OLD | NEW |
1 // Copyright 2012 The Chromium Authors. All rights reserved. | 1 // Copyright 2012 The Chromium Authors. All rights reserved. |
2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
4 | 4 |
5 #include "cc/resources/tile_manager.h" | 5 #include "cc/resources/tile_manager.h" |
6 | 6 |
7 #include <algorithm> | 7 #include <algorithm> |
8 #include <limits> | 8 #include <limits> |
9 #include <string> | 9 #include <string> |
10 | 10 |
(...skipping 209 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
220 skia::RefPtr<SkPixelRef> pixel_ref_; | 220 skia::RefPtr<SkPixelRef> pixel_ref_; |
221 int layer_id_; | 221 int layer_id_; |
222 RenderingStatsInstrumentation* rendering_stats_; | 222 RenderingStatsInstrumentation* rendering_stats_; |
223 const base::Callback<void(bool was_canceled)> reply_; | 223 const base::Callback<void(bool was_canceled)> reply_; |
224 | 224 |
225 DISALLOW_COPY_AND_ASSIGN(ImageDecodeTaskImpl); | 225 DISALLOW_COPY_AND_ASSIGN(ImageDecodeTaskImpl); |
226 }; | 226 }; |
227 | 227 |
228 const size_t kScheduledRasterTasksLimit = 32u; | 228 const size_t kScheduledRasterTasksLimit = 32u; |
229 | 229 |
230 // Memory limit policy works by mapping some bin states to the NEVER bin. | |
231 const ManagedTileBin kBinPolicyMap[NUM_TILE_MEMORY_LIMIT_POLICIES][NUM_BINS] = { | |
232 // [ALLOW_NOTHING] | |
233 {NEVER_BIN, // [NOW_AND_READY_TO_DRAW_BIN] | |
234 NEVER_BIN, // [NOW_BIN] | |
235 NEVER_BIN, // [SOON_BIN] | |
236 NEVER_BIN, // [EVENTUALLY_AND_ACTIVE_BIN] | |
237 NEVER_BIN, // [EVENTUALLY_BIN] | |
238 NEVER_BIN, // [AT_LAST_AND_ACTIVE_BIN] | |
239 NEVER_BIN, // [AT_LAST_BIN] | |
240 NEVER_BIN // [NEVER_BIN] | |
241 }, | |
242 // [ALLOW_ABSOLUTE_MINIMUM] | |
243 {NOW_AND_READY_TO_DRAW_BIN, // [NOW_AND_READY_TO_DRAW_BIN] | |
244 NOW_BIN, // [NOW_BIN] | |
245 NEVER_BIN, // [SOON_BIN] | |
246 NEVER_BIN, // [EVENTUALLY_AND_ACTIVE_BIN] | |
247 NEVER_BIN, // [EVENTUALLY_BIN] | |
248 NEVER_BIN, // [AT_LAST_AND_ACTIVE_BIN] | |
249 NEVER_BIN, // [AT_LAST_BIN] | |
250 NEVER_BIN // [NEVER_BIN] | |
251 }, | |
252 // [ALLOW_PREPAINT_ONLY] | |
253 {NOW_AND_READY_TO_DRAW_BIN, // [NOW_AND_READY_TO_DRAW_BIN] | |
254 NOW_BIN, // [NOW_BIN] | |
255 SOON_BIN, // [SOON_BIN] | |
256 NEVER_BIN, // [EVENTUALLY_AND_ACTIVE_BIN] | |
257 NEVER_BIN, // [EVENTUALLY_BIN] | |
258 NEVER_BIN, // [AT_LAST_AND_ACTIVE_BIN] | |
259 NEVER_BIN, // [AT_LAST_BIN] | |
260 NEVER_BIN // [NEVER_BIN] | |
261 }, | |
262 // [ALLOW_ANYTHING] | |
263 {NOW_AND_READY_TO_DRAW_BIN, // [NOW_AND_READY_TO_DRAW_BIN] | |
264 NOW_BIN, // [NOW_BIN] | |
265 SOON_BIN, // [SOON_BIN] | |
266 EVENTUALLY_AND_ACTIVE_BIN, // [EVENTUALLY_AND_ACTIVE_BIN] | |
267 EVENTUALLY_BIN, // [EVENTUALLY_BIN] | |
268 AT_LAST_AND_ACTIVE_BIN, // [AT_LAST_AND_ACTIVE_BIN] | |
269 AT_LAST_BIN, // [AT_LAST_BIN] | |
270 NEVER_BIN // [NEVER_BIN] | |
271 }}; | |
272 | |
273 // Ready to draw works by mapping NOW_BIN to NOW_AND_READY_TO_DRAW_BIN. | |
274 const ManagedTileBin kBinReadyToDrawMap[2][NUM_BINS] = { | |
275 // Not ready | |
276 {NOW_AND_READY_TO_DRAW_BIN, // [NOW_AND_READY_TO_DRAW_BIN] | |
277 NOW_BIN, // [NOW_BIN] | |
278 SOON_BIN, // [SOON_BIN] | |
279 EVENTUALLY_AND_ACTIVE_BIN, // [EVENTUALLY_AND_ACTIVE_BIN] | |
280 EVENTUALLY_BIN, // [EVENTUALLY_BIN] | |
281 AT_LAST_AND_ACTIVE_BIN, // [AT_LAST_AND_ACTIVE_BIN] | |
282 AT_LAST_BIN, // [AT_LAST_BIN] | |
283 NEVER_BIN // [NEVER_BIN] | |
284 }, | |
285 // Ready | |
286 {NOW_AND_READY_TO_DRAW_BIN, // [NOW_AND_READY_TO_DRAW_BIN] | |
287 NOW_AND_READY_TO_DRAW_BIN, // [NOW_BIN] | |
288 SOON_BIN, // [SOON_BIN] | |
289 EVENTUALLY_AND_ACTIVE_BIN, // [EVENTUALLY_AND_ACTIVE_BIN] | |
290 EVENTUALLY_BIN, // [EVENTUALLY_BIN] | |
291 AT_LAST_AND_ACTIVE_BIN, // [AT_LAST_AND_ACTIVE_BIN] | |
292 AT_LAST_BIN, // [AT_LAST_BIN] | |
293 NEVER_BIN // [NEVER_BIN] | |
294 }}; | |
295 | |
296 // Active works by mapping some bin stats to equivalent _ACTIVE_BIN state. | |
297 const ManagedTileBin kBinIsActiveMap[2][NUM_BINS] = { | |
298 // Inactive | |
299 {NOW_AND_READY_TO_DRAW_BIN, // [NOW_AND_READY_TO_DRAW_BIN] | |
300 NOW_BIN, // [NOW_BIN] | |
301 SOON_BIN, // [SOON_BIN] | |
302 EVENTUALLY_AND_ACTIVE_BIN, // [EVENTUALLY_AND_ACTIVE_BIN] | |
303 EVENTUALLY_BIN, // [EVENTUALLY_BIN] | |
304 AT_LAST_AND_ACTIVE_BIN, // [AT_LAST_AND_ACTIVE_BIN] | |
305 AT_LAST_BIN, // [AT_LAST_BIN] | |
306 NEVER_BIN // [NEVER_BIN] | |
307 }, | |
308 // Active | |
309 {NOW_AND_READY_TO_DRAW_BIN, // [NOW_AND_READY_TO_DRAW_BIN] | |
310 NOW_BIN, // [NOW_BIN] | |
311 SOON_BIN, // [SOON_BIN] | |
312 EVENTUALLY_AND_ACTIVE_BIN, // [EVENTUALLY_AND_ACTIVE_BIN] | |
313 EVENTUALLY_AND_ACTIVE_BIN, // [EVENTUALLY_BIN] | |
314 AT_LAST_AND_ACTIVE_BIN, // [AT_LAST_AND_ACTIVE_BIN] | |
315 AT_LAST_AND_ACTIVE_BIN, // [AT_LAST_BIN] | |
316 NEVER_BIN // [NEVER_BIN] | |
317 }}; | |
318 | |
319 // Determine bin based on three categories of tiles: things we need now, | |
320 // things we need soon, and eventually. | |
321 inline ManagedTileBin BinFromTilePriority(const TilePriority& prio) { | |
322 if (prio.priority_bin == TilePriority::NOW) | |
323 return NOW_BIN; | |
324 | |
325 if (prio.priority_bin == TilePriority::SOON) | |
326 return SOON_BIN; | |
327 | |
328 if (prio.distance_to_visible == std::numeric_limits<float>::infinity()) | |
329 return NEVER_BIN; | |
330 | |
331 return EVENTUALLY_BIN; | |
332 } | |
333 | |
334 } // namespace | 230 } // namespace |
335 | 231 |
336 RasterTaskCompletionStats::RasterTaskCompletionStats() | 232 RasterTaskCompletionStats::RasterTaskCompletionStats() |
337 : completed_count(0u), canceled_count(0u) {} | 233 : completed_count(0u), canceled_count(0u) {} |
338 | 234 |
339 scoped_ptr<base::Value> RasterTaskCompletionStatsAsValue( | 235 scoped_ptr<base::Value> RasterTaskCompletionStatsAsValue( |
340 const RasterTaskCompletionStats& stats) { | 236 const RasterTaskCompletionStats& stats) { |
341 scoped_ptr<base::DictionaryValue> state(new base::DictionaryValue()); | 237 scoped_ptr<base::DictionaryValue> state(new base::DictionaryValue()); |
342 state->SetInteger("completed_count", stats.completed_count); | 238 state->SetInteger("completed_count", stats.completed_count); |
343 state->SetInteger("canceled_count", stats.canceled_count); | 239 state->SetInteger("canceled_count", stats.canceled_count); |
(...skipping 17 matching lines...) Expand all Loading... |
361 TileManager::TileManager( | 257 TileManager::TileManager( |
362 TileManagerClient* client, | 258 TileManagerClient* client, |
363 base::SequencedTaskRunner* task_runner, | 259 base::SequencedTaskRunner* task_runner, |
364 ResourcePool* resource_pool, | 260 ResourcePool* resource_pool, |
365 Rasterizer* rasterizer, | 261 Rasterizer* rasterizer, |
366 RenderingStatsInstrumentation* rendering_stats_instrumentation) | 262 RenderingStatsInstrumentation* rendering_stats_instrumentation) |
367 : client_(client), | 263 : client_(client), |
368 task_runner_(task_runner), | 264 task_runner_(task_runner), |
369 resource_pool_(resource_pool), | 265 resource_pool_(resource_pool), |
370 rasterizer_(rasterizer), | 266 rasterizer_(rasterizer), |
371 prioritized_tiles_dirty_(false), | 267 all_tiles_that_need_to_be_rasterized_are_scheduled_(true), |
372 all_tiles_that_need_to_be_rasterized_have_memory_(true), | |
373 all_tiles_required_for_activation_have_memory_(true), | |
374 bytes_releasable_(0), | |
375 resources_releasable_(0), | |
376 ever_exceeded_memory_budget_(false), | |
377 rendering_stats_instrumentation_(rendering_stats_instrumentation), | 268 rendering_stats_instrumentation_(rendering_stats_instrumentation), |
378 did_initialize_visible_tile_(false), | 269 did_initialize_visible_tile_(false), |
