][active_bin];
563 pending_bin = kBinReadyToDrawMap[tile_is_ready_to_draw][pending_bin];
564
565 // Adjust bin state based on if active.
566 active_bin = kBinIsActiveMap[tile_is_active][active_bin];
567 pending_bin = kBinIsActiveMap[tile_is_active][pending_bin];
568
569 // We never want to paint new non-ideal tiles, as we always have
570 // a high-res tile covering that content (paint that instead).
571 if (!tile_is_ready_to_draw && active_is_non_ideal)
572 active_bin = NEVER_BIN;
573 if (!tile_is_ready_to_draw && pending_is_non_ideal)
574 pending_bin = NEVER_BIN;
575
576 ManagedTileBin tree_bin[NUM_TREES];
577 tree_bin[ACTIVE_TREE] = kBinPolicyMap[memory_policy][active_bin];
578 tree_bin[PENDING_TREE] = kBinPolicyMap[memory_policy][pending_bin];
579
580 // Adjust pending bin state for low res tiles. This prevents pending tree
581 // low-res tiles from being initialized before high-res tiles.
582 if (pending_is_low_res)
583 tree_bin[PENDING_TREE] = std::max(tree_bin[PENDING_TREE], EVENTUALLY_BIN);
584
585 TilePriority tile_priority;
586 switch (tree_priority) {
587 case SAME_PRIORITY_FOR_BOTH_TREES:
588 mts.bin = std::min(tree_bin[ACTIVE_TREE], tree_bin[PENDING_TREE]);
589 tile_priority = tile->combined_priority();
590 break;
591 case SMOOTHNESS_TAKES_PRIORITY:
592 mts.bin = tree_bin[ACTIVE_TREE];
593 tile_priority = active_priority;
594 break;
595 case NEW_CONTENT_TAKES_PRIORITY:
596 mts.bin = tree_bin[PENDING_TREE];
597 tile_priority = pending_priority;
598 break;
599 }
600
601 // Bump up the priority if we determined it's NEVER_BIN on one tree,
602 // but is still required on the other tree.
603 bool is_in_never_bin_on_both_trees = tree_bin[ACTIVE_TREE] == NEVER_BIN &&
604 tree_bin[PENDING_TREE] == NEVER_BIN;
605
606 if (mts.bin == NEVER_BIN && !is_in_never_bin_on_both_trees)
607 mts.bin = tile_is_active ? AT_LAST_AND_ACTIVE_BIN : AT_LAST_BIN;
608
609 mts.resolution = tile_priority.resolution;
610 mts.priority_bin = tile_priority.priority_bin;
611 mts.distance_to_visible = tile_priority.distance_to_visible;
612 mts.required_for_activation = tile_priority.required_for_activation;
613
614 mts.visible_and_ready_to_draw =
615 tree_bin[ACTIVE_TREE] == NOW_AND_READY_TO_DRAW_BIN;
616
617 // Tiles that are required for activation shouldn't be in NEVER_BIN unless
618 // smoothness takes priority or memory policy allows nothing to be
619 // initialized.
620 DCHECK(!mts.required_for_activation || mts.bin != NEVER_BIN ||
621 tree_priority == SMOOTHNESS_TAKES_PRIORITY ||
622 memory_policy == ALLOW_NOTHING);
623
624 // If the tile is in NEVER_BIN and it does not have an active task, then we
625 // can release the resources early. If it does have the task however, we
626 // should keep it in the prioritized tile set to ensure that AssignGpuMemory
627 // can visit it.
628 if (mts.bin == NEVER_BIN &&
629 !mts.tile_versions[mts.raster_mode].raster_task_) {
630 FreeResourcesForTileAndNotifyClientIfTileWasReadyToDraw(tile);
631 continue;
632 }
633
634 // Insert the tile into a priority set.
635 tiles->InsertTile(tile, mts.bin);
636 }
637 }
638
639 void TileManager::ManageTiles(const GlobalStateThatImpactsTilePriority& state) { 393 void TileManager::ManageTiles(const GlobalStateThatImpactsTilePriority& state) {
640 TRACE_EVENT0("cc", "TileManager::ManageTiles"); 394 TRACE_EVENT0("cc", "TileManager::ManageTiles");
641 395
642 // Update internal state. 396 global_state_ = state;
643 if (state != global_state_) {
644 global_state_ = state;
645 prioritized_tiles_dirty_ = true;
646 }
647 397
648 // We need to call CheckForCompletedTasks() once in-between each call 398 // We need to call CheckForCompletedTasks() once in-between each call
649 // to ScheduleTasks() to prevent canceled tasks from being scheduled. 399 // to ScheduleTasks() to prevent canceled tasks from being scheduled.
650 if (!did_check_for_completed_tasks_since_last_schedule_tasks_) { 400 if (!did_check_for_completed_tasks_since_last_schedule_tasks_) {
651 rasterizer_->CheckForCompletedTasks(); 401 rasterizer_->CheckForCompletedTasks();
652 did_check_for_completed_tasks_since_last_schedule_tasks_ = true; 402 did_check_for_completed_tasks_since_last_schedule_tasks_ = true;
653 } 403 }
654 404
655 UpdatePrioritizedTileSetIfNeeded(); 405 // TODO(vmpstr): See if we still need to keep tiles alive when layers release
406 // them.
407 CleanUpReleasedTiles();
656 408
657 TileVector tiles_that_need_to_be_rasterized; 409 TileVector tiles_that_need_to_be_rasterized;
658 AssignGpuMemoryToTiles(&prioritized_tiles_, 410 AssignGpuMemoryToTiles(&tiles_that_need_to_be_rasterized);
659 &tiles_that_need_to_be_rasterized);
660 411
661 // Finally, schedule rasterizer tasks. 412 // Finally, schedule rasterizer tasks.
