| Index: native_client_sdk/doc_generated/reference/pnacl-bitcode-manual.html
|
| diff --git a/native_client_sdk/doc_generated/reference/pnacl-bitcode-manual.html b/native_client_sdk/doc_generated/reference/pnacl-bitcode-manual.html
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..030ea2c4a3fd82d01aa6e9ff7eca1153948d8f52
|
| --- /dev/null
|
| +++ b/native_client_sdk/doc_generated/reference/pnacl-bitcode-manual.html
|
| @@ -0,0 +1,5720 @@
|
| +{{+bindTo:partials.standard_nacl_article}}
|
| +
|
| +<section id="pnacl-bitcode-file-reference-manual">
|
| +<h1 id="pnacl-bitcode-file-reference-manual">Pnacl Bitcode File Reference Manual</h1>
|
| +<div class="contents local" id="contents" style="display: none">
|
| +<ul class="small-gap">
|
| +<li><a class="reference internal" href="#introduction" id="id4">Introduction</a></li>
|
| +<li><a class="reference internal" href="#data-model" id="id5">Data Model</a></li>
|
| +<li><a class="reference internal" href="#pnacl-blocks" id="id6">PNaCl Blocks</a></li>
|
| +<li><a class="reference internal" href="#pnacl-records" id="id7">PNaCl Records</a></li>
|
| +<li><a class="reference internal" href="#pnacl-identifiers" id="id8">PNaCl Identifiers</a></li>
|
| +<li><a class="reference internal" href="#conventions-for-describing-records" id="id9">Conventions For Describing Records</a></li>
|
| +<li><a class="reference internal" href="#factorial-example" id="id10">Factorial Example</a></li>
|
| +<li><a class="reference internal" href="#memory-blocks-and-alignment" id="id11">Memory Blocks and Alignment</a></li>
|
| +<li><a class="reference internal" href="#intrinsic-functions" id="id12">Intrinsic functions</a></li>
|
| +<li><p class="first"><a class="reference internal" href="#global-state" id="id13">Global State</a></p>
|
| +<ul class="small-gap">
|
| +<li><a class="reference internal" href="#typing" id="id14">Typing</a></li>
|
| +<li><a class="reference internal" href="#id-counters" id="id15">ID Counters</a></li>
|
| +<li><a class="reference internal" href="#size-variables" id="id16">Size Variables</a></li>
|
| +<li><a class="reference internal" href="#other-variables" id="id17">Other Variables</a></li>
|
| +</ul>
|
| +</li>
|
| +<li><p class="first"><a class="reference internal" href="#global-records" id="id18">Global records</a></p>
|
| +<ul class="small-gap">
|
| +<li><a class="reference internal" href="#header-record" id="id19">Header Record</a></li>
|
| +<li><a class="reference internal" href="#enter-block-record" id="id20">Enter Block Record</a></li>
|
| +<li><a class="reference internal" href="#exit-block-record" id="id21">Exit Block Record</a></li>
|
| +<li><a class="reference internal" href="#abbreviation-record" id="id22">Abbreviation Record</a></li>
|
| +</ul>
|
| +</li>
|
| +<li><p class="first"><a class="reference internal" href="#types-block" id="id23">Types Block</a></p>
|
| +<ul class="small-gap">
|
| +<li><a class="reference internal" href="#count-record" id="id24">Count Record</a></li>
|
| +<li><a class="reference internal" href="#void-type" id="id25">Void Type</a></li>
|
| +<li><a class="reference internal" href="#integer-types" id="id26">Integer Types</a></li>
|
| +<li><a class="reference internal" href="#bit-floating-point-type" id="id27">32-Bit Floating Point Type</a></li>
|
| +<li><a class="reference internal" href="#id1" id="id28">64-bit Floating Point Type</a></li>
|
| +<li><a class="reference internal" href="#vector-types" id="id29">Vector Types</a></li>
|
| +<li><a class="reference internal" href="#function-type" id="id30">Function Type</a></li>
|
| +</ul>
|
| +</li>
|
| +<li><p class="first"><a class="reference internal" href="#globals-block" id="id31">Globals block</a></p>
|
| +<ul class="small-gap">
|
| +<li><a class="reference internal" href="#id2" id="id32">Count Record</a></li>
|
| +<li><a class="reference internal" href="#global-variable-addressses" id="id33">Global Variable Addressses</a></li>
|
| +<li><a class="reference internal" href="#global-constant-addresses" id="id34">Global Constant Addresses</a></li>
|
| +<li><a class="reference internal" href="#zerofill-initializer" id="id35">Zerofill Initializer</a></li>
|
| +<li><a class="reference internal" href="#data-initializer" id="id36">Data Initializer</a></li>
|
| +<li><a class="reference internal" href="#relocation-initializer" id="id37">Relocation Initializer</a></li>
|
| +<li><a class="reference internal" href="#subfield-relocation-initializer" id="id38">Subfield Relocation Initializer</a></li>