379 did_check_for_completed_tasks_since_last_schedule_tasks_(true), | 270 did_check_for_completed_tasks_since_last_schedule_tasks_(true), |
380 ready_to_activate_check_notifier_( | 271 ready_to_activate_check_notifier_( |
381 task_runner_, | 272 task_runner_, |
382 base::Bind(&TileManager::CheckIfReadyToActivate, | 273 base::Bind(&TileManager::CheckIfReadyToActivate, |
383 base::Unretained(this))) { | 274 base::Unretained(this))) { |
384 rasterizer_->SetClient(this); | 275 rasterizer_->SetClient(this); |
385 } | 276 } |
386 | 277 |
387 TileManager::~TileManager() { | 278 TileManager::~TileManager() { |
388 // Reset global state and manage. This should cause | 279 // Reset global state and manage. This should cause |
389 // our memory usage to drop to zero. | 280 // our memory usage to drop to zero. |
390 global_state_ = GlobalStateThatImpactsTilePriority(); | 281 global_state_ = GlobalStateThatImpactsTilePriority(); |
391 | 282 |
392 CleanUpReleasedTiles(); | 283 CleanUpReleasedTiles(); |
393 DCHECK_EQ(0u, tiles_.size()); | 284 DCHECK_EQ(0u, tiles_.size()); |
394 | 285 |
395 RasterTaskQueue empty; | 286 RasterTaskQueue empty; |
396 rasterizer_->ScheduleTasks(&empty); | 287 rasterizer_->ScheduleTasks(&empty); |
397 orphan_raster_tasks_.clear(); | 288 orphan_raster_tasks_.clear(); |
398 | 289 |
399 // This should finish all pending tasks and release any uninitialized | 290 // This should finish all pending tasks and release any uninitialized |
400 // resources. | 291 // resources. |
401 rasterizer_->Shutdown(); | 292 rasterizer_->Shutdown(); |
402 rasterizer_->CheckForCompletedTasks(); | 293 rasterizer_->CheckForCompletedTasks(); |
403 | |
404 DCHECK_EQ(0u, bytes_releasable_); | |
405 DCHECK_EQ(0u, resources_releasable_); | |
406 } | 294 } |
407 | 295 |
408 void TileManager::Release(Tile* tile) { | 296 void TileManager::Release(Tile* tile) { |
409 prioritized_tiles_dirty_ = true; | |
410 released_tiles_.push_back(tile); | 297 released_tiles_.push_back(tile); |
411 } | 298 } |
412 | 299 |
413 void TileManager::DidChangeTilePriority(Tile* tile) { | |
414 prioritized_tiles_dirty_ = true; | |
415 } | |
416 | |
417 bool TileManager::ShouldForceTasksRequiredForActivationToComplete() const { | 300 bool TileManager::ShouldForceTasksRequiredForActivationToComplete() const { |
418 return global_state_.tree_priority != SMOOTHNESS_TAKES_PRIORITY; | 301 return global_state_.tree_priority != SMOOTHNESS_TAKES_PRIORITY; |
419 } | 302 } |
420 | 303 |
421 void TileManager::CleanUpReleasedTiles() { | 304 void TileManager::CleanUpReleasedTiles() { |
422 for (std::vector<Tile*>::iterator it = released_tiles_.begin(); | 305 for (std::vector<Tile*>::iterator it = released_tiles_.begin(); |
423 it != released_tiles_.end(); | 306 it != released_tiles_.end(); |
424 ++it) { | 307 ++it) { |
425 Tile* tile = *it; | 308 Tile* tile = *it; |
426 ManagedTileState& mts = tile->managed_state(); | 309 ManagedTileState& mts = tile->managed_state(); |
(...skipping 13 matching lines...) Expand all Loading... |
440 used_layer_counts_.erase(layer_it); | 323 used_layer_counts_.erase(layer_it); |
441 image_decode_tasks_.erase(tile->layer_id()); | 324 image_decode_tasks_.erase(tile->layer_id()); |
442 } | 325 } |
443 | 326 |
444 delete tile; | 327 delete tile; |
445 } | 328 } |
446 | 329 |
447 released_tiles_.clear(); | 330 released_tiles_.clear(); |
448 } | 331 } |
449 | 332 |
450 void TileManager::UpdatePrioritizedTileSetIfNeeded() { | |
451 if (!prioritized_tiles_dirty_) | |
452 return; | |
453 | |
454 CleanUpReleasedTiles(); | |
455 | |
456 prioritized_tiles_.Clear(); | |
457 GetTilesWithAssignedBins(&prioritized_tiles_); | |
458 prioritized_tiles_dirty_ = false; | |
459 } | |
460 | |
461 void TileManager::DidFinishRunningTasks() { | 333 void TileManager::DidFinishRunningTasks() { |
462 TRACE_EVENT0("cc", "TileManager::DidFinishRunningTasks"); | 334 TRACE_EVENT0("cc", "TileManager::DidFinishRunningTasks"); |
463 | 335 |
464 bool memory_usage_above_limit = resource_pool_->total_memory_usage_bytes() > | 336 bool memory_usage_above_limit = resource_pool_->total_memory_usage_bytes() > |
465 global_state_.soft_memory_limit_in_bytes; | 337 global_state_.soft_memory_limit_in_bytes; |
466 | 338 |
467 // When OOM, keep re-assigning memory until we reach a steady state | 339 // When OOM, keep re-assigning memory until we reach a steady state |
468 // where top-priority tiles are initialized. | 340 // where top-priority tiles are initialized. |
469 if (all_tiles_that_need_to_be_rasterized_have_memory_ && | 341 if (all_tiles_that_need_to_be_rasterized_are_scheduled_ && |
470 !memory_usage_above_limit) | 342 !memory_usage_above_limit) |
471 return; | 343 return; |
472 | 344 |
473 rasterizer_->CheckForCompletedTasks(); | 345 rasterizer_->CheckForCompletedTasks(); |
474 did_check_for_completed_tasks_since_last_schedule_tasks_ = true; | 346 did_check_for_completed_tasks_since_last_schedule_tasks_ = true; |
475 | 347 |
476 TileVector tiles_that_need_to_be_rasterized; | 348 TileVector tiles_that_need_to_be_rasterized; |
477 AssignGpuMemoryToTiles(&prioritized_tiles_, | 349 AssignGpuMemoryToTiles(&tiles_that_need_to_be_rasterized); |
478 &tiles_that_need_to_be_rasterized); | |
479 | 350 |
480 // |tiles_that_need_to_be_rasterized| will be empty when we reach a | 351 // |tiles_that_need_to_be_rasterized| will be empty when we reach a |
481 // steady memory state. Keep scheduling tasks until we reach this state. | 352 // steady memory state. Keep scheduling tasks until we reach this state. |
482 if (!tiles_that_need_to_be_rasterized.empty()) { | 353 if (!tiles_that_need_to_be_rasterized.empty()) { |
483 ScheduleTasks(tiles_that_need_to_be_rasterized); | 354 ScheduleTasks(tiles_that_need_to_be_rasterized); |
484 return; | 355 return; |
485 } | 356 } |
486 | 357 |
487 resource_pool_->ReduceResourceUsage(); | 358 resource_pool_->ReduceResourceUsage(); |
488 | 359 |
(...skipping 20 matching lines...) Expand all Loading... |
509 tile_version.set_rasterize_on_demand(); | 380 tile_version.set_rasterize_on_demand(); |
510 client_->NotifyTileStateChanged(tile); | 381 client_->NotifyTileStateChanged(tile); |
511 } | 382 } |
512 } | 383 } |
513 | 384 |
514 DCHECK(IsReadyToActivate()); | 385 DCHECK(IsReadyToActivate()); |
515 ready_to_activate_check_notifier_.Schedule(); | 386 ready_to_activate_check_notifier_.Schedule(); |
516 } | 387 } |
517 | 388 |
518 void TileManager::DidFinishRunningTasksRequiredForActivation() { | 389 void TileManager::DidFinishRunningTasksRequiredForActivation() { |
519 // This is only a true indication that all tiles required for | |
520 // activation are initialized when no tiles are OOM. We need to | |
521 // wait for DidFinishRunningTasks() to be called, try to re-assign | |
522 // memory and in worst case use on-demand raster when tiles | |
523 // required for activation are OOM. | |
524 if (!all_tiles_required_for_activation_have_memory_) | |
525 return; | |
526 | |
527 ready_to_activate_check_notifier_.Schedule(); | 390 ready_to_activate_check_notifier_.Schedule(); |
528 } | 391 } |
529 | 392 |
530 void TileManager::GetTilesWithAssignedBins(PrioritizedTileSet* tiles) { | |
531 TRACE_EVENT0("cc", "TileManager::GetTilesWithAssignedBins"); | |
532 | |
533 const TileMemoryLimitPolicy memory_policy = global_state_.memory_limit_policy; | |
534 const TreePriority tree_priority = global_state_.tree_priority; | |
535 | |
536 // For each tree, bin into different categories of tiles. | |
537 for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it) { | |
538 Tile* tile = it->second; | |