662 ScheduleTasks(tiles_that_need_to_be_rasterized); 413 ScheduleTasks(tiles_that_need_to_be_rasterized);
663 414
664 TRACE_EVENT_INSTANT1("cc", 415 TRACE_EVENT_INSTANT1("cc",
665 "DidManage", 416 "DidManage",
666 TRACE_EVENT_SCOPE_THREAD, 417 TRACE_EVENT_SCOPE_THREAD,
667 "state", 418 "state",
668 TracedValue::FromValue(BasicStateAsValue().release())); 419 TracedValue::FromValue(BasicStateAsValue().release()));
669 420
(...skipping 32 matching lines...) Expand 10 before | Expand all | Expand 10 after
702 } 453 }
703 454
704 scoped_ptr<base::Value> TileManager::AllTilesAsValue() const { 455 scoped_ptr<base::Value> TileManager::AllTilesAsValue() const {
705 scoped_ptr<base::ListValue> state(new base::ListValue()); 456 scoped_ptr<base::ListValue> state(new base::ListValue());
706 for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it) 457 for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it)
707 state->Append(it->second->AsValue().release()); 458 state->Append(it->second->AsValue().release());
708 459
709 return state.PassAs<base::Value>(); 460 return state.PassAs<base::Value>();
710 } 461 }
711 462
463 bool TileManager::FreeTileResourcesUntilUsageIsWithinLimit(
464 EvictionTileQueue* queue,
465 const MemoryUsage& limit,
466 MemoryUsage* usage) {
467 while (usage->Exceeds(limit)) {
468 if (queue->IsEmpty())
469 return false;
470
471 Tile* tile = queue->Top();
472
473 *usage -= MemoryUsage::FromTile(tile);
474 FreeResourcesForTileAndNotifyClientIfTileWasReadyToDraw(tile);
475 queue->Pop();
476 }
477 return true;
478 }
479
480 bool TileManager::FreeTileResourcesWithLowerPriorityUntilUsageIsWithinLimit(
481 EvictionTileQueue* queue,
482 const MemoryUsage& limit,
483 const TilePriority& other_priority,
484 MemoryUsage* usage) {
485 while (usage->Exceeds(limit)) {
486 if (queue->IsEmpty())
487 return false;
488
489 Tile* tile = queue->Top();
490 if (!other_priority.IsHigherPriorityThan(
491 tile->priority_for_tree_priority(global_state_.tree_priority))) {
492 return false;
493 }
494
495 *usage -= MemoryUsage::FromTile(tile);
496 FreeResourcesForTileAndNotifyClientIfTileWasReadyToDraw(tile);
497 queue->Pop();
498 }
499 return true;
500 }
501
502 bool TileManager::TilePriorityViolatesMemoryPolicy(
503 const TilePriority& priority) {
504 switch (global_state_.memory_limit_policy) {
505 case ALLOW_NOTHING:
506 return true;
507 case ALLOW_ABSOLUTE_MINIMUM:
508 return priority.priority_bin > TilePriority::NOW;
509 case ALLOW_PREPAINT_ONLY:
510 return priority.priority_bin > TilePriority::SOON;
511 case ALLOW_ANYTHING:
512 return priority.distance_to_visible ==
513 std::numeric_limits<float>::infinity();
514 }
515 NOTREACHED();
516 return true;
517 }
518
712 void TileManager::AssignGpuMemoryToTiles( 519 void TileManager::AssignGpuMemoryToTiles(
713 PrioritizedTileSet* tiles,
714 TileVector* tiles_that_need_to_be_rasterized) { 520 TileVector* tiles_that_need_to_be_rasterized) {
715 TRACE_EVENT0("cc", "TileManager::AssignGpuMemoryToTiles"); 521 TRACE_EVENT0("cc", "TileManager::AssignGpuMemoryToTiles");
716 522
717 // Maintain the list of released resources that can potentially be re-used 523 // Maintain the list of released resources that can potentially be re-used
718 // or deleted. 524 // or deleted.
719 // If this operation becomes expensive too, only do this after some 525 // If this operation becomes expensive too, only do this after some
720 // resource(s) was returned. Note that in that case, one also need to 526 // resource(s) was returned. Note that in that case, one also need to
721 // invalidate when releasing some resource from the pool. 527 // invalidate when releasing some resource from the pool.
722 resource_pool_->CheckBusyResources(); 528 resource_pool_->CheckBusyResources();
723 529
724 // Now give memory out to the tiles until we're out, and build 530 // Now give memory out to the tiles until we're out, and build
725 // the needs-to-be-rasterized queue. 531 // the needs-to-be-rasterized queue.
726 all_tiles_that_need_to_be_rasterized_have_memory_ = true; 532 all_tiles_that_need_to_be_rasterized_are_scheduled_ = true;
727 all_tiles_required_for_activation_have_memory_ = true;
728 533
729 // Cast to prevent overflow. 534 MemoryUsage hard_memory_limit(global_state_.hard_memory_limit_in_bytes,
730 int64 soft_bytes_available = 535 global_state_.num_resources_limit);
731 static_cast<int64>(bytes_releasable_) + 536 MemoryUsage soft_memory_limit(global_state_.soft_memory_limit_in_bytes,
732 static_cast<int64>(global_state_.soft_memory_limit_in_bytes) - 537 global_state_.num_resources_limit);
733 static_cast<int64>(resource_pool_->acquired_memory_usage_bytes()); 538 MemoryUsage memory_usage(resource_pool_->acquired_memory_usage_bytes(),
734 int64 hard_bytes_available = 539 resource_pool_->acquired_resource_count());
735 static_cast<int64>(bytes_releasable_) +
736 static_cast<int64>(global_state_.hard_memory_limit_in_bytes) -
737 static_cast<int64>(resource_pool_->acquired_memory_usage_bytes());
738 int resources_available = resources_releasable_ +
739 global_state_.num_resources_limit -
740 resource_pool_->acquired_resource_count();
741 size_t soft_bytes_allocatable =
742 std::max(static_cast<int64>(0), soft_bytes_available);
743 size_t hard_bytes_allocatable =
744 std::max(static_cast<int64>(0), hard_bytes_available);
745 size_t resources_allocatable = std::max(0, resources_available);
746 540
747 size_t bytes_that_exceeded_memory_budget = 0; 541 EvictionTileQueue* eviction_queue =
748 size_t soft_bytes_left = soft_bytes_allocatable; 542 client_->GetEvictionQueue(global_state_.tree_priority);
749 size_t hard_bytes_left = hard_bytes_allocatable;
750 543
751 size_t resources_left = resources_allocatable; 544 bool had_enough_memory_to_schedule_tiles_needed_now = true;
752 bool oomed_soft = false;
753 bool oomed_hard = false;
754 bool have_hit_soft_memory = false; // Soft memory comes after hard.