|
| +<li><a class="reference internal" href="#compound-initializer" id="id39">Compound Initializer</a></li>
|
| +</ul>
|
| +</li>
|
| +<li><p class="first"><a class="reference internal" href="#valuesymtab-block" id="id40">Valuesymtab Block</a></p>
|
| +<ul class="small-gap">
|
| +<li><a class="reference internal" href="#entry-record" id="id41">Entry Record</a></li>
|
| +</ul>
|
| +</li>
|
| +<li><p class="first"><a class="reference internal" href="#module-block" id="id42">Module Block</a></p>
|
| +<ul class="small-gap">
|
| +<li><a class="reference internal" href="#version" id="id43">Version</a></li>
|
| +<li><a class="reference internal" href="#function-address" id="id44">Function Address</a></li>
|
| +</ul>
|
| +</li>
|
| +<li><p class="first"><a class="reference internal" href="#constants-blocks" id="id45">Constants Blocks</a></p>
|
| +<ul class="small-gap">
|
| +<li><a class="reference internal" href="#set-type" id="id46">Set Type</a></li>
|
| +<li><a class="reference internal" href="#undefined-literal" id="id47">Undefined Literal</a></li>
|
| +<li><a class="reference internal" href="#integer-literal" id="id48">Integer Literal</a></li>
|
| +<li><a class="reference internal" href="#floating-point-literal" id="id49">Floating point literal</a></li>
|
| +</ul>
|
| +</li>
|
| +<li><p class="first"><a class="reference internal" href="#function-blocks" id="id50">Function Blocks</a></p>
|
| +<ul class="small-gap">
|
| +<li><a class="reference internal" href="#function-enter" id="id51">Function enter</a></li>
|
| +<li><a class="reference internal" href="#id3" id="id52">Count Record</a></li>
|
| +<li><p class="first"><a class="reference internal" href="#terminator-instructions" id="id53">Terminator Instructions</a></p>
|
| +<ul class="small-gap">
|
| +<li><a class="reference internal" href="#return-void-instruction" id="id54">Return Void Instruction</a></li>
|
| +<li><a class="reference internal" href="#return-value-instruction" id="id55">Return Value Instruction</a></li>
|
| +<li><a class="reference internal" href="#unconditional-branch-instruction" id="id56">Unconditional Branch Instruction</a></li>
|
| +<li><a class="reference internal" href="#conditional-branch-instruction" id="id57">Conditional Branch Instruction</a></li>
|
| +<li><a class="reference internal" href="#unreachable" id="id58">Unreachable</a></li>
|
| +<li><a class="reference internal" href="#switch-instruction" id="id59">Switch Instruction</a></li>
|
| +</ul>
|
| +</li>
|
| +<li><p class="first"><a class="reference internal" href="#integer-binary-instructions" id="id60">Integer Binary Instructions</a></p>
|
| +<ul class="small-gap">
|
| +<li><a class="reference internal" href="#integer-add" id="id61">Integer Add</a></li>
|
| +<li><a class="reference internal" href="#integer-subtract" id="id62">Integer Subtract</a></li>
|
| +<li><a class="reference internal" href="#integer-multiply" id="id63">Integer Multiply</a></li>
|
| +<li><a class="reference internal" href="#signed-integer-divide" id="id64">Signed Integer Divide</a></li>
|
| +<li><a class="reference internal" href="#unsigned-integer-divide" id="id65">Unsigned Integer Divide</a></li>
|
| +<li><a class="reference internal" href="#signed-integer-remainder" id="id66">Signed Integer Remainder</a></li>
|
| +<li><a class="reference internal" href="#unsigned-integer-remainder-instruction" id="id67">Unsigned Integer Remainder Instruction</a></li>
|
| +<li><a class="reference internal" href="#shift-left" id="id68">Shift Left</a></li>
|
| +<li><a class="reference internal" href="#logical-shift-right" id="id69">Logical Shift Right</a></li>
|
| +<li><a class="reference internal" href="#arithmetic-shift-right" id="id70">Arithmetic Shift Right</a></li>
|
| +<li><a class="reference internal" href="#logical-and" id="id71">Logical And</a></li>
|
| +<li><a class="reference internal" href="#logical-or" id="id72">Logical Or</a></li>
|
| +<li><a class="reference internal" href="#logical-xor" id="id73">Logical Xor</a></li>
|
| +</ul>
|
| +</li>
|
| +<li><p class="first"><a class="reference internal" href="#floating-point-binary-instructions" id="id74">Floating Point Binary Instructions</a></p>
|
| +<ul class="small-gap">
|
| +<li><a class="reference internal" href="#floating-point-add" id="id75">Floating Point Add</a></li>
|
| +<li><a class="reference internal" href="#floating-point-subtract" id="id76">Floating Point Subtract</a></li>