539 ManagedTileState& mts = tile->managed_state(); | |
540 | |
541 const ManagedTileState::TileVersion& tile_version = | |
542 tile->GetTileVersionForDrawing(); | |
543 bool tile_is_ready_to_draw = tile_version.IsReadyToDraw(); | |
544 bool tile_is_active = tile_is_ready_to_draw || | |
545 mts.tile_versions[mts.raster_mode].raster_task_; | |
546 | |
547 // Get the active priority and bin. | |
548 TilePriority active_priority = tile->priority(ACTIVE_TREE); | |
549 ManagedTileBin active_bin = BinFromTilePriority(active_priority); | |
550 | |
551 // Get the pending priority and bin. | |
552 TilePriority pending_priority = tile->priority(PENDING_TREE); | |
553 ManagedTileBin pending_bin = BinFromTilePriority(pending_priority); | |
554 | |
555 bool pending_is_low_res = pending_priority.resolution == LOW_RESOLUTION; | |
556 bool pending_is_non_ideal = | |
557 pending_priority.resolution == NON_IDEAL_RESOLUTION; | |
558 bool active_is_non_ideal = | |
559 active_priority.resolution == NON_IDEAL_RESOLUTION; | |
560 | |
561 // Adjust bin state based on if ready to draw. | |
562 active_bin = kBinReadyToDrawMap[tile_is_ready_to_draw][active_bin]; | |
563 pending_bin = kBinReadyToDrawMap[tile_is_ready_to_draw][pending_bin]; | |
564 | |
565 // Adjust bin state based on if active. | |
566 active_bin = kBinIsActiveMap[tile_is_active][active_bin]; | |
567 pending_bin = kBinIsActiveMap[tile_is_active][pending_bin]; | |
568 | |
569 // We never want to paint new non-ideal tiles, as we always have | |
570 // a high-res tile covering that content (paint that instead). | |
571 if (!tile_is_ready_to_draw && active_is_non_ideal) | |
572 active_bin = NEVER_BIN; | |
573 if (!tile_is_ready_to_draw && pending_is_non_ideal) | |
574 pending_bin = NEVER_BIN; | |
575 | |
576 ManagedTileBin tree_bin[NUM_TREES]; | |
577 tree_bin[ACTIVE_TREE] = kBinPolicyMap[memory_policy][active_bin]; | |
578 tree_bin[PENDING_TREE] = kBinPolicyMap[memory_policy][pending_bin]; | |
579 | |
580 // Adjust pending bin state for low res tiles. This prevents pending tree | |
581 // low-res tiles from being initialized before high-res tiles. | |
582 if (pending_is_low_res) | |
583 tree_bin[PENDING_TREE] = std::max(tree_bin[PENDING_TREE], EVENTUALLY_BIN); | |
584 | |
585 TilePriority tile_priority; | |
586 switch (tree_priority) { | |
587 case SAME_PRIORITY_FOR_BOTH_TREES: | |
588 mts.bin = std::min(tree_bin[ACTIVE_TREE], tree_bin[PENDING_TREE]); | |
589 tile_priority = tile->combined_priority(); | |
590 break; | |
591 case SMOOTHNESS_TAKES_PRIORITY: | |
592 mts.bin = tree_bin[ACTIVE_TREE]; | |
593 tile_priority = active_priority; | |
594 break; | |
595 case NEW_CONTENT_TAKES_PRIORITY: | |
596 mts.bin = tree_bin[PENDING_TREE]; | |
597 tile_priority = pending_priority; | |
598 break; | |
599 } | |
600 | |
601 // Bump up the priority if we determined it's NEVER_BIN on one tree, | |
602 // but is still required on the other tree. | |
603 bool is_in_never_bin_on_both_trees = tree_bin[ACTIVE_TREE] == NEVER_BIN && | |
604 tree_bin[PENDING_TREE] == NEVER_BIN; | |
605 | |
606 if (mts.bin == NEVER_BIN && !is_in_never_bin_on_both_trees) | |
607 mts.bin = tile_is_active ? AT_LAST_AND_ACTIVE_BIN : AT_LAST_BIN; | |
608 | |
609 mts.resolution = tile_priority.resolution; | |
610 mts.priority_bin = tile_priority.priority_bin; | |
611 mts.distance_to_visible = tile_priority.distance_to_visible; | |
612 mts.required_for_activation = tile_priority.required_for_activation; | |
613 | |
614 mts.visible_and_ready_to_draw = | |
615 tree_bin[ACTIVE_TREE] == NOW_AND_READY_TO_DRAW_BIN; | |
616 | |
617 // Tiles that are required for activation shouldn't be in NEVER_BIN unless | |
618 // smoothness takes priority or memory policy allows nothing to be | |
619 // initialized. | |
620 DCHECK(!mts.required_for_activation || mts.bin != NEVER_BIN || | |
621 tree_priority == SMOOTHNESS_TAKES_PRIORITY || | |
622 memory_policy == ALLOW_NOTHING); | |
623 | |
624 // If the tile is in NEVER_BIN and it does not have an active task, then we | |
625 // can release the resources early. If it does have the task however, we | |
626 // should keep it in the prioritized tile set to ensure that AssignGpuMemory | |
627 // can visit it. | |
628 if (mts.bin == NEVER_BIN && | |
629 !mts.tile_versions[mts.raster_mode].raster_task_) { | |
630 FreeResourcesForTileAndNotifyClientIfTileWasReadyToDraw(tile); | |
631 continue; | |
632 } | |
633 | |
634 // Insert the tile into a priority set. | |
635 tiles->InsertTile(tile, mts.bin); | |
636 } | |
637 } | |
638 | |
639 void TileManager::ManageTiles(const GlobalStateThatImpactsTilePriority& state) { | 393 void TileManager::ManageTiles(const GlobalStateThatImpactsTilePriority& state) { |
640 TRACE_EVENT0("cc", "TileManager::ManageTiles"); | 394 TRACE_EVENT0("cc", "TileManager::ManageTiles"); |
641 | 395 |
642 // Update internal state. | 396 global_state_ = state; |
643 if (state != global_state_) { | |
644 global_state_ = state; | |
645 prioritized_tiles_dirty_ = true; | |
646 } | |
647 | 397 |
648 // We need to call CheckForCompletedTasks() once in-between each call | 398 // We need to call CheckForCompletedTasks() once in-between each call |
649 // to ScheduleTasks() to prevent canceled tasks from being scheduled. | 399 // to ScheduleTasks() to prevent canceled tasks from being scheduled. |
650 if (!did_check_for_completed_tasks_since_last_schedule_tasks_) { | 400 if (!did_check_for_completed_tasks_since_last_schedule_tasks_) { |
651 rasterizer_->CheckForCompletedTasks(); | 401 rasterizer_->CheckForCompletedTasks(); |
652 did_check_for_completed_tasks_since_last_schedule_tasks_ = true; | 402 did_check_for_completed_tasks_since_last_schedule_tasks_ = true; |
653 } | 403 } |
654 | 404 |
655 UpdatePrioritizedTileSetIfNeeded(); | 405 // TODO(vmpstr): See if we still need to keep tiles alive when layers release |
| 406 // them. |
| 407 CleanUpReleasedTiles(); |
656 | 408 |
657 TileVector tiles_that_need_to_be_rasterized; | 409 TileVector tiles_that_need_to_be_rasterized; |
658 AssignGpuMemoryToTiles(&prioritized_tiles_, | 410 AssignGpuMemoryToTiles(&tiles_that_need_to_be_rasterized); |
659 &tiles_that_need_to_be_rasterized); | |
660 | 411 |
661 // Finally, schedule rasterizer tasks. | 412 // Finally, schedule rasterizer tasks. |
662 ScheduleTasks(tiles_that_need_to_be_rasterized); | 413 ScheduleTasks(tiles_that_need_to_be_rasterized); |
663 | 414 |
664 TRACE_EVENT_INSTANT1("cc", | 415 TRACE_EVENT_INSTANT1("cc", |
665 "DidManage", | 416 "DidManage", |
666 TRACE_EVENT_SCOPE_THREAD, | 417 TRACE_EVENT_SCOPE_THREAD, |
667 "state", | 418 "state", |
668 TracedValue::FromValue(BasicStateAsValue().release())); | 419 TracedValue::FromValue(BasicStateAsValue().release())); |
669 | 420 |
(...skipping 32 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
702 } | 453 } |
703 | 454 |
704 scoped_ptr<base::Value> TileManager::AllTilesAsValue() const { | 455 scoped_ptr<base::Value> TileManager::AllTilesAsValue() const { |
705 scoped_ptr<base::ListValue> state(new base::ListValue()); | 456 scoped_ptr<base::ListValue> state(new base::ListValue()); |
706 for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it) | 457 for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it) |
707 state->Append(it->second->AsValue().release()); | 458 state->Append(it->second->AsValue().release()); |
708 | 459 |
709 return state.PassAs<base::Value>(); | 460 return state.PassAs<base::Value>(); |
710 } | 461 } |
711 | 462 |
| 463 bool TileManager::FreeTileResourcesUntilUsageIsWithinLimit( |
| 464 EvictionTileQueue* queue, |
| 465 const MemoryUsage& limit, |
| 466 MemoryUsage* usage) { |