755 545
756 unsigned schedule_priority = 1u; 546 unsigned schedule_priority = 1u;
757 for (PrioritizedTileSet::Iterator it(tiles, true); it; ++it) { 547 RasterTileQueue* raster_queue =
758 Tile* tile = *it; 548 client_->GetRasterQueue(global_state_.tree_priority);
549 while (!raster_queue->IsEmpty()) {
550 Tile* tile = raster_queue->Top();
551 TilePriority priority =
552 tile->priority_for_tree_priority(global_state_.tree_priority);
553
554 if (TilePriorityViolatesMemoryPolicy(priority))
555 break;
556
557 // We won't be able to schedule this tile, so break out early.
558 if (tiles_that_need_to_be_rasterized->size() >=
559 kScheduledRasterTasksLimit) {
560 all_tiles_that_need_to_be_rasterized_are_scheduled_ = false;
561 break;
562 }
563
759 ManagedTileState& mts = tile->managed_state(); 564 ManagedTileState& mts = tile->managed_state();
760
761 mts.scheduled_priority = schedule_priority++; 565 mts.scheduled_priority = schedule_priority++;
762
763 mts.raster_mode = tile->DetermineOverallRasterMode(); 566 mts.raster_mode = tile->DetermineOverallRasterMode();
764
765 ManagedTileState::TileVersion& tile_version = 567 ManagedTileState::TileVersion& tile_version =
766 mts.tile_versions[mts.raster_mode]; 568 mts.tile_versions[mts.raster_mode];
767 569
768 // If this tile doesn't need a resource, then nothing to do. 570 DCHECK(!tile_version.IsReadyToDraw());
769 if (!tile_version.requires_resource())
770 continue;
771 571
772 // If the tile is not needed, free it up. 572 // If the tile already has a raster_task, then the memory used by it is
773 if (mts.bin == NEVER_BIN) { 573 // already accounted for in memory_usage. Otherwise, we'll have to acquire
774 FreeResourcesForTileAndNotifyClientIfTileWasReadyToDraw(tile); 574 // more memory to create a raster task.
775 continue; 575 MemoryUsage memory_required_by_tile_to_be_scheduled;
576 if (!tile_version.raster_task_) {
577 memory_required_by_tile_to_be_scheduled = MemoryUsage::FromConfig(
578 tile->size(), resource_pool_->resource_format());
776 } 579 }
777 580
778 const bool tile_uses_hard_limit = mts.bin <= NOW_BIN; 581 bool tile_is_needed_now = priority.priority_bin == TilePriority::NOW;
779 const size_t bytes_if_allocated = BytesConsumedIfAllocated(tile);
780 const size_t tile_bytes_left =
781 (tile_uses_hard_limit) ? hard_bytes_left : soft_bytes_left;
782 582
783 // Hard-limit is reserved for tiles that would cause a calamity 583 // This is the memory limit that will be used by this tile. Depending on
784 // if they were to go away, so by definition they are the highest 584 // the tile priority, it will be one of hard_memory_limit or
785 // priority memory, and must be at the front of the list. 585 // soft_memory_limit.
786 DCHECK(!(have_hit_soft_memory && tile_uses_hard_limit)); 586 MemoryUsage& tile_memory_limit =
787 have_hit_soft_memory |= !tile_uses_hard_limit; 587 tile_is_needed_now ? hard_memory_limit : soft_memory_limit;
788 588
789 size_t tile_bytes = 0; 589 bool memory_usage_is_within_limit =
790 size_t tile_resources = 0; 590 FreeTileResourcesWithLowerPriorityUntilUsageIsWithinLimit(
591 eviction_queue,
592 tile_memory_limit - memory_required_by_tile_to_be_scheduled,
593 priority,
594 &memory_usage);
791 595
792 // It costs to maintain a resource. 596 // If we couldn't fit the tile into our current memory limit, then we're
793 for (int mode = 0; mode < NUM_RASTER_MODES; ++mode) { 597 // done.
794 if (mts.tile_versions[mode].resource_) { 598 if (!memory_usage_is_within_limit) {
795 tile_bytes += bytes_if_allocated; 599 if (tile_is_needed_now)
796 tile_resources++; 600 had_enough_memory_to_schedule_tiles_needed_now = false;
797 } 601 all_tiles_that_need_to_be_rasterized_are_scheduled_ = false;
602 break;
798 } 603 }
799 604
800 // Allow lower priority tiles with initialized resources to keep 605 memory_usage += memory_required_by_tile_to_be_scheduled;
801 // their memory by only assigning memory to new raster tasks if
802 // they can be scheduled.
803 bool reached_scheduled_raster_tasks_limit =
804 tiles_that_need_to_be_rasterized->size() >= kScheduledRasterTasksLimit;
805 if (!reached_scheduled_raster_tasks_limit) {
806 // If we don't have the required version, and it's not in flight
807 // then we'll have to pay to create a new task.
808 if (!tile_version.resource_ && !tile_version.raster_task_) {
809 tile_bytes += bytes_if_allocated;
810 tile_resources++;
811 }
812 }
813
814 // Tile is OOM.
815 if (tile_bytes > tile_bytes_left || tile_resources > resources_left) {
816 bool was_ready_to_draw = tile->IsReadyToDraw();
817
818 FreeResourcesForTile(tile);
819
820 // This tile was already on screen and now its resources have been
821 // released. In order to prevent checkerboarding, set this tile as
822 // rasterize on demand immediately.