|
| +<li><a class="reference internal" href="#floating-point-multiply" id="id77">Floating Point Multiply</a></li>
|
| +<li><a class="reference internal" href="#floating-point-divide" id="id78">Floating Point Divide</a></li>
|
| +<li><a class="reference internal" href="#floating-point-remainder" id="id79">Floating Point Remainder</a></li>
|
| +</ul>
|
| +</li>
|
| +<li><p class="first"><a class="reference internal" href="#memory-creation-and-access-instructions" id="id80">Memory Creation And Access Instructions</a></p>
|
| +<ul class="small-gap">
|
| +<li><a class="reference internal" href="#alloca-instruction" id="id81">Alloca Instruction</a></li>
|
| +<li><a class="reference internal" href="#load-instruction" id="id82">Load Instruction</a></li>
|
| +<li><a class="reference internal" href="#store-instruction" id="id83">Store Instruction</a></li>
|
| +</ul>
|
| +</li>
|
| +<li><p class="first"><a class="reference internal" href="#conversion-instructions" id="id84">Conversion Instructions</a></p>
|
| +<ul class="small-gap">
|
| +<li><a class="reference internal" href="#integer-truncating-instruction" id="id85">Integer Truncating Instruction</a></li>
|
| +<li><a class="reference internal" href="#floating-point-truncating-instruction" id="id86">Floating Point Truncating Instruction</a></li>
|
| +<li><a class="reference internal" href="#zero-extending-instruction" id="id87">Zero Extending Instruction</a></li>
|
| +<li><a class="reference internal" href="#sign-extending-instruction" id="id88">Sign Extending Instruction</a></li>
|
| +<li><a class="reference internal" href="#floating-point-extending-instruction" id="id89">Floating point Extending Instruction</a></li>
|
| +<li><a class="reference internal" href="#floating-point-to-unsigned-integer-instruction" id="id90">Floating Point To Unsigned Integer Instruction</a></li>
|
| +<li><a class="reference internal" href="#floating-point-to-signed-integer-instruction" id="id91">Floating Point To Signed Integer Instruction</a></li>
|
| +<li><a class="reference internal" href="#unsigned-integer-to-floating-point-instruction" id="id92">Unsigned Integer To Floating Point Instruction</a></li>
|
| +<li><a class="reference internal" href="#signed-integer-to-floating-point-instruction" id="id93">Signed Integer To Floating Point Instruction</a></li>
|
| +<li><a class="reference internal" href="#bitcast-instruction" id="id94">Bitcast Instruction</a></li>
|
| +</ul>
|
| +</li>
|
| +<li><a class="reference internal" href="#integer-comparison-instructions" id="id95">Integer Comparison Instructions</a></li>
|
| +<li><a class="reference internal" href="#floating-point-comparison-instructions" id="id96">Floating Point Comparison Instructions</a></li>
|
| +<li><p class="first"><a class="reference internal" href="#vector-instructions" id="id97">Vector Instructions</a></p>
|
| +<ul class="small-gap">
|
| +<li><a class="reference internal" href="#insert-element-instruction" id="id98">Insert Element Instruction</a></li>
|
| +<li><a class="reference internal" href="#extract-element-instruction" id="id99">Extract Element Instruction</a></li>
|
| +</ul>
|
| +</li>
|
| +<li><p class="first"><a class="reference internal" href="#other-instructions" id="id100">Other Instructions</a></p>
|
| +<ul class="small-gap">
|
| +<li><a class="reference internal" href="#forward-type-declaration" id="id101">Forward type declaration</a></li>
|
| +<li><a class="reference internal" href="#phi-instruction" id="id102">Phi Instruction</a></li>
|
| +<li><a class="reference internal" href="#select-instruction" id="id103">Select Instruction</a></li>
|
| +<li><a class="reference internal" href="#call-instructions" id="id104">Call Instructions</a></li>
|
| +</ul>
|
| +</li>
|
| +<li><a class="reference internal" href="#direct-procedure-call" id="id105">Direct Procedure Call</a></li>
|
| +<li><a class="reference internal" href="#direct-function-call" id="id106">Direct Function Call</a></li>
|
| +<li><a class="reference internal" href="#indirect-procedure-call" id="id107">Indirect Procedure Call</a></li>
|
| +<li><a class="reference internal" href="#indirect-function-call" id="id108">Indirect Function Call</a></li>
|
| +</ul>
|
| +</li>
|
| +<li><p class="first"><a class="reference internal" href="#support-functions" id="id109">Support Functions</a></p>
|
| +<ul class="small-gap">
|
| +<li><a class="reference internal" href="#signrotate" id="id110">SignRotate</a></li>