| 467 while (usage->Exceeds(limit)) { |
| 468 if (queue->IsEmpty()) |
| 469 return false; |
| 470 |
| 471 Tile* tile = queue->Top(); |
| 472 |
| 473 *usage -= MemoryUsage::FromTile(tile); |
| 474 FreeResourcesForTileAndNotifyClientIfTileWasReadyToDraw(tile); |
| 475 queue->Pop(); |
| 476 } |
| 477 return true; |
| 478 } |
| 479 |
| 480 bool TileManager::FreeTileResourcesWithLowerPriorityUntilUsageIsWithinLimit( |
| 481 EvictionTileQueue* queue, |
| 482 const MemoryUsage& limit, |
| 483 const TilePriority& other_priority, |
| 484 MemoryUsage* usage) { |
| 485 while (usage->Exceeds(limit)) { |
| 486 if (queue->IsEmpty()) |
| 487 return false; |
| 488 |
| 489 Tile* tile = queue->Top(); |
| 490 if (!other_priority.IsHigherPriorityThan( |
| 491 tile->priority_for_tree_priority(global_state_.tree_priority))) { |
| 492 return false; |
| 493 } |
| 494 |
| 495 *usage -= MemoryUsage::FromTile(tile); |
| 496 FreeResourcesForTileAndNotifyClientIfTileWasReadyToDraw(tile); |
| 497 queue->Pop(); |
| 498 } |
| 499 return true; |
| 500 } |
| 501 |
| 502 bool TileManager::TilePriorityViolatesMemoryPolicy( |
| 503 const TilePriority& priority) { |
| 504 switch (global_state_.memory_limit_policy) { |
| 505 case ALLOW_NOTHING: |
| 506 return true; |
| 507 case ALLOW_ABSOLUTE_MINIMUM: |
| 508 return priority.priority_bin > TilePriority::NOW; |
| 509 case ALLOW_PREPAINT_ONLY: |
| 510 return priority.priority_bin > TilePriority::SOON; |
| 511 case ALLOW_ANYTHING: |
| 512 return priority.distance_to_visible == |
| 513 std::numeric_limits<float>::infinity(); |
| 514 } |
| 515 NOTREACHED(); |
| 516 return true; |
| 517 } |
| 518 |
712 void TileManager::AssignGpuMemoryToTiles( | 519 void TileManager::AssignGpuMemoryToTiles( |
713 PrioritizedTileSet* tiles, | |
714 TileVector* tiles_that_need_to_be_rasterized) { | 520 TileVector* tiles_that_need_to_be_rasterized) { |
715 TRACE_EVENT0("cc", "TileManager::AssignGpuMemoryToTiles"); | 521 TRACE_EVENT0("cc", "TileManager::AssignGpuMemoryToTiles"); |
716 | 522 |
717 // Maintain the list of released resources that can potentially be re-used | 523 // Maintain the list of released resources that can potentially be re-used |
718 // or deleted. | 524 // or deleted. |
719 // If this operation becomes expensive too, only do this after some | 525 // If this operation becomes expensive too, only do this after some |
720 // resource(s) was returned. Note that in that case, one also need to | 526 // resource(s) was returned. Note that in that case, one also need to |
721 // invalidate when releasing some resource from the pool. | 527 // invalidate when releasing some resource from the pool. |
722 resource_pool_->CheckBusyResources(); | 528 resource_pool_->CheckBusyResources(); |
723 | 529 |
724 // Now give memory out to the tiles until we're out, and build | 530 // Now give memory out to the tiles until we're out, and build |
725 // the needs-to-be-rasterized queue. | 531 // the needs-to-be-rasterized queue. |
726 all_tiles_that_need_to_be_rasterized_have_memory_ = true; | 532 all_tiles_that_need_to_be_rasterized_are_scheduled_ = true; |
727 all_tiles_required_for_activation_have_memory_ = true; | |
728 | 533 |
729 // Cast to prevent overflow. | 534 MemoryUsage hard_memory_limit(global_state_.hard_memory_limit_in_bytes, |
730 int64 soft_bytes_available = | 535 global_state_.num_resources_limit); |
731 static_cast<int64>(bytes_releasable_) + | 536 MemoryUsage soft_memory_limit(global_state_.soft_memory_limit_in_bytes, |
732 static_cast<int64>(global_state_.soft_memory_limit_in_bytes) - | 537 global_state_.num_resources_limit); |
733 static_cast<int64>(resource_pool_->acquired_memory_usage_bytes()); | 538 MemoryUsage memory_usage(resource_pool_->acquired_memory_usage_bytes(), |
734 int64 hard_bytes_available = | 539 resource_pool_->acquired_resource_count()); |
735 static_cast<int64>(bytes_releasable_) + | |
736 static_cast<int64>(global_state_.hard_memory_limit_in_bytes) - | |
737 static_cast<int64>(resource_pool_->acquired_memory_usage_bytes()); | |
738 int resources_available = resources_releasable_ + | |
739 global_state_.num_resources_limit - | |
740 resource_pool_->acquired_resource_count(); | |
741 size_t soft_bytes_allocatable = | |
742 std::max(static_cast<int64>(0), soft_bytes_available); | |
743 size_t hard_bytes_allocatable = | |
744 std::max(static_cast<int64>(0), hard_bytes_available); | |
745 size_t resources_allocatable = std::max(0, resources_available); | |
746 | 540 |
747 size_t bytes_that_exceeded_memory_budget = 0; | 541 EvictionTileQueue* eviction_queue = |
748 size_t soft_bytes_left = soft_bytes_allocatable; | 542 client_->GetEvictionQueue(global_state_.tree_priority); |
749 size_t hard_bytes_left = hard_bytes_allocatable; | |
750 | 543 |
751 size_t resources_left = resources_allocatable; | 544 bool had_enough_memory_to_schedule_tiles_needed_now = true; |
752 bool oomed_soft = false; | |
753 bool oomed_hard = false; | |
754 bool have_hit_soft_memory = false; // Soft memory comes after hard. | |
755 | 545 |
756 unsigned schedule_priority = 1u; | 546 unsigned schedule_priority = 1u; |
757 for (PrioritizedTileSet::Iterator it(tiles, true); it; ++it) { | 547 RasterTileQueue* raster_queue = |
758 Tile* tile = *it; | 548 client_->GetRasterQueue(global_state_.tree_priority); |
| 549 while (!raster_queue->IsEmpty()) { |
| 550 Tile* tile = raster_queue->Top(); |
| 551 TilePriority priority = |
| 552 tile->priority_for_tree_priority(global_state_.tree_priority); |
| 553 |
| 554 if (TilePriorityViolatesMemoryPolicy(priority)) |
| 555 break; |
| 556 |
| 557 // We won't be able to schedule this tile, so break out early. |
| 558 if (tiles_that_need_to_be_rasterized->size() >= |
| 559 kScheduledRasterTasksLimit) { |
| 560 all_tiles_that_need_to_be_rasterized_are_scheduled_ = false; |
| 561 break; |
| 562 } |
| 563 |
759 ManagedTileState& mts = tile->managed_state(); | 564 ManagedTileState& mts = tile->managed_state(); |
760 | |
761 mts.scheduled_priority = schedule_priority++; | 565 mts.scheduled_priority = schedule_priority++; |
762 | |
763 mts.raster_mode = tile->DetermineOverallRasterMode(); | 566 mts.raster_mode = tile->DetermineOverallRasterMode(); |
764 | |
765 ManagedTileState::TileVersion& tile_version = | 567 ManagedTileState::TileVersion& tile_version = |
766 mts.tile_versions[mts.raster_mode]; | 568 mts.tile_versions[mts.raster_mode]; |
767 | 569 |
768 // If this tile doesn't need a resource, then nothing to do. | 570 DCHECK(!tile_version.IsReadyToDraw()); |
769 if (!tile_version.requires_resource()) | |
770 continue; | |
771 | 571 |
772 // If the tile is not needed, free it up. | 572 // If the tile already has a raster_task, then the memory used by it is |
773 if (mts.bin == NEVER_BIN) { | 573 // already accounted for in memory_usage. Otherwise, we'll have to acquire |
774 FreeResourcesForTileAndNotifyClientIfTileWasReadyToDraw(tile); | 574 // more memory to create a raster task. |
775 continue; | 575 MemoryUsage memory_required_by_tile_to_be_scheduled; |
| 576 if (!tile_version.raster_task_) { |
| 577 memory_required_by_tile_to_be_scheduled = MemoryUsage::FromConfig( |
| 578 tile->size(), resource_pool_->resource_format()); |
776 } | 579 } |
777 | 580 |
778 const bool tile_uses_hard_limit = mts.bin <= NOW_BIN; | 581 bool tile_is_needed_now = priority.priority_bin == TilePriority::NOW; |
779 const size_t bytes_if_allocated = BytesConsumedIfAllocated(tile); | |
780 const size_t tile_bytes_left = | |
781 (tile_uses_hard_limit) ? hard_bytes_left : soft_bytes_left; | |
782 | 582 |