823 if (mts.visible_and_ready_to_draw)
824 tile_version.set_rasterize_on_demand();
825
826 if (was_ready_to_draw)
827 client_->NotifyTileStateChanged(tile);
828
829 oomed_soft = true;
830 if (tile_uses_hard_limit) {
831 oomed_hard = true;
832 bytes_that_exceeded_memory_budget += tile_bytes;
833 }
834 } else {
835 resources_left -= tile_resources;
836 hard_bytes_left -= tile_bytes;
837 soft_bytes_left =
838 (soft_bytes_left > tile_bytes) ? soft_bytes_left - tile_bytes : 0;
839 if (tile_version.resource_)
840 continue;
841 }
842
843 DCHECK(!tile_version.resource_);
844
845 // Tile shouldn't be rasterized if |tiles_that_need_to_be_rasterized|
846 // has reached it's limit or we've failed to assign gpu memory to this
847 // or any higher priority tile. Preventing tiles that fit into memory
848 // budget to be rasterized when higher priority tile is oom is
849 // important for two reasons:
850 // 1. Tile size should not impact raster priority.
851 // 2. Tiles with existing raster task could otherwise incorrectly
852 // be added as they are not affected by |bytes_allocatable|.
853 bool can_schedule_tile =
854 !oomed_soft && !reached_scheduled_raster_tasks_limit;
855
856 if (!can_schedule_tile) {
857 all_tiles_that_need_to_be_rasterized_have_memory_ = false;
858 if (tile->required_for_activation())
859 all_tiles_required_for_activation_have_memory_ = false;
860 it.DisablePriorityOrdering();
861 continue;
862 }
863
864 tiles_that_need_to_be_rasterized->push_back(tile); 606 tiles_that_need_to_be_rasterized->push_back(tile);
607 raster_queue->Pop();
865 } 608 }
866 609
867 // OOM reporting uses hard-limit, soft-OOM is normal depending on limit. 610 // Note that we should try and further reduce memory in case the above loop
868 ever_exceeded_memory_budget_ |= oomed_hard; 611 // didn't reduce memory. This ensures that we always release as many resources
869 if (ever_exceeded_memory_budget_) { 612 // as possible to stay within the memory limit.
870 TRACE_COUNTER_ID2("cc", 613 FreeTileResourcesUntilUsageIsWithinLimit(
871 "over_memory_budget", 614 eviction_queue, hard_memory_limit, &memory_usage);
872 this, 615
873 "budget", 616 // Update memory_stats_from_last_assign_, which is used to display HUD
874 global_state_.hard_memory_limit_in_bytes, 617 // information.
875 "over",
876 bytes_that_exceeded_memory_budget);
877 }
878 memory_stats_from_last_assign_.total_budget_in_bytes = 618 memory_stats_from_last_assign_.total_budget_in_bytes =
879 global_state_.hard_memory_limit_in_bytes; 619 global_state_.hard_memory_limit_in_bytes;
880 memory_stats_from_last_assign_.bytes_allocated = 620 memory_stats_from_last_assign_.total_bytes_used = memory_usage.memory_bytes();
881 hard_bytes_allocatable - hard_bytes_left; 621 memory_stats_from_last_assign_.had_enough_memory =
882 memory_stats_from_last_assign_.bytes_unreleasable = 622 had_enough_memory_to_schedule_tiles_needed_now;
883 resource_pool_->acquired_memory_usage_bytes() - bytes_releasable_;
884 memory_stats_from_last_assign_.bytes_over = bytes_that_exceeded_memory_budget;
885 } 623 }
886 624
887 void TileManager::FreeResourceForTile(Tile* tile, RasterMode mode) { 625 void TileManager::FreeResourceForTile(Tile* tile, RasterMode mode) {
888 ManagedTileState& mts = tile->managed_state(); 626 ManagedTileState& mts = tile->managed_state();
889 if (mts.tile_versions[mode].resource_) { 627 if (mts.tile_versions[mode].resource_)
890 resource_pool_->ReleaseResource(mts.tile_versions[mode].resource_.Pass()); 628 resource_pool_->ReleaseResource(mts.tile_versions[mode].resource_.Pass());
891
892 DCHECK_GE(bytes_releasable_, BytesConsumedIfAllocated(tile));
893 DCHECK_GE(resources_releasable_, 1u);
894
895 bytes_releasable_ -= BytesConsumedIfAllocated(tile);
896 --resources_releasable_;
897 }
898 } 629 }
899 630
900 void TileManager::FreeResourcesForTile(Tile* tile) { 631 void TileManager::FreeResourcesForTile(Tile* tile) {
901 for (int mode = 0; mode < NUM_RASTER_MODES; ++mode) { 632 for (int mode = 0; mode < NUM_RASTER_MODES; ++mode) {
902 FreeResourceForTile(tile, static_cast<RasterMode>(mode)); 633 FreeResourceForTile(tile, static_cast<RasterMode>(mode));
903 } 634 }
904 } 635 }
905 636
906 void TileManager::FreeUnusedResourcesForTile(Tile* tile) { 637 void TileManager::FreeUnusedResourcesForTile(Tile* tile) {
907 DCHECK(tile->IsReadyToDraw()); 638 DCHECK(tile->IsReadyToDraw());
(...skipping 181 matching lines...) Expand 10 before | Expand all | Expand 10 after
1089 } 820 }
1090 821
1091 ++update_visible_tiles_stats_.completed_count; 822 ++update_visible_tiles_stats_.completed_count;
1092 823
1093 if (analysis.is_solid_color) { 824 if (analysis.is_solid_color) {
1094 tile_version.set_solid_color(analysis.solid_color); 825 tile_version.set_solid_color(analysis.solid_color);
1095 resource_pool_->ReleaseResource(resource.Pass()); 826 resource_pool_->ReleaseResource(resource.Pass());
1096 } else { 827 } else {
1097 tile_version.set_use_resource(); 828 tile_version.set_use_resource();