|
| +<li><a class="reference internal" href="#absoluteindex" id="id111">AbsoluteIndex</a></li>
|
| +<li><a class="reference internal" href="#relativeindex" id="id112">RelativeIndex</a></li>
|
| +<li><a class="reference internal" href="#abbrevindex" id="id113">AbbrevIndex</a></li>
|
| +<li><a class="reference internal" href="#log2" id="id114">Log2</a></li>
|
| +<li><a class="reference internal" href="#exp" id="id115">exp</a></li>
|
| +<li><a class="reference internal" href="#bitsizeof" id="id116">BitSizeOf</a></li>
|
| +<li><a class="reference internal" href="#underlyingtype" id="id117">UnderlyingType</a></li>
|
| +<li><a class="reference internal" href="#underlyingcount" id="id118">UnderlyingCount</a></li>
|
| +<li><a class="reference internal" href="#isinteger" id="id119">IsInteger</a></li>
|
| +<li><a class="reference internal" href="#isfloat" id="id120">IsFloat</a></li>
|
| +<li><a class="reference internal" href="#isvector" id="id121">IsVector</a></li>
|
| +<li><a class="reference internal" href="#isprimitive" id="id122">IsPrimitive</a></li>
|
| +<li><a class="reference internal" href="#isfcnargtype" id="id123">IsFcnArgType</a></li>
|
| +<li><p class="first"><a class="reference internal" href="#abbreviations" id="id124">Abbreviations</a></p>
|
| +<ul class="small-gap">
|
| +<li><a class="reference internal" href="#bitstream-format" id="id125">Bitstream Format</a></li>
|
| +<li><a class="reference internal" href="#abbreviations-block" id="id126">Abbreviations Block</a></li>
|
| +<li><a class="reference internal" href="#reference-implementation" id="id127">Reference Implementation</a></li>
|
| +</ul>
|
| +</li>
|
| +</ul>
|
| +</li>
|
| +</ul>
|
| +
|
| +</div><section id="introduction">
|
| +<h2 id="introduction">Introduction</h2>
|
| +<p>This document is a reference manual for the contents of PNaCl bitcode files. We
|
| +define bitcode files via three layers. The first layer is presented using
|
| +assembly language <em>PNaClAsm</em>, and defines the textual form of the bitcode
|
| +file. The textual form is then lowered to a sequence of <em>PNaCl records</em>. The
|
| +final layer applies abbreviations that convert each PNaCl record into a
|
| +corresponding sequence of bits.</p>
|
| +<p>PNaClAsm uses a <em>static single assignment</em> (SSA) based representation that
|
| +requires generated results to have a single (assignment) source.</p>
|
| +<p>PNaClAsm focuses on the semantic content of the file, not the bit-encoding of
|
| +that content. However, it does provide annotations that allow one to specify how
|
| +the the abbreviations are used to convert PNaCl records into the sequence of bits.</p>
|
| +<p>Each construct in PNaClAsm defines a corresponding <a class="reference internal" href="#link-for-pnacl-records"><em>PNaCl
|
| +record</em></a>. A PNaCl bitcode file is simply a sequence of PNaCl
|
| +records. The goal of PNaClAsm is to make records easier to read, and not to
|
| +define a high-level user programming language.</p>
|
| +<p>PNaCl records are an abstract encoding of structured data, similar to XML. Like
|
| +XML, PNaCl records have a notion of tags (i.e. the first element in a record,
|
| +called a <em>code</em>), and nested structures. The nested structures are defined by
|
| +corresponding <em>enter</em> and <em>exit</em> block records.</p>
|
| +<p>These block records must be used like balanced parentheses to define the block
|
| +structure that is imposed on top of records. Each exit record must be preceded
|
| +by a corresponding enter record. Blocks can be nested by nesting enter/exit
|
| +records appropriately.</p>
|
| +<p>The <em>PNaCl bitcode writer</em> takes the sequence of records, defined by a PNaClAsm
|
| +program, and converts each record into a (variable) sequence of bits. The output
|
| +of each bit sequence is appended together. The resulting generated sequence of
|
| +bits is the contents of the PNaCl bitcode file.</p>
|
| +<p>For every kind of record, there is a default method for converting records into
|
| +bit sequences. These methods correspond to a notion of
|
| +<a class="reference internal" href="#link-for-abbreviations-section"><em>abbreviations</em></a>. Each abbreviation defines
|
| +a specific bit sequence conversion to be applied. The default conversion methods
|
| +are simply predefined abbreviations.</p>
|
| +<p>The default abbreviations can be overridden with user-specified abbreviations.