783 // Hard-limit is reserved for tiles that would cause a calamity | 583 // This is the memory limit that will be used by this tile. Depending on |
784 // if they were to go away, so by definition they are the highest | 584 // the tile priority, it will be one of hard_memory_limit or |
785 // priority memory, and must be at the front of the list. | 585 // soft_memory_limit. |
786 DCHECK(!(have_hit_soft_memory && tile_uses_hard_limit)); | 586 MemoryUsage& tile_memory_limit = |
787 have_hit_soft_memory |= !tile_uses_hard_limit; | 587 tile_is_needed_now ? hard_memory_limit : soft_memory_limit; |
788 | 588 |
789 size_t tile_bytes = 0; | 589 bool memory_usage_is_within_limit = |
790 size_t tile_resources = 0; | 590 FreeTileResourcesWithLowerPriorityUntilUsageIsWithinLimit( |
| 591 eviction_queue, |
| 592 tile_memory_limit - memory_required_by_tile_to_be_scheduled, |
| 593 priority, |
| 594 &memory_usage); |
791 | 595 |
792 // It costs to maintain a resource. | 596 // If we couldn't fit the tile into our current memory limit, then we're |
793 for (int mode = 0; mode < NUM_RASTER_MODES; ++mode) { | 597 // done. |
794 if (mts.tile_versions[mode].resource_) { | 598 if (!memory_usage_is_within_limit) { |
795 tile_bytes += bytes_if_allocated; | 599 if (tile_is_needed_now) |
796 tile_resources++; | 600 had_enough_memory_to_schedule_tiles_needed_now = false; |
797 } | 601 all_tiles_that_need_to_be_rasterized_are_scheduled_ = false; |
| 602 break; |
798 } | 603 } |
799 | 604 |
800 // Allow lower priority tiles with initialized resources to keep | 605 memory_usage += memory_required_by_tile_to_be_scheduled; |
801 // their memory by only assigning memory to new raster tasks if | |
802 // they can be scheduled. | |
803 bool reached_scheduled_raster_tasks_limit = | |
804 tiles_that_need_to_be_rasterized->size() >= kScheduledRasterTasksLimit; | |
805 if (!reached_scheduled_raster_tasks_limit) { | |
806 // If we don't have the required version, and it's not in flight | |
807 // then we'll have to pay to create a new task. | |
808 if (!tile_version.resource_ && !tile_version.raster_task_) { | |
809 tile_bytes += bytes_if_allocated; | |
810 tile_resources++; | |
811 } | |
812 } | |
813 | |
814 // Tile is OOM. | |
815 if (tile_bytes > tile_bytes_left || tile_resources > resources_left) { | |
816 bool was_ready_to_draw = tile->IsReadyToDraw(); | |
817 | |
818 FreeResourcesForTile(tile); | |
819 | |
820 // This tile was already on screen and now its resources have been | |
821 // released. In order to prevent checkerboarding, set this tile as | |
822 // rasterize on demand immediately. | |
823 if (mts.visible_and_ready_to_draw) | |
824 tile_version.set_rasterize_on_demand(); | |
825 | |
826 if (was_ready_to_draw) | |
827 client_->NotifyTileStateChanged(tile); | |
828 | |
829 oomed_soft = true; | |
830 if (tile_uses_hard_limit) { | |
831 oomed_hard = true; | |
832 bytes_that_exceeded_memory_budget += tile_bytes; | |
833 } | |
834 } else { | |
835 resources_left -= tile_resources; | |
836 hard_bytes_left -= tile_bytes; | |
837 soft_bytes_left = | |
838 (soft_bytes_left > tile_bytes) ? soft_bytes_left - tile_bytes : 0; | |
839 if (tile_version.resource_) | |
840 continue; | |
841 } | |
842 | |
843 DCHECK(!tile_version.resource_); | |
844 | |
845 // Tile shouldn't be rasterized if |tiles_that_need_to_be_rasterized| | |
846 // has reached it's limit or we've failed to assign gpu memory to this | |
847 // or any higher priority tile. Preventing tiles that fit into memory | |
848 // budget to be rasterized when higher priority tile is oom is | |
849 // important for two reasons: | |
850 // 1. Tile size should not impact raster priority. | |
851 // 2. Tiles with existing raster task could otherwise incorrectly | |
852 // be added as they are not affected by |bytes_allocatable|. | |
853 bool can_schedule_tile = | |
854 !oomed_soft && !reached_scheduled_raster_tasks_limit; | |
855 | |
856 if (!can_schedule_tile) { | |
857 all_tiles_that_need_to_be_rasterized_have_memory_ = false; | |
858 if (tile->required_for_activation()) | |
859 all_tiles_required_for_activation_have_memory_ = false; | |
860 it.DisablePriorityOrdering(); | |
861 continue; | |
862 } | |
863 | |
864 tiles_that_need_to_be_rasterized->push_back(tile); | 606 tiles_that_need_to_be_rasterized->push_back(tile); |
| 607 raster_queue->Pop(); |
865 } | 608 } |
866 | 609 |
867 // OOM reporting uses hard-limit, soft-OOM is normal depending on limit. | 610 // Note that we should try and further reduce memory in case the above loop |
868 ever_exceeded_memory_budget_ |= oomed_hard; | 611 // didn't reduce memory. This ensures that we always release as many resources |
869 if (ever_exceeded_memory_budget_) { | 612 // as possible to stay within the memory limit. |
870 TRACE_COUNTER_ID2("cc", | 613 FreeTileResourcesUntilUsageIsWithinLimit( |
871 "over_memory_budget", | 614 eviction_queue, hard_memory_limit, &memory_usage); |
872 this, | 615 |
873 "budget", | 616 // Update memory_stats_from_last_assign_, which is used to display HUD |
874 global_state_.hard_memory_limit_in_bytes, | 617 // information. |
875 "over", | |
876 bytes_that_exceeded_memory_budget); | |
877 } | |
878 memory_stats_from_last_assign_.total_budget_in_bytes = | 618 memory_stats_from_last_assign_.total_budget_in_bytes = |
879 global_state_.hard_memory_limit_in_bytes; | 619 global_state_.hard_memory_limit_in_bytes; |
880 memory_stats_from_last_assign_.bytes_allocated = | 620 memory_stats_from_last_assign_.total_bytes_used = memory_usage.memory_bytes(); |
881 hard_bytes_allocatable - hard_bytes_left; | 621 memory_stats_from_last_assign_.had_enough_memory = |
882 memory_stats_from_last_assign_.bytes_unreleasable = | 622 had_enough_memory_to_schedule_tiles_needed_now; |
883 resource_pool_->acquired_memory_usage_bytes() - bytes_releasable_; | |
884 memory_stats_from_last_assign_.bytes_over = bytes_that_exceeded_memory_budget; | |
885 } | 623 } |
886 | 624 |
887 void TileManager::FreeResourceForTile(Tile* tile, RasterMode mode) { | 625 void TileManager::FreeResourceForTile(Tile* tile, RasterMode mode) { |
888 ManagedTileState& mts = tile->managed_state(); | 626 ManagedTileState& mts = tile->managed_state(); |
889 if (mts.tile_versions[mode].resource_) { | 627 if (mts.tile_versions[mode].resource_) |
890 resource_pool_->ReleaseResource(mts.tile_versions[mode].resource_.Pass()); | 628 resource_pool_->ReleaseResource(mts.tile_versions[mode].resource_.Pass()); |
891 | |
892 DCHECK_GE(bytes_releasable_, BytesConsumedIfAllocated(tile)); | |
893 DCHECK_GE(resources_releasable_, 1u); | |
894 | |
895 bytes_releasable_ -= BytesConsumedIfAllocated(tile); | |
896 --resources_releasable_; | |
897 } | |
898 } | 629 } |
899 | 630 |
900 void TileManager::FreeResourcesForTile(Tile* tile) { | 631 void TileManager::FreeResourcesForTile(Tile* tile) { |
901 for (int mode = 0; mode < NUM_RASTER_MODES; ++mode) { | 632 for (int mode = 0; mode < NUM_RASTER_MODES; ++mode) { |
902 FreeResourceForTile(tile, static_cast<RasterMode>(mode)); | 633 FreeResourceForTile(tile, static_cast<RasterMode>(mode)); |
903 } | 634 } |
904 } | 635 } |
905 | 636 |
906 void TileManager::FreeUnusedResourcesForTile(Tile* tile) { | 637 void TileManager::FreeUnusedResourcesForTile(Tile* tile) { |
907 DCHECK(tile->IsReadyToDraw()); | 638 DCHECK(tile->IsReadyToDraw()); |
(...skipping 181 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
1089 } | 820 } |
1090 | 821 |
1091 ++update_visible_tiles_stats_.completed_count; | 822 ++update_visible_tiles_stats_.completed_count; |
1092 | 823 |
1093 if (analysis.is_solid_color) { | 824 if (analysis.is_solid_color) { |