1098 tile_version.resource_ = resource.Pass(); 829 tile_version.resource_ = resource.Pass();
1099
1100 bytes_releasable_ += BytesConsumedIfAllocated(tile);
1101 ++resources_releasable_;
1102 } 830 }
1103 831
1104 FreeUnusedResourcesForTile(tile); 832 FreeUnusedResourcesForTile(tile);
1105 if (tile->priority(ACTIVE_TREE).distance_to_visible == 0.f) 833 if (tile->priority(ACTIVE_TREE).distance_to_visible == 0.f)
1106 did_initialize_visible_tile_ = true; 834 did_initialize_visible_tile_ = true;
1107 835
1108 client_->NotifyTileStateChanged(tile); 836 client_->NotifyTileStateChanged(tile);
1109 } 837 }
1110 838
1111 scoped_refptr<Tile> TileManager::CreateTile(PicturePileImpl* picture_pile, 839 scoped_refptr<Tile> TileManager::CreateTile(PicturePileImpl* picture_pile,
(...skipping 10 matching lines...) Expand all
1122 content_rect, 850 content_rect,
1123 opaque_rect, 851 opaque_rect,
1124 contents_scale, 852 contents_scale,
1125 layer_id, 853 layer_id,
1126 source_frame_number, 854 source_frame_number,
1127 flags)); 855 flags));
1128 DCHECK(tiles_.find(tile->id()) == tiles_.end()); 856 DCHECK(tiles_.find(tile->id()) == tiles_.end());
1129 857
1130 tiles_[tile->id()] = tile; 858 tiles_[tile->id()] = tile;
1131 used_layer_counts_[tile->layer_id()]++; 859 used_layer_counts_[tile->layer_id()]++;
1132 prioritized_tiles_dirty_ = true;
1133 return tile; 860 return tile;
1134 } 861 }
1135 862
1136 void TileManager::GetPairedPictureLayers(
1137 std::vector<PairedPictureLayer>* paired_layers) const {
1138 const std::vector<PictureLayerImpl*>& layers = client_->GetPictureLayers();
1139
1140 paired_layers->clear();
1141 // Reserve a maximum possible paired layers.
1142 paired_layers->reserve(layers.size());
1143
1144 for (std::vector<PictureLayerImpl*>::const_iterator it = layers.begin();
1145 it != layers.end();
1146 ++it) {
1147 PictureLayerImpl* layer = *it;
1148
1149 // TODO(vmpstr): Iterators and should handle this instead. crbug.com/381704
1150 if (!layer->HasValidTilePriorities())
1151 continue;
1152
1153 PictureLayerImpl* twin_layer = layer->GetTwinLayer();
1154
1155 // Ignore the twin layer when tile priorities are invalid.
1156 // TODO(vmpstr): Iterators should handle this instead. crbug.com/381704
1157 if (twin_layer && !twin_layer->HasValidTilePriorities())
1158 twin_layer = NULL;
1159
1160 PairedPictureLayer paired_layer;
1161 WhichTree tree = layer->GetTree();
1162
1163 // If the current tree is ACTIVE_TREE, then always generate a paired_layer.
1164 // If current tree is PENDING_TREE, then only generate a paired_layer if
1165 // there is no twin layer.
1166 if (tree == ACTIVE_TREE) {
1167 DCHECK(!twin_layer || twin_layer->GetTree() == PENDING_TREE);
1168 paired_layer.active_layer = layer;
1169 paired_layer.pending_layer = twin_layer;
1170 paired_layers->push_back(paired_layer);
1171 } else if (!twin_layer) {
1172 paired_layer.active_layer = NULL;
1173 paired_layer.pending_layer = layer;
1174 paired_layers->push_back(paired_layer);
1175 }
1176 }
1177 }
1178
1179 TileManager::PairedPictureLayer::PairedPictureLayer()
1180 : active_layer(NULL), pending_layer(NULL) {}
1181
1182 TileManager::PairedPictureLayer::~PairedPictureLayer() {}
1183
1184 TileManager::RasterTileIterator::RasterTileIterator(TileManager* tile_manager,
1185 TreePriority tree_priority)
1186 : tree_priority_(tree_priority), comparator_(tree_priority) {
1187 std::vector<TileManager::PairedPictureLayer> paired_layers;
1188 tile_manager->GetPairedPictureLayers(&paired_layers);
1189 bool prioritize_low_res = tree_priority_ == SMOOTHNESS_TAKES_PRIORITY;
1190
1191 paired_iterators_.reserve(paired_layers.size());
1192 iterator_heap_.reserve(paired_layers.size());
1193 for (std::vector<TileManager::PairedPictureLayer>::iterator it =
1194 paired_layers.begin();
1195 it != paired_layers.end();
1196 ++it) {
1197 PairedPictureLayerIterator paired_iterator;
1198 if (it->active_layer) {
1199 paired_iterator.active_iterator =
1200 PictureLayerImpl::LayerRasterTileIterator(it->active_layer,
1201 prioritize_low_res);
1202 }
1203
1204 if (it->pending_layer) {
1205 paired_iterator.pending_iterator =
1206 PictureLayerImpl::LayerRasterTileIterator(it->pending_layer,
1207 prioritize_low_res);
1208 }
1209
1210 if (paired_iterator.PeekTile(tree_priority_) != NULL) {
1211 paired_iterators_.push_back(paired_iterator);
1212 iterator_heap_.push_back(&paired_iterators_.back());
1213 }
1214 }
1215
1216 std::make_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_);
1217 }
1218
1219 TileManager::RasterTileIterator::~RasterTileIterator() {}
1220
1221 TileManager::RasterTileIterator& TileManager::RasterTileIterator::operator++() {
1222 DCHECK(*this);
1223
1224 std::pop_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_);
1225 PairedPictureLayerIterator* paired_iterator = iterator_heap_.back();
1226 iterator_heap_.pop_back();
1227
1228 paired_iterator->PopTile(tree_priority_);
1229 if (paired_iterator->PeekTile(tree_priority_) != NULL) {
1230 iterator_heap_.push_back(paired_iterator);