|
| +All user-specified abbreviations are included in the generated bitcode
|
| +file. Each abbreviation defines how a record is converted to a bit sequence. The
|
| +PNaCl translator uses these abbreviations to convert the bit sequence back to
|
| +the corresponding sequence of PNaCl records. As a result, all records have an
|
| +abbreviation (user or default) associated with them.</p>
|
| +<p>Conceptually, abbreviations are used to define how to pack the contents of
|
| +records into bit sequences. The main reason for defining abbreviations is to
|
| +save space. The default abbreviations are simplistic and are intended to handle
|
| +all possible records. The default abbreviations do not really worry about being
|
| +efficient, in terms of the number of bits generated.</p>
|
| +<p>By separating the concepts of PNaCl records and abbreviations, the notion of
|
| +data compression is cleanly separated from semantic content. This allows
|
| +different use cases to decide how much effort should be spent on compressing
|
| +records.</p>
|
| +<p>For a JIT compiler that produces bitcode, little (if any) compression should be
|
| +applied. In fact, the API to the JIT may just be the records themselves. The
|
| +goal of a JIT is to perform the final translation to machine code as quickly as
|
| +possible. On the other hand, when delivering across the web, one may want to
|
| +compress the sequence of bits considerably, to reduce costs in delivering web
|
| +pages.</p>
|
| +</section><section id="data-model">
|
| +<h2 id="data-model">Data Model</h2>
|
| +<p>The data model for PNaCl bitcode is fixed at little-endian ILP32: pointers are
|
| +32 bits in size. 64-bit integer types are also supported natively via the i64
|
| +type (for example, a front-end can generate these from the C/C++ type <em>long
|
| +long</em>).</p>
|
| +<p>Integers are assumed to be modeled using two’s complement. Floating point
|
| +support is fixed at IEEE 754 32-bit and 64-bit values (float and double,
|
| +respectively).</p>
|
| +</section><section id="pnacl-blocks">
|
| +<h2 id="pnacl-blocks">PNaCl Blocks</h2>
|
| +<p>Blocks are used to organize records in the bitcode file. The kinds of blocks
|
| +defined in PNaClAsm are:</p>
|
| +<dl class="docutils">
|
| +<dt>Module block</dt>
|
| +<dd>A top-level block defining the program. This block defines global information
|
| +used by the program, followed by function blocks defining the implementation
|
| +of functions within the program.</dd>
|
| +<dt>Types block</dt>
|
| +<dd>Defines the set of types used by the program. All types used in the program
|
| +must be defined in this block. These types consist of primitive types as well
|
| +as high level constructs such as vectors and function signatures.</dd>
|
| +<dt>Globals block</dt>
|
| +<dd>Defines the set of global addresses of global variables and constants used by
|
| +the program. It also defines how each global (associated with the global
|
| +address) is initialized.</dd>
|
| +<dt>Valuesymtab block</dt>
|
| +<dd>Defines textual names for external function addresses.</dd>
|
| +<dt>Function block</dt>
|
| +<dd>Each function (implemented) in a program has its own block that defines the
|
| +implementation of the corresponding function.</dd>
|
| +<dt>Constants block</dt>
|
| +<dd>Each implemented function, that uses constants in its instructions, defines a
|
| +constant block. Constants blocks appear within the corresponding function
|
| +block of the implemented function.</dd>
|
| +<dt>Abbreviations block</dt>
|
| +<dd>Defines global abbreviations that are used to compress PNaCl records. This
|
| +block is segmented into multiple sections, one section for each kind of
|
| +block. This block appears at the beginning of the module block.</dd>
|
| +</dl>
|
| +<p>This section is only intended as a high-level discussion of blocks. Later
|
| +subsections will dive more deeply into the constraints on how blocks must be
|
| +laid out. This section only presents the overall concepts of what kinds of data
|
| +is stored in each of the blocks.</p>
|
| +<p>A PNaCl program consists of a header record and a module block. The header
|
| +defines a sequence of bytes uniquely identifying the file as a bitcode file. The
|
| +module block defines the program to run.</p>
|
| +<p>Each block, within a bitcode file, defines values. These values are associated
|
| +with IDs. Each type of block defines different kinds of IDs. The module, types,
|
| +globals, and abbreviations blocks define global identifiers, and only a single
|
| +instance can appear. The function and constant blocks define local identifiers,
|
| +and can have multiple instances (one for each implemented function).</p>
|
| +<p>Each <a class="reference internal" href="#link-for-function-blocks-section"><em>function block</em></a> defines the
|
| +implementation of a single function. Each function block defines the
|
| +intermediate representation of the function, consisting of basic blocks and
|
| +instructions. If constants are used within instructions, they are defined in a
|
| +<em>constants block</em>, nested within the corresponding function block.</p>
|
| +<p>All function blocks are associated with a corresponding function address. This
|