1094 tile_version.set_solid_color(analysis.solid_color); | 825 tile_version.set_solid_color(analysis.solid_color); |
1095 resource_pool_->ReleaseResource(resource.Pass()); | 826 resource_pool_->ReleaseResource(resource.Pass()); |
1096 } else { | 827 } else { |
1097 tile_version.set_use_resource(); | 828 tile_version.set_use_resource(); |
1098 tile_version.resource_ = resource.Pass(); | 829 tile_version.resource_ = resource.Pass(); |
1099 | |
1100 bytes_releasable_ += BytesConsumedIfAllocated(tile); | |
1101 ++resources_releasable_; | |
1102 } | 830 } |
1103 | 831 |
1104 FreeUnusedResourcesForTile(tile); | 832 FreeUnusedResourcesForTile(tile); |
1105 if (tile->priority(ACTIVE_TREE).distance_to_visible == 0.f) | 833 if (tile->priority(ACTIVE_TREE).distance_to_visible == 0.f) |
1106 did_initialize_visible_tile_ = true; | 834 did_initialize_visible_tile_ = true; |
1107 | 835 |
1108 client_->NotifyTileStateChanged(tile); | 836 client_->NotifyTileStateChanged(tile); |
1109 } | 837 } |
1110 | 838 |
1111 scoped_refptr<Tile> TileManager::CreateTile(PicturePileImpl* picture_pile, | 839 scoped_refptr<Tile> TileManager::CreateTile(PicturePileImpl* picture_pile, |
(...skipping 10 matching lines...) Expand all Loading... |
1122 content_rect, | 850 content_rect, |
1123 opaque_rect, | 851 opaque_rect, |
1124 contents_scale, | 852 contents_scale, |
1125 layer_id, | 853 layer_id, |
1126 source_frame_number, | 854 source_frame_number, |
1127 flags)); | 855 flags)); |
1128 DCHECK(tiles_.find(tile->id()) == tiles_.end()); | 856 DCHECK(tiles_.find(tile->id()) == tiles_.end()); |
1129 | 857 |
1130 tiles_[tile->id()] = tile; | 858 tiles_[tile->id()] = tile; |
1131 used_layer_counts_[tile->layer_id()]++; | 859 used_layer_counts_[tile->layer_id()]++; |
1132 prioritized_tiles_dirty_ = true; | |
1133 return tile; | 860 return tile; |
1134 } | 861 } |
1135 | 862 |
1136 void TileManager::GetPairedPictureLayers( | |
1137 std::vector<PairedPictureLayer>* paired_layers) const { | |
1138 const std::vector<PictureLayerImpl*>& layers = client_->GetPictureLayers(); | |
1139 | |
1140 paired_layers->clear(); | |
1141 // Reserve a maximum possible paired layers. | |
1142 paired_layers->reserve(layers.size()); | |
1143 | |
1144 for (std::vector<PictureLayerImpl*>::const_iterator it = layers.begin(); | |
1145 it != layers.end(); | |
1146 ++it) { | |
1147 PictureLayerImpl* layer = *it; | |
1148 | |
1149 // TODO(vmpstr): Iterators and should handle this instead. crbug.com/381704 | |
1150 if (!layer->HasValidTilePriorities()) | |
1151 continue; | |
1152 | |
1153 PictureLayerImpl* twin_layer = layer->GetTwinLayer(); | |
1154 | |
1155 // Ignore the twin layer when tile priorities are invalid. | |
1156 // TODO(vmpstr): Iterators should handle this instead. crbug.com/381704 | |
1157 if (twin_layer && !twin_layer->HasValidTilePriorities()) | |
1158 twin_layer = NULL; | |
1159 | |
1160 PairedPictureLayer paired_layer; | |
1161 WhichTree tree = layer->GetTree(); | |
1162 | |
1163 // If the current tree is ACTIVE_TREE, then always generate a paired_layer. | |
1164 // If current tree is PENDING_TREE, then only generate a paired_layer if | |
1165 // there is no twin layer. | |
1166 if (tree == ACTIVE_TREE) { | |
1167 DCHECK(!twin_layer || twin_layer->GetTree() == PENDING_TREE); | |
1168 paired_layer.active_layer = layer; | |
1169 paired_layer.pending_layer = twin_layer; | |
1170 paired_layers->push_back(paired_layer); | |
1171 } else if (!twin_layer) { | |
1172 paired_layer.active_layer = NULL; | |
1173 paired_layer.pending_layer = layer; | |
1174 paired_layers->push_back(paired_layer); | |
1175 } | |
1176 } | |
1177 } | |
1178 | |
1179 TileManager::PairedPictureLayer::PairedPictureLayer() | |
1180 : active_layer(NULL), pending_layer(NULL) {} | |
1181 | |
1182 TileManager::PairedPictureLayer::~PairedPictureLayer() {} | |
1183 | |
1184 TileManager::RasterTileIterator::RasterTileIterator(TileManager* tile_manager, | |
1185 TreePriority tree_priority) | |
1186 : tree_priority_(tree_priority), comparator_(tree_priority) { | |
1187 std::vector<TileManager::PairedPictureLayer> paired_layers; | |
1188 tile_manager->GetPairedPictureLayers(&paired_layers); | |
1189 bool prioritize_low_res = tree_priority_ == SMOOTHNESS_TAKES_PRIORITY; | |
1190 | |
1191 paired_iterators_.reserve(paired_layers.size()); | |
1192 iterator_heap_.reserve(paired_layers.size()); | |
1193 for (std::vector<TileManager::PairedPictureLayer>::iterator it = | |
1194 paired_layers.begin(); | |
1195 it != paired_layers.end(); | |
1196 ++it) { | |
1197 PairedPictureLayerIterator paired_iterator; | |
1198 if (it->active_layer) { | |
1199 paired_iterator.active_iterator = | |
1200 PictureLayerImpl::LayerRasterTileIterator(it->active_layer, | |
1201 prioritize_low_res); | |
1202 } | |
1203 | |
1204 if (it->pending_layer) { | |
1205 paired_iterator.pending_iterator = | |
1206 PictureLayerImpl::LayerRasterTileIterator(it->pending_layer, | |
1207 prioritize_low_res); | |
1208 } | |
1209 | |
1210 if (paired_iterator.PeekTile(tree_priority_) != NULL) { | |
1211 paired_iterators_.push_back(paired_iterator); | |
1212 iterator_heap_.push_back(&paired_iterators_.back()); | |
1213 } | |
1214 } | |
1215 | |
1216 std::make_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_); | |
1217 } | |
1218 | |
1219 TileManager::RasterTileIterator::~RasterTileIterator() {} | |
1220 | |
1221 TileManager::RasterTileIterator& TileManager::RasterTileIterator::operator++() { | |
1222 DCHECK(*this); | |
1223 | |
1224 std::pop_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_); | |
1225 PairedPictureLayerIterator* paired_iterator = iterator_heap_.back(); | |
1226 iterator_heap_.pop_back(); | |
1227 | |
1228 paired_iterator->PopTile(tree_priority_); | |
1229 if (paired_iterator->PeekTile(tree_priority_) != NULL) { | |
1230 iterator_heap_.push_back(paired_iterator); | |
1231 std::push_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_); | |
1232 } | |
1233 return *this; | |
1234 } | |
1235 | |
1236 TileManager::RasterTileIterator::operator bool() const { | |
1237 return !iterator_heap_.empty(); | |
1238 } | |
1239 | |
1240 Tile* TileManager::RasterTileIterator::operator*() { | |
1241 DCHECK(*this); | |
1242 return iterator_heap_.front()->PeekTile(tree_priority_); | |
1243 } | |
1244 | |
1245 TileManager::RasterTileIterator::PairedPictureLayerIterator:: | |
1246 PairedPictureLayerIterator() {} | |
1247 | |
1248 TileManager::RasterTileIterator::PairedPictureLayerIterator:: | |
1249 ~PairedPictureLayerIterator() {} | |
1250 | |
1251 Tile* TileManager::RasterTileIterator::PairedPictureLayerIterator::PeekTile( | |
1252 TreePriority tree_priority) { | |
1253 PictureLayerImpl::LayerRasterTileIterator* next_iterator = | |
1254 NextTileIterator(tree_priority).first; | |
1255 if (!next_iterator) | |
1256 return NULL; | |
1257 | |
1258 DCHECK(*next_iterator); | |
1259 DCHECK(std::find(returned_shared_tiles.begin(), | |
1260 returned_shared_tiles.end(), | |
1261 **next_iterator) == returned_shared_tiles.end()); | |
1262 return **next_iterator; | |
1263 } | |
1264 | |
1265 void TileManager::RasterTileIterator::PairedPictureLayerIterator::PopTile( | |
1266 TreePriority tree_priority) { | |
1267 PictureLayerImpl::LayerRasterTileIterator* next_iterator = | |
1268 NextTileIterator(tree_priority).first; | |
1269 DCHECK(next_iterator); | |
1270 DCHECK(*next_iterator); | |
1271 returned_shared_tiles.push_back(**next_iterator); | |
1272 ++(*next_iterator); | |
1273 | |
1274 next_iterator = NextTileIterator(tree_priority).first; | |
1275 while (next_iterator && | |
1276 std::find(returned_shared_tiles.begin(), | |
1277 returned_shared_tiles.end(), | |