1231 std::push_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_);
1232 }
1233 return *this;
1234 }
1235
1236 TileManager::RasterTileIterator::operator bool() const {
1237 return !iterator_heap_.empty();
1238 }
1239
1240 Tile* TileManager::RasterTileIterator::operator*() {
1241 DCHECK(*this);
1242 return iterator_heap_.front()->PeekTile(tree_priority_);
1243 }
1244
1245 TileManager::RasterTileIterator::PairedPictureLayerIterator::
1246 PairedPictureLayerIterator() {}
1247
1248 TileManager::RasterTileIterator::PairedPictureLayerIterator::
1249 ~PairedPictureLayerIterator() {}
1250
1251 Tile* TileManager::RasterTileIterator::PairedPictureLayerIterator::PeekTile(
1252 TreePriority tree_priority) {
1253 PictureLayerImpl::LayerRasterTileIterator* next_iterator =
1254 NextTileIterator(tree_priority).first;
1255 if (!next_iterator)
1256 return NULL;
1257
1258 DCHECK(*next_iterator);
1259 DCHECK(std::find(returned_shared_tiles.begin(),
1260 returned_shared_tiles.end(),
1261 **next_iterator) == returned_shared_tiles.end());
1262 return **next_iterator;
1263 }
1264
1265 void TileManager::RasterTileIterator::PairedPictureLayerIterator::PopTile(
1266 TreePriority tree_priority) {
1267 PictureLayerImpl::LayerRasterTileIterator* next_iterator =
1268 NextTileIterator(tree_priority).first;
1269 DCHECK(next_iterator);
1270 DCHECK(*next_iterator);
1271 returned_shared_tiles.push_back(**next_iterator);
1272 ++(*next_iterator);
1273
1274 next_iterator = NextTileIterator(tree_priority).first;
1275 while (next_iterator &&
1276 std::find(returned_shared_tiles.begin(),
1277 returned_shared_tiles.end(),
1278 **next_iterator) != returned_shared_tiles.end()) {
1279 ++(*next_iterator);
1280 next_iterator = NextTileIterator(tree_priority).first;
1281 }
1282 }
1283
1284 std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree>
1285 TileManager::RasterTileIterator::PairedPictureLayerIterator::NextTileIterator(
1286 TreePriority tree_priority) {
1287 // If both iterators are out of tiles, return NULL.
1288 if (!active_iterator && !pending_iterator) {
1289 return std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree>(
1290 NULL, ACTIVE_TREE);
1291 }
1292
1293 // If we only have one iterator with tiles, return it.
1294 if (!active_iterator)
1295 return std::make_pair(&pending_iterator, PENDING_TREE);
1296 if (!pending_iterator)
1297 return std::make_pair(&active_iterator, ACTIVE_TREE);
1298
1299 // Now both iterators have tiles, so we have to decide based on tree priority.
1300 switch (tree_priority) {
1301 case SMOOTHNESS_TAKES_PRIORITY:
1302 return std::make_pair(&active_iterator, ACTIVE_TREE);
1303 case NEW_CONTENT_TAKES_PRIORITY:
1304 return std::make_pair(&pending_iterator, ACTIVE_TREE);
1305 case SAME_PRIORITY_FOR_BOTH_TREES: {
1306 Tile* active_tile = *active_iterator;
1307 Tile* pending_tile = *pending_iterator;
1308 if (active_tile == pending_tile)
1309 return std::make_pair(&active_iterator, ACTIVE_TREE);
1310
1311 const TilePriority& active_priority = active_tile->priority(ACTIVE_TREE);
1312 const TilePriority& pending_priority =
1313 pending_tile->priority(PENDING_TREE);
1314
1315 if (active_priority.IsHigherPriorityThan(pending_priority))
1316 return std::make_pair(&active_iterator, ACTIVE_TREE);
1317 return std::make_pair(&pending_iterator, PENDING_TREE);
1318 }
1319 }
1320
1321 NOTREACHED();
1322 // Keep the compiler happy.
1323 return std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree>(
1324 NULL, ACTIVE_TREE);
1325 }
1326
1327 TileManager::RasterTileIterator::RasterOrderComparator::RasterOrderComparator(
1328 TreePriority tree_priority)
1329 : tree_priority_(tree_priority) {}
1330
1331 bool TileManager::RasterTileIterator::RasterOrderComparator::operator()(
1332 PairedPictureLayerIterator* a,
1333 PairedPictureLayerIterator* b) const {
1334 std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree> a_pair =
1335 a->NextTileIterator(tree_priority_);
1336 DCHECK(a_pair.first);
1337 DCHECK(*a_pair.first);
1338
1339 std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree> b_pair =
1340 b->NextTileIterator(tree_priority_);
1341 DCHECK(b_pair.first);
1342 DCHECK(*b_pair.first);
1343
1344 Tile* a_tile = **a_pair.first;
1345 Tile* b_tile = **b_pair.first;
1346
1347 const TilePriority& a_priority =
1348 a_tile->priority_for_tree_priority(tree_priority_);
1349 const TilePriority& b_priority =
1350 b_tile->priority_for_tree_priority(tree_priority_);
1351 bool prioritize_low_res = tree_priority_ == SMOOTHNESS_TAKES_PRIORITY;
1352
1353 // Now we have to return true iff b is higher priority than a.
1354
1355 // If the bin is the same but the resolution is not, then the order will be
1356 // determined by whether we prioritize low res or not.
1357 // TODO(vmpstr): Remove this when TilePriority is no longer a member of Tile
1358 // class but instead produced by the iterators.
1359 if (b_priority.priority_bin == a_priority.priority_bin &&
1360 b_priority.resolution != a_priority.resolution) {
1361 // Non ideal resolution should be sorted lower than other resolutions.