| +association is (again) positional rather than explicit. That is, the Nth
|
| +function block in a module block corresponds to the Nth defining (rather than
|
| +declared) function address record in the module block.</p>
|
| +<p>Hence, within a function block, there is no explicit reference to the
|
| +function address the block defines. For readability, PNaClAsm uses the
|
| +corresponding function heading, associated with the corresponding
|
| +function address record, even though that data does not appear in the
|
| +corresponding records.</p>
|
| +</section><section id="pnacl-records">
|
| +<span id="link-for-pnacl-records"></span><h2 id="pnacl-records"><span id="link-for-pnacl-records"></span>PNaCl Records</h2>
|
| +<p>A PNaCl record is a non-empty sequence of unsigned, 64-bit, integers. A record
|
| +is identified by the record <em>code</em>, which is the first element in the
|
| +sequence. Record codes are unique within a specific kind of block, but are not
|
| +necessarily unique across different kinds of blocks. The record code acts as the
|
| +variant discriminator (i.e. tag) within a block, to identify what kind of record
|
| +it is.</p>
|
| +<p>Record codes that are local to a specific kind of block are small values
|
| +(starting from zero). In an ideal world, they would be a consecutive sequence of
|
| +integers, starting at zero. However, the reality is that PNaCl records evolved
|
| +over time (and actually started as <a class="reference external" href="http://llvm.org/docs/BitCodeFormat.html">LLVM records</a>). For backwards
|
| +compatibility, old numbers have not been reused, leaving gaps in the actual
|
| +record code values used.</p>
|
| +<p>Global record codes are record codes that have the same meaning in multiple
|
| +kinds of block. To separate global record codes from local record codes, large
|
| +values are used. Currently there are four global record codes. To make these
|
| +cases clear, and to leave room for lots of future growth in PNaClAsm, these
|
| +special records have record codes close to the value 2**16. Note: Well-formed
|
| +PNaCl bitcode files do not have record codes >= 2**16.</p>
|
| +<p>A PNaCl record is denoted as follows:</p>
|
| +<pre class="prettyprint">
|
| +a: <v0, v1, ... , vN>
|
| +</pre>
|
| +<p>The value <em>v0</em> is the record code. The remaining values, <em>v1</em> through <em>vN</em>, are
|
| +parameters that fill in additional information needed by the construct it
|
| +represents. All records must have a record code. Hence, empty PNaCl records are
|
| +not allowed. <em>a</em> is the index to the abbreviation used to convert the record to
|
| +a bit sequence.</p>
|
| +<p>While most records (for a given record code) are of the same length, it is not
|
| +true of all record codes. Some record codes can have arbitrary length. In
|
| +particular, function type signatures, call instructions, phi nodes, switch
|
| +instructions, and global variable initialization records all have variable
|
| +length. The expected length is predefined and part of the PNaClAsm language. See
|
| +the corresponding contruct (associated with the record) to determine the
|
| +expected length.</p>
|
| +<p>The PNaCl bitstream writer, which converts records to bit sequences, does this
|
| +by writing out the abbreviation index used to encode the record, followed by the
|
| +contents of the record. The details of this are left to the section on
|
| +<a class="reference internal" href="#link-for-abbreviations-section"><em>abbreviations</em></a>. However, at the record
|
| +level, one important aspect of this appears in block enter records. These
|
| +records must define how many bits are required to hold abbreviation indices
|
| +associated with records of that block.</p>
|
| +<p>There are 4 predefined (default) abbreviation indices, used as the default
|
| +abbreviations for PNaCl records. They are:</p>
|
| +<dl class="docutils">
|
| +<dt>0</dt>
|
| +<dd>Abbreviation index for the abbreviation used to bit-encode an exit block
|
| +record.</dd>
|
| +<dt>1</dt>
|
| +<dd>Abbreviation index for the abbreviation used to bit-encode an enter block
|
| +record.</dd>
|
| +<dt>2</dt>
|
| +<dd>Abbreviation index for the abbreviation used to bit-encode a user-defined
|
| +abbreviation. Note: User defined abbreviations are also encoded as records,
|
| +and hence need an abbreviation index to bit-encode them.</dd>
|
| +<dt>3</dt>
|
| +<dd>Abbreviation index for the default abbreviation to bit-encode all other
|
| +records in the bitcode file.</dd>
|
| +</dl>
|
| +<p>A block may (in addition), define a list of block specific, user-defined,
|
| +abbreviations (of length <em>U</em>). The number of bits <em>B</em> specified for an enter
|
| +record must be sufficiently large such that</p>
|
| +<pre class="prettyprint">
|
| +2**B >= U + 4
|
| +</pre>
|
| +<p>In addition, the upper limit for B is 32.</p>
|
| +<p>PNaClAsm requires that you specify the number of bits needed to read
|
| +abbreviations as part of the enter block record. This allows the PNaCl bitcode
|
| +reader/writer to use the specified number of bits to encode abbreviation
|
| +indices.</p>
|
| +</section><section id="pnacl-identifiers">
|
| +<h2 id="pnacl-identifiers">PNaCl Identifiers</h2>
|