1278 **next_iterator) != returned_shared_tiles.end()) { | |
1279 ++(*next_iterator); | |
1280 next_iterator = NextTileIterator(tree_priority).first; | |
1281 } | |
1282 } | |
1283 | |
1284 std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree> | |
1285 TileManager::RasterTileIterator::PairedPictureLayerIterator::NextTileIterator( | |
1286 TreePriority tree_priority) { | |
1287 // If both iterators are out of tiles, return NULL. | |
1288 if (!active_iterator && !pending_iterator) { | |
1289 return std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree>( | |
1290 NULL, ACTIVE_TREE); | |
1291 } | |
1292 | |
1293 // If we only have one iterator with tiles, return it. | |
1294 if (!active_iterator) | |
1295 return std::make_pair(&pending_iterator, PENDING_TREE); | |
1296 if (!pending_iterator) | |
1297 return std::make_pair(&active_iterator, ACTIVE_TREE); | |
1298 | |
1299 // Now both iterators have tiles, so we have to decide based on tree priority. | |
1300 switch (tree_priority) { | |
1301 case SMOOTHNESS_TAKES_PRIORITY: | |
1302 return std::make_pair(&active_iterator, ACTIVE_TREE); | |
1303 case NEW_CONTENT_TAKES_PRIORITY: | |
1304 return std::make_pair(&pending_iterator, ACTIVE_TREE); | |
1305 case SAME_PRIORITY_FOR_BOTH_TREES: { | |
1306 Tile* active_tile = *active_iterator; | |
1307 Tile* pending_tile = *pending_iterator; | |
1308 if (active_tile == pending_tile) | |
1309 return std::make_pair(&active_iterator, ACTIVE_TREE); | |
1310 | |
1311 const TilePriority& active_priority = active_tile->priority(ACTIVE_TREE); | |
1312 const TilePriority& pending_priority = | |
1313 pending_tile->priority(PENDING_TREE); | |
1314 | |
1315 if (active_priority.IsHigherPriorityThan(pending_priority)) | |
1316 return std::make_pair(&active_iterator, ACTIVE_TREE); | |
1317 return std::make_pair(&pending_iterator, PENDING_TREE); | |
1318 } | |
1319 } | |
1320 | |
1321 NOTREACHED(); | |
1322 // Keep the compiler happy. | |
1323 return std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree>( | |
1324 NULL, ACTIVE_TREE); | |
1325 } | |
1326 | |
1327 TileManager::RasterTileIterator::RasterOrderComparator::RasterOrderComparator( | |
1328 TreePriority tree_priority) | |
1329 : tree_priority_(tree_priority) {} | |
1330 | |
1331 bool TileManager::RasterTileIterator::RasterOrderComparator::operator()( | |
1332 PairedPictureLayerIterator* a, | |
1333 PairedPictureLayerIterator* b) const { | |
1334 std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree> a_pair = | |
1335 a->NextTileIterator(tree_priority_); | |
1336 DCHECK(a_pair.first); | |
1337 DCHECK(*a_pair.first); | |
1338 | |
1339 std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree> b_pair = | |
1340 b->NextTileIterator(tree_priority_); | |
1341 DCHECK(b_pair.first); | |
1342 DCHECK(*b_pair.first); | |
1343 | |
1344 Tile* a_tile = **a_pair.first; | |
1345 Tile* b_tile = **b_pair.first; | |
1346 | |
1347 const TilePriority& a_priority = | |
1348 a_tile->priority_for_tree_priority(tree_priority_); | |
1349 const TilePriority& b_priority = | |
1350 b_tile->priority_for_tree_priority(tree_priority_); | |
1351 bool prioritize_low_res = tree_priority_ == SMOOTHNESS_TAKES_PRIORITY; | |
1352 | |
1353 // Now we have to return true iff b is higher priority than a. | |
1354 | |
1355 // If the bin is the same but the resolution is not, then the order will be | |
1356 // determined by whether we prioritize low res or not. | |
1357 // TODO(vmpstr): Remove this when TilePriority is no longer a member of Tile | |
1358 // class but instead produced by the iterators. | |
1359 if (b_priority.priority_bin == a_priority.priority_bin && | |
1360 b_priority.resolution != a_priority.resolution) { | |
1361 // Non ideal resolution should be sorted lower than other resolutions. | |
1362 if (a_priority.resolution == NON_IDEAL_RESOLUTION) | |
1363 return true; | |
1364 | |
1365 if (b_priority.resolution == NON_IDEAL_RESOLUTION) | |
1366 return false; | |
1367 | |
1368 if (prioritize_low_res) | |
1369 return b_priority.resolution == LOW_RESOLUTION; | |
1370 | |
1371 return b_priority.resolution == HIGH_RESOLUTION; | |
1372 } | |
1373 | |
1374 return b_priority.IsHigherPriorityThan(a_priority); | |
1375 } | |
1376 | |
1377 TileManager::EvictionTileIterator::EvictionTileIterator() | |
1378 : comparator_(SAME_PRIORITY_FOR_BOTH_TREES) {} | |
1379 | |
1380 TileManager::EvictionTileIterator::EvictionTileIterator( | |
1381 TileManager* tile_manager, | |
1382 TreePriority tree_priority) | |
1383 : tree_priority_(tree_priority), comparator_(tree_priority) { | |
1384 std::vector<TileManager::PairedPictureLayer> paired_layers; | |
1385 | |
1386 tile_manager->GetPairedPictureLayers(&paired_layers); | |
1387 | |
1388 paired_iterators_.reserve(paired_layers.size()); | |
1389 iterator_heap_.reserve(paired_layers.size()); | |
1390 for (std::vector<TileManager::PairedPictureLayer>::iterator it = | |
1391 paired_layers.begin(); | |
1392 it != paired_layers.end(); | |
1393 ++it) { | |
1394 PairedPictureLayerIterator paired_iterator; | |
1395 if (it->active_layer) { | |
1396 paired_iterator.active_iterator = | |
1397 PictureLayerImpl::LayerEvictionTileIterator(it->active_layer, | |
1398 tree_priority_); | |
1399 } | |
1400 | |
1401 if (it->pending_layer) { | |
1402 paired_iterator.pending_iterator = | |
1403 PictureLayerImpl::LayerEvictionTileIterator(it->pending_layer, | |
1404 tree_priority_); | |
1405 } | |
1406 | |
1407 if (paired_iterator.PeekTile(tree_priority_) != NULL) { | |
1408 paired_iterators_.push_back(paired_iterator); | |
1409 iterator_heap_.push_back(&paired_iterators_.back()); | |
1410 } | |
1411 } | |
1412 | |
1413 std::make_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_); | |
1414 } | |
1415 | |
1416 TileManager::EvictionTileIterator::~EvictionTileIterator() {} | |
1417 | |
1418 TileManager::EvictionTileIterator& TileManager::EvictionTileIterator:: | |
1419 operator++() { | |
1420 std::pop_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_); | |
1421 PairedPictureLayerIterator* paired_iterator = iterator_heap_.back(); | |
1422 iterator_heap_.pop_back(); | |
1423 | |
1424 paired_iterator->PopTile(tree_priority_); | |
1425 if (paired_iterator->PeekTile(tree_priority_) != NULL) { | |
1426 iterator_heap_.push_back(paired_iterator); | |
1427 std::push_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_); | |
1428 } | |
1429 return *this; | |
1430 } | |
1431 | |
1432 TileManager::EvictionTileIterator::operator bool() const { | |
1433 return !iterator_heap_.empty(); | |
1434 } | |
1435 | |
1436 Tile* TileManager::EvictionTileIterator::operator*() { | |
1437 DCHECK(*this); | |
1438 return iterator_heap_.front()->PeekTile(tree_priority_); | |
1439 } | |
1440 | |
1441 TileManager::EvictionTileIterator::PairedPictureLayerIterator:: | |
1442 PairedPictureLayerIterator() {} | |
1443 | |
1444 TileManager::EvictionTileIterator::PairedPictureLayerIterator:: | |
1445 ~PairedPictureLayerIterator() {} | |
1446 | |
1447 Tile* TileManager::EvictionTileIterator::PairedPictureLayerIterator::PeekTile( | |
1448 TreePriority tree_priority) { | |
1449 PictureLayerImpl::LayerEvictionTileIterator* next_iterator = | |
1450 NextTileIterator(tree_priority); | |
1451 if (!next_iterator) | |
1452 return NULL; | |
1453 | |
1454 DCHECK(*next_iterator); | |
1455 DCHECK(std::find(returned_shared_tiles.begin(), | |
1456 returned_shared_tiles.end(), | |
1457 **next_iterator) == returned_shared_tiles.end()); | |
1458 return **next_iterator; | |
1459 } | |
1460 | |
1461 void TileManager::EvictionTileIterator::PairedPictureLayerIterator::PopTile( | |
1462 TreePriority tree_priority) { | |