1362 if (a_priority.resolution == NON_IDEAL_RESOLUTION)
1363 return true;
1364
1365 if (b_priority.resolution == NON_IDEAL_RESOLUTION)
1366 return false;
1367
1368 if (prioritize_low_res)
1369 return b_priority.resolution == LOW_RESOLUTION;
1370
1371 return b_priority.resolution == HIGH_RESOLUTION;
1372 }
1373
1374 return b_priority.IsHigherPriorityThan(a_priority);
1375 }
1376
1377 TileManager::EvictionTileIterator::EvictionTileIterator()
1378 : comparator_(SAME_PRIORITY_FOR_BOTH_TREES) {}
1379
1380 TileManager::EvictionTileIterator::EvictionTileIterator(
1381 TileManager* tile_manager,
1382 TreePriority tree_priority)
1383 : tree_priority_(tree_priority), comparator_(tree_priority) {
1384 std::vector<TileManager::PairedPictureLayer> paired_layers;
1385
1386 tile_manager->GetPairedPictureLayers(&paired_layers);
1387
1388 paired_iterators_.reserve(paired_layers.size());
1389 iterator_heap_.reserve(paired_layers.size());
1390 for (std::vector<TileManager::PairedPictureLayer>::iterator it =
1391 paired_layers.begin();
1392 it != paired_layers.end();
1393 ++it) {
1394 PairedPictureLayerIterator paired_iterator;
1395 if (it->active_layer) {
1396 paired_iterator.active_iterator =
1397 PictureLayerImpl::LayerEvictionTileIterator(it->active_layer,
1398 tree_priority_);
1399 }
1400
1401 if (it->pending_layer) {
1402 paired_iterator.pending_iterator =
1403 PictureLayerImpl::LayerEvictionTileIterator(it->pending_layer,
1404 tree_priority_);
1405 }
1406
1407 if (paired_iterator.PeekTile(tree_priority_) != NULL) {
1408 paired_iterators_.push_back(paired_iterator);
1409 iterator_heap_.push_back(&paired_iterators_.back());
1410 }
1411 }
1412
1413 std::make_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_);
1414 }
1415
1416 TileManager::EvictionTileIterator::~EvictionTileIterator() {}
1417
1418 TileManager::EvictionTileIterator& TileManager::EvictionTileIterator::
1419 operator++() {
1420 std::pop_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_);
1421 PairedPictureLayerIterator* paired_iterator = iterator_heap_.back();
1422 iterator_heap_.pop_back();
1423
1424 paired_iterator->PopTile(tree_priority_);
1425 if (paired_iterator->PeekTile(tree_priority_) != NULL) {
1426 iterator_heap_.push_back(paired_iterator);
1427 std::push_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_);
1428 }
1429 return *this;
1430 }
1431
1432 TileManager::EvictionTileIterator::operator bool() const {
1433 return !iterator_heap_.empty();
1434 }
1435
1436 Tile* TileManager::EvictionTileIterator::operator*() {
1437 DCHECK(*this);
1438 return iterator_heap_.front()->PeekTile(tree_priority_);
1439 }
1440
1441 TileManager::EvictionTileIterator::PairedPictureLayerIterator::
1442 PairedPictureLayerIterator() {}
1443
1444 TileManager::EvictionTileIterator::PairedPictureLayerIterator::
1445 ~PairedPictureLayerIterator() {}
1446
1447 Tile* TileManager::EvictionTileIterator::PairedPictureLayerIterator::PeekTile(
1448 TreePriority tree_priority) {
1449 PictureLayerImpl::LayerEvictionTileIterator* next_iterator =
1450 NextTileIterator(tree_priority);
1451 if (!next_iterator)
1452 return NULL;
1453
1454 DCHECK(*next_iterator);
1455 DCHECK(std::find(returned_shared_tiles.begin(),
1456 returned_shared_tiles.end(),
1457 **next_iterator) == returned_shared_tiles.end());
1458 return **next_iterator;
1459 }
1460
1461 void TileManager::EvictionTileIterator::PairedPictureLayerIterator::PopTile(
1462 TreePriority tree_priority) {
1463 PictureLayerImpl::LayerEvictionTileIterator* next_iterator =
1464 NextTileIterator(tree_priority);
1465 DCHECK(next_iterator);
1466 DCHECK(*next_iterator);
1467 returned_shared_tiles.push_back(**next_iterator);
1468 ++(*next_iterator);
1469
1470 next_iterator = NextTileIterator(tree_priority);
1471 while (next_iterator &&
1472 std::find(returned_shared_tiles.begin(),
1473 returned_shared_tiles.end(),
1474 **next_iterator) != returned_shared_tiles.end()) {
1475 ++(*next_iterator);
1476 next_iterator = NextTileIterator(tree_priority);
1477 }
1478 }
1479
1480 PictureLayerImpl::LayerEvictionTileIterator*
1481 TileManager::EvictionTileIterator::PairedPictureLayerIterator::NextTileIterator(
1482 TreePriority tree_priority) {
1483 // If both iterators are out of tiles, return NULL.
1484 if (!active_iterator && !pending_iterator)
1485 return NULL;
1486
1487 // If we only have one iterator with tiles, return it.
1488 if (!active_iterator)
1489 return &pending_iterator;
1490 if (!pending_iterator)
1491 return &active_iterator;
1492
1493 Tile* active_tile = *active_iterator;
1494 Tile* pending_tile = *pending_iterator;
1495 if (active_tile == pending_tile)
1496 return &active_iterator;
1497
1498 const TilePriority& active_priority =
1499 active_tile->priority_for_tree_priority(tree_priority);
1500 const TilePriority& pending_priority =
1501 pending_tile->priority_for_tree_priority(tree_priority);
1502
1503 if (pending_priority.IsHigherPriorityThan(active_priority))
1504 return &active_iterator;
1505 return &pending_iterator;
1506 }
1507
1508 TileManager::EvictionTileIterator::EvictionOrderComparator::
1509 EvictionOrderComparator(TreePriority tree_priority)
1510 : tree_priority_(tree_priority) {}
1511
1512 bool TileManager::EvictionTileIterator::EvictionOrderComparator::operator()(
1513 PairedPictureLayerIterator* a,
1514 PairedPictureLayerIterator* b) const {
1515 PictureLayerImpl::LayerEvictionTileIterator* a_iterator =
1516 a->NextTileIterator(tree_priority_);
1517 DCHECK(a_iterator);
1518 DCHECK(*a_iterator);
1519
1520 PictureLayerImpl::LayerEvictionTileIterator* b_iterator =
1521 b->NextTileIterator(tree_priority_);
1522 DCHECK(b_iterator);
1523 DCHECK(*b_iterator);
1524
1525 Tile* a_tile = **a_iterator;
1526 Tile* b_tile = **b_iterator;
1527
1528 const TilePriority& a_priority =
1529 a_tile->priority_for_tree_priority(tree_priority_);
1530 const TilePriority& b_priority =
1531 b_tile->priority_for_tree_priority(tree_priority_);
1532 bool prioritize_low_res = tree_priority_ == SMOOTHNESS_TAKES_PRIORITY;
1533
1534 // Now we have to return true iff b is lower priority than a.