| +<p>A program is defined as a sequence of top-level <em>blocks</em>. Blocks can be nested
|
| +within other blocks. Each block defines a sequence of records.</p>
|
| +<p>Most of the records, within a block, also define unique values. Each unique
|
| +value is given a corresponding unique identifier (i.e. <em>ID</em>). In PNaClAsm. each
|
| +kind of block defines its own kind of identifiers. The names of these
|
| +identifiers are defined by concatenating a prefix character (‘@’ or ‘%’), the
|
| +kind of block (a single character), and a suffix index. The suffix index is
|
| +defined by the positional location of the defined value within the records of
|
| +the corresponding block. The indices are all zero based, meaning that the first
|
| +defined value (within a block) is defined using index 0.</p>
|
| +<p>Identifiers are categorized into two types, <em>local</em> and <em>global</em>. Local
|
| +identifiers are identifiers that are associated with the implementation of a
|
| +single function. In that sense, they are local to the block they appear in.</p>
|
| +<p>All other identifiers are global. This split is intentional. Global identifiers
|
| +are used by multiple functions, and therefore must be known in all function
|
| +implementations. Local identifiers only apply to a single function, and can be
|
| +reused between functions. The <em>PNaCl translator</em> uses this separation to
|
| +parallelize the compilation of functions.</p>
|
| +<p>In general, global identifiers are tied to a specific type of block. Local
|
| +identifiers are unique to the function block they appear in.</p>
|
| +<p>Note that local abbreviation identifiers are unique to the block they appear
|
| +in. Global abbreviation identifiers are only unique to the block type they are
|
| +defined for. Different block types can reuse global abbreviation identifiers.</p>
|
| +<p>Global identifiers use the prefix character <em>‘@’</em> while local identifiers use
|
| +the prefix character <em>‘%’</em>.</p>
|
| +<p>Note that by using positional location to define identifiers (within a block),
|
| +the values defined in PNaCl bitcode files need not be explicitly included in the
|
| +bitcode file. Rather, they are inferred by the (ordered) position of the record
|
| +in the block. This is also intentional. It is used to reduce the amount of data
|
| +that must be (explicitly) passed to the PNaCl translator, and downloaded though
|
| +the internet.</p>
|
| +<p>In general, most of the records within blocks are assumed to be topologically
|
| +sorted, putting value definitions before their uses. This implies that records
|
| +do not need to encode data if they can deduce the corresponding information from
|
| +their uses.</p>
|
| +<p>The most common use of this is that many instructions use the type of their
|
| +operands to determine the type of the instruction. Again, this is
|
| +intentional. It allows less information to be stored.</p>
|
| +<p>However, for function blocks (which define instructions), no topological sort
|
| +exists. Loop carried value dependencies simply do not allow topologically
|
| +sorting. To deal with this, function blocks have a notion of a forward
|
| +(instruction value) declaration. These declarations must appear before any of
|
| +the uses of that value, if the (instruction) value is defined later in the
|
| +function than its first use (see <a class="reference internal" href="#link-for-forward-type-declaration-section"><em>forward type
|
| +declarations</em></a>).</p>
|
| +<p>The kinds of identifiers used in PNaClAsm are:</p>
|
| +<dl class="docutils">
|
| +<dt>@a</dt>
|
| +<dd>Global abbreviation identifier.</dd>
|
| +<dt>%a</dt>
|
| +<dd>Block local abbreviation identifier.</dd>
|
| +<dt>%b</dt>
|
| +<dd>Function local basic block identifier.</dd>
|
| +<dt>%c</dt>
|
| +<dd>Function local constant identifier.</dd>
|
| +<dt>@f</dt>
|
| +<dd>Global function address identifier.</dd>
|
| +<dt>@g</dt>
|
| +<dd>Global variable/constant address identifier.</dd>
|
| +<dt>%p</dt>
|
| +<dd>Function local parameter identifier.</dd>
|
| +<dt>@t</dt>
|
| +<dd>Global type identifier.</dd>
|
| +<dt>%v</dt>
|
| +<dd>Function local instruction generated value identifier.</dd>
|
| +</dl>
|
| +</section><section id="conventions-for-describing-records">
|
| +<h2 id="conventions-for-describing-records">Conventions For Describing Records</h2>
|
| +<p>PNaClAsm is the textual representation of PNaCl records. Each PNaCl record is
|
| +described by a corresponding PNaClAsm construct. These constructs are described
|
| +using syntax rules, and semantics on how they are converted to records. Along
|
| +with the rules, is a notion of <a class="reference internal" href="#link-for-global-state-section"><em>Global State</em></a>. The global
|
| +state is updated by syntax rules. The purpose of the global state is to track
|
| +positional dependencies between records.</p>
|
| +<p>For each PNaCl construct, we define multiple subsections. The <strong>Syntax</strong>
|
| +subsection defines a syntax rule for the construct. The <strong>Record</strong> subsection
|
| +defines the corresponding record associated with the syntax rule. The
|
| +<strong>Semantics</strong> subsection describes the semantics associated with the record, in