1463 PictureLayerImpl::LayerEvictionTileIterator* next_iterator = | |
1464 NextTileIterator(tree_priority); | |
1465 DCHECK(next_iterator); | |
1466 DCHECK(*next_iterator); | |
1467 returned_shared_tiles.push_back(**next_iterator); | |
1468 ++(*next_iterator); | |
1469 | |
1470 next_iterator = NextTileIterator(tree_priority); | |
1471 while (next_iterator && | |
1472 std::find(returned_shared_tiles.begin(), | |
1473 returned_shared_tiles.end(), | |
1474 **next_iterator) != returned_shared_tiles.end()) { | |
1475 ++(*next_iterator); | |
1476 next_iterator = NextTileIterator(tree_priority); | |
1477 } | |
1478 } | |
1479 | |
1480 PictureLayerImpl::LayerEvictionTileIterator* | |
1481 TileManager::EvictionTileIterator::PairedPictureLayerIterator::NextTileIterator( | |
1482 TreePriority tree_priority) { | |
1483 // If both iterators are out of tiles, return NULL. | |
1484 if (!active_iterator && !pending_iterator) | |
1485 return NULL; | |
1486 | |
1487 // If we only have one iterator with tiles, return it. | |
1488 if (!active_iterator) | |
1489 return &pending_iterator; | |
1490 if (!pending_iterator) | |
1491 return &active_iterator; | |
1492 | |
1493 Tile* active_tile = *active_iterator; | |
1494 Tile* pending_tile = *pending_iterator; | |
1495 if (active_tile == pending_tile) | |
1496 return &active_iterator; | |
1497 | |
1498 const TilePriority& active_priority = | |
1499 active_tile->priority_for_tree_priority(tree_priority); | |
1500 const TilePriority& pending_priority = | |
1501 pending_tile->priority_for_tree_priority(tree_priority); | |
1502 | |
1503 if (pending_priority.IsHigherPriorityThan(active_priority)) | |
1504 return &active_iterator; | |
1505 return &pending_iterator; | |
1506 } | |
1507 | |
1508 TileManager::EvictionTileIterator::EvictionOrderComparator:: | |
1509 EvictionOrderComparator(TreePriority tree_priority) | |
1510 : tree_priority_(tree_priority) {} | |
1511 | |
1512 bool TileManager::EvictionTileIterator::EvictionOrderComparator::operator()( | |
1513 PairedPictureLayerIterator* a, | |
1514 PairedPictureLayerIterator* b) const { | |
1515 PictureLayerImpl::LayerEvictionTileIterator* a_iterator = | |
1516 a->NextTileIterator(tree_priority_); | |
1517 DCHECK(a_iterator); | |
1518 DCHECK(*a_iterator); | |
1519 | |
1520 PictureLayerImpl::LayerEvictionTileIterator* b_iterator = | |
1521 b->NextTileIterator(tree_priority_); | |
1522 DCHECK(b_iterator); | |
1523 DCHECK(*b_iterator); | |
1524 | |
1525 Tile* a_tile = **a_iterator; | |
1526 Tile* b_tile = **b_iterator; | |
1527 | |
1528 const TilePriority& a_priority = | |
1529 a_tile->priority_for_tree_priority(tree_priority_); | |
1530 const TilePriority& b_priority = | |
1531 b_tile->priority_for_tree_priority(tree_priority_); | |
1532 bool prioritize_low_res = tree_priority_ == SMOOTHNESS_TAKES_PRIORITY; | |
1533 | |
1534 // Now we have to return true iff b is lower priority than a. | |
1535 | |
1536 // If the bin is the same but the resolution is not, then the order will be | |
1537 // determined by whether we prioritize low res or not. | |
1538 // TODO(vmpstr): Remove this when TilePriority is no longer a member of Tile | |
1539 // class but instead produced by the iterators. | |
1540 if (b_priority.priority_bin == a_priority.priority_bin && | |
1541 b_priority.resolution != a_priority.resolution) { | |
1542 // Non ideal resolution should be sorted higher than other resolutions. | |
1543 if (a_priority.resolution == NON_IDEAL_RESOLUTION) | |
1544 return false; | |
1545 | |
1546 if (b_priority.resolution == NON_IDEAL_RESOLUTION) | |
1547 return true; | |
1548 | |
1549 if (prioritize_low_res) | |
1550 return a_priority.resolution == LOW_RESOLUTION; | |
1551 | |
1552 return a_priority.resolution == HIGH_RESOLUTION; | |
1553 } | |
1554 return a_priority.IsHigherPriorityThan(b_priority); | |
1555 } | |
1556 | |
1557 void TileManager::SetRasterizerForTesting(Rasterizer* rasterizer) { | 863 void TileManager::SetRasterizerForTesting(Rasterizer* rasterizer) { |
1558 rasterizer_ = rasterizer; | 864 rasterizer_ = rasterizer; |
1559 rasterizer_->SetClient(this); | 865 rasterizer_->SetClient(this); |
1560 } | 866 } |
1561 | 867 |
1562 bool TileManager::IsReadyToActivate() const { | 868 bool TileManager::IsReadyToActivate() const { |
1563 const std::vector<PictureLayerImpl*>& layers = client_->GetPictureLayers(); | 869 const std::vector<PictureLayerImpl*>& layers = client_->GetPictureLayers(); |
1564 | 870 |
1565 for (std::vector<PictureLayerImpl*>::const_iterator it = layers.begin(); | 871 for (std::vector<PictureLayerImpl*>::const_iterator it = layers.begin(); |
1566 it != layers.end(); | 872 it != layers.end(); |
1567 ++it) { | 873 ++it) { |
1568 if (!(*it)->AllTilesRequiredForActivationAreReadyToDraw()) | 874 if (!(*it)->AllTilesRequiredForActivationAreReadyToDraw()) |
1569 return false; | 875 return false; |
1570 } | 876 } |
1571 | 877 |
1572 return true; | 878 return true; |
1573 } | 879 } |
1574 | 880 |
1575 void TileManager::CheckIfReadyToActivate() { | 881 void TileManager::CheckIfReadyToActivate() { |
1576 TRACE_EVENT0("cc", "TileManager::CheckIfReadyToActivate"); | 882 TRACE_EVENT0("cc", "TileManager::CheckIfReadyToActivate"); |
1577 | 883 |
1578 rasterizer_->CheckForCompletedTasks(); | 884 rasterizer_->CheckForCompletedTasks(); |
1579 did_check_for_completed_tasks_since_last_schedule_tasks_ = true; | 885 did_check_for_completed_tasks_since_last_schedule_tasks_ = true; |
1580 | 886 |
1581 if (IsReadyToActivate()) | 887 if (IsReadyToActivate()) |
1582 client_->NotifyReadyToActivate(); | 888 client_->NotifyReadyToActivate(); |
1583 } | 889 } |
1584 | 890 |
| 891 TileManager::MemoryUsage::MemoryUsage() : memory_bytes_(0), resource_count_(0) { |
| 892 } |
| 893 |
| 894 TileManager::MemoryUsage::MemoryUsage(int64 memory_bytes, int resource_count) |
| 895 : memory_bytes_(memory_bytes), resource_count_(resource_count) { |
| 896 } |
| 897 |
| 898 // static |
| 899 TileManager::MemoryUsage TileManager::MemoryUsage::FromConfig( |
| 900 const gfx::Size& size, |
| 901 ResourceFormat format) { |
| 902 return MemoryUsage(Resource::MemorySizeBytes(size, format), 1); |
| 903 } |
| 904 |
| 905 // static |
| 906 TileManager::MemoryUsage TileManager::MemoryUsage::FromTile(const Tile* tile) { |
| 907 const ManagedTileState& mts = tile->managed_state(); |
| 908 MemoryUsage total_usage; |
| 909 for (int mode = 0; mode < NUM_RASTER_MODES; ++mode) { |
| 910 if (mts.tile_versions[mode].resource_) { |
| 911 total_usage += MemoryUsage::FromConfig( |
| 912 tile->size(), mts.tile_versions[mode].resource_->format()); |
| 913 } |
| 914 } |
| 915 return total_usage; |
| 916 } |
| 917 |
| 918 TileManager::MemoryUsage& TileManager::MemoryUsage::operator+=( |
| 919 const MemoryUsage& other) { |
| 920 memory_bytes_ += other.memory_bytes_; |
| 921 resource_count_ += other.resource_count_; |
| 922 return *this; |
| 923 } |
| 924 |
| 925 TileManager::MemoryUsage& TileManager::MemoryUsage::operator-=( |
| 926 const MemoryUsage& other) { |
| 927 memory_bytes_ -= other.memory_bytes_; |
| 928 resource_count_ -= other.resource_count_; |
| 929 return *this; |
| 930 } |
| 931 |
| 932 TileManager::MemoryUsage TileManager::MemoryUsage::operator-( |
| 933 const MemoryUsage& other) { |
| 934 MemoryUsage result = *this; |
| 935 result -= other; |
| 936 return result; |
| 937 } |
| 938 |
| 939 bool TileManager::MemoryUsage::Exceeds(const MemoryUsage& limit) const { |
| 940 return memory_bytes_ > limit.memory_bytes_ || |
| 941 resource_count_ > limit.resource_count_; |
| 942 } |
| 943 |
1585 } // namespace cc | 944 } // namespace cc |
OLD | NEW |