1535
1536 // If the bin is the same but the resolution is not, then the order will be
1537 // determined by whether we prioritize low res or not.
1538 // TODO(vmpstr): Remove this when TilePriority is no longer a member of Tile
1539 // class but instead produced by the iterators.
1540 if (b_priority.priority_bin == a_priority.priority_bin &&
1541 b_priority.resolution != a_priority.resolution) {
1542 // Non ideal resolution should be sorted higher than other resolutions.
1543 if (a_priority.resolution == NON_IDEAL_RESOLUTION)
1544 return false;
1545
1546 if (b_priority.resolution == NON_IDEAL_RESOLUTION)
1547 return true;
1548
1549 if (prioritize_low_res)
1550 return a_priority.resolution == LOW_RESOLUTION;
1551
1552 return a_priority.resolution == HIGH_RESOLUTION;
1553 }
1554 return a_priority.IsHigherPriorityThan(b_priority);
1555 }
1556
1557 void TileManager::SetRasterizerForTesting(Rasterizer* rasterizer) { 863 void TileManager::SetRasterizerForTesting(Rasterizer* rasterizer) {
1558 rasterizer_ = rasterizer; 864 rasterizer_ = rasterizer;
1559 rasterizer_->SetClient(this); 865 rasterizer_->SetClient(this);
1560 } 866 }
1561 867
1562 bool TileManager::IsReadyToActivate() const { 868 bool TileManager::IsReadyToActivate() const {
1563 const std::vector<PictureLayerImpl*>& layers = client_->GetPictureLayers(); 869 const std::vector<PictureLayerImpl*>& layers = client_->GetPictureLayers();
1564 870
1565 for (std::vector<PictureLayerImpl*>::const_iterator it = layers.begin(); 871 for (std::vector<PictureLayerImpl*>::const_iterator it = layers.begin();
1566 it != layers.end(); 872 it != layers.end();
1567 ++it) { 873 ++it) {
1568 if (!(*it)->AllTilesRequiredForActivationAreReadyToDraw()) 874 if (!(*it)->AllTilesRequiredForActivationAreReadyToDraw())
1569 return false; 875 return false;
1570 } 876 }
1571 877
1572 return true; 878 return true;
1573 } 879 }
1574 880
1575 void TileManager::CheckIfReadyToActivate() { 881 void TileManager::CheckIfReadyToActivate() {
1576 TRACE_EVENT0("cc", "TileManager::CheckIfReadyToActivate"); 882 TRACE_EVENT0("cc", "TileManager::CheckIfReadyToActivate");
1577 883
1578 rasterizer_->CheckForCompletedTasks(); 884 rasterizer_->CheckForCompletedTasks();
1579 did_check_for_completed_tasks_since_last_schedule_tasks_ = true; 885 did_check_for_completed_tasks_since_last_schedule_tasks_ = true;
1580 886
1581 if (IsReadyToActivate()) 887 if (IsReadyToActivate())
1582 client_->NotifyReadyToActivate(); 888 client_->NotifyReadyToActivate();
1583 } 889 }
1584 890
891 TileManager::MemoryUsage::MemoryUsage() : memory_bytes_(0), resource_count_(0) {
892 }
893
894 TileManager::MemoryUsage::MemoryUsage(int64 memory_bytes, int resource_count)
895 : memory_bytes_(memory_bytes), resource_count_(resource_count) {
896 }
897
898 // static
899 TileManager::MemoryUsage TileManager::MemoryUsage::FromConfig(
900 const gfx::Size& size,
901 ResourceFormat format) {
902 return MemoryUsage(Resource::MemorySizeBytes(size, format), 1);
903 }
904
905 // static
906 TileManager::MemoryUsage TileManager::MemoryUsage::FromTile(const Tile* tile) {
907 const ManagedTileState& mts = tile->managed_state();
908 MemoryUsage total_usage;
909 for (int mode = 0; mode < NUM_RASTER_MODES; ++mode) {
910 if (mts.tile_versions[mode].resource_) {
911 total_usage += MemoryUsage::FromConfig(
912 tile->size(), mts.tile_versions[mode].resource_->format());
913 }
914 }
915 return total_usage;
916 }
917
918 TileManager::MemoryUsage& TileManager::MemoryUsage::operator+=(
919 const MemoryUsage& other) {
920 memory_bytes_ += other.memory_bytes_;
921 resource_count_ += other.resource_count_;
922 return *this;
923 }
924
925 TileManager::MemoryUsage& TileManager::MemoryUsage::operator-=(
926 const MemoryUsage& other) {
927 memory_bytes_ -= other.memory_bytes_;
928 resource_count_ -= other.resource_count_;
929 return *this;
930 }
931
932 TileManager::MemoryUsage TileManager::MemoryUsage::operator-(
933 const MemoryUsage& other) {
934 MemoryUsage result = *this;
935 result -= other;
936 return result;
937 }
938
939 bool TileManager::MemoryUsage::Exceeds(const MemoryUsage& limit) const {
940 return memory_bytes_ > limit.memory_bytes_ ||
941 resource_count_ > limit.resource_count_;
942 }
943
1585 } // namespace cc 944 } // namespace cc
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698