|
| +terms of data within the globa state and the corresponding syntax. It also
|
| +includes other high-level semantics, when appropriate.</p>
|
| +<p>The <strong>Constraints</strong> subsection (if present) defines any constraints associated
|
| +with the construct, including the global state. The <strong>Updates</strong> subsection (if
|
| +present) defines how the global state is updated when the construct is
|
| +processed. The <strong>Examples</strong> subsection gives one (or more) examples of using
|
| +the corresponding PNaClAsm construct.</p>
|
| +<p>Some semantics subsections use functions to compute values. The meaning of
|
| +functions can be found in <a class="reference internal" href="#link-for-support-functions-section"><em>Support Functions</em></a>.</p>
|
| +<p>The syntax rule may include the abbreviation to use, when converting to a
|
| +bit-sequence. These abbreviations, if allowed, are at the end of the construct,
|
| +and enclosed in <em><</em> and <em>></em> brackets. These abbreviation are optional in the
|
| +syntax, and can be omitted. If they are used, the abbreviation brackets are part
|
| +of the actual syntax of the construct. If the abbreviation is omitted, the
|
| +default abbreviation index is used. To make it clear that abbreviations are
|
| +optional, syntax rules separate abbreviations using plenty of whitespace.</p>
|
| +<p>Within a syntax rule, lower case characters are literal values. Sequences of
|
| +upper case alphanumeric characters are named values. if we mix lower and upper
|
| +case letters within a name appearing in a syntax rule, the lower case letters
|
| +are literal while the upper case sequence of alphanumeric charaters denote rule
|
| +specific values. The valid values for each of these names will be defined in
|
| +the corresponding semantics and constraints subsections.</p>
|
| +<p>For example, consider the following syntax rule:</p>
|
| +<pre class="prettyprint">
|
| +%vN = add T O1, O2; <A>
|
| +</pre>
|
| +<p>This rule defines a PNaClAsm add instruction. This construct defines an
|
| +instruction that adds two values (<em>O1</em> and <em>O2</em>) to generate instruction value
|
| +<em>%vN</em>. The types of the arguments, and the result, are all of type <em>T</em>. If
|
| +abbreviation ID <em>A</em> is present, the record is encoded using that
|
| +abbreviation. Otherwise the corresponding default abbreviation (3) is used.</p>
|
| +<p>To be concrete, the syntactic rule above defines the structure of the following
|
| +PNaClAsm examples.</p>
|
| +<pre class="prettyprint">
|
| +%v10 = add i32 %v1, %v2; <@a5>
|
| +%v11 = add i32 %v10, %v3;
|
| +</pre>
|
| +<p>In addition to specifying the syntax, each syntax rule can also also specify the
|
| +contents of the corresponding record in the corresponding record subsection. In
|
| +simple cases, the elements of the corresponding record are predefined (literal)
|
| +constants. Otherwise the record element is a name that is defined by the other
|
| +subsections associated with the construct.</p>
|
| +</section><section id="factorial-example">
|
| +<h2 id="factorial-example">Factorial Example</h2>
|
| +<p>This section provides a simple example of a PNaCl bitcode file. Its contents
|
| +describe a bitcode file that only defines a function to compute the factorial
|
| +value of a number.</p>
|
| +<p>In C, the factorial function can be defined as:</p>
|
| +<pre class="prettyprint">
|
| +int fact(int n) {
|
| + if (n == 1) return 1;
|
| + return n * fact(n-1);
|
| +}
|
| +</pre>
|
| +<p>Compiling this into a PNaCl bitcode file, and dumping out its contents with
|
| +utility <em>pnacl-bcdis</em>, the corresponding output is:</p>
|
| +<pre class="prettyprint">
|
| + 0:0|<65532, 80, 69, 88, 69, 1, 0,|Magic Number: 'PEXE' (80, 69, 88, 69)
|
| + | 8, 0, 17, 0, 4, 0, 2, 0, 0, |PNaCl Version: 2
|
| + | 0> |
|
| + 16:0|1: <65535, 8, 2> |module { // BlockID = 8
|
| + 24:0| 3: <1, 1> | version 1;
|
| + 26:4| 1: <65535, 0, 2> | abbreviations { // BlockID = 0
|
| + 36:0| 0: <65534> | }
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 4> | count 4;
|
| + 50:4| 3: <7, 32> | @t0 = i32;
|
| + 53:6| 3: <2> | @t1 = void;
|
| + 55:4| 3: <21, 0, 0, 0> | @t2 = i32 (i32);
|
| + 59:4| 3: <7, 1> | @t3 = i1;
|
| + 62:0| 0: <65534> | }
|
| + 64:0| 3: <8, 2, 0, 0, 0> | define external i32 @f0(i32);
|
| + 68:6| 1: <65535, 19, 2> | globals { // BlockID = 19
|
| + 76:0| 3: <5, 0> | count 0;
|
| + 78:4| 0: <65534> | }
|
| + 80:0| 1: <65535, 14, 2> | valuesymtab { // BlockID = 14
|
| + 88:0| 3: <1, 0, 102, 97, 99, | @f0 : "fact";
|
| + | 116> |
|
| + 96:4| 0: <65534> | }
|
| +100:0| 1: <65535, 12, 2> | function i32 @f0(i32 %p0) {
|
| + | | // BlockID = 12
|
| +108:0| 3: <1, 3> | blocks 3;
|
| +110:4| 1: <65535, 11, 2> | constants { // BlockID = 11
|
| +120:0| 3: <1, 0> | i32:
|
| +122:4| 3: <4, 2> | %c0 = i32 1;
|
| +125:0| 0: <65534> | }
|
| + | | %b0:
|
| +128:0| 3: <28, 2, 1, 32> | %v0 = icmp eq i32 %p0, %c0;
|
| +132:6| 3: <11, 1, 2, 1> | br i1 %v0, label %b1, label %b2;
|
| + | | %b1:
|
| +136:6| 3: <10, 2> | ret i32 %c0;
|
| + | | %b2:
|
| +139:2| 3: <2, 3, 2, 1> | %v1 = sub i32 %p0, %c0;
|
| +143:2| 3: <34, 0, 5, 1> | %v2 = call i32 @f0(i32 %v1);
|
| +148:0| 3: <2, 5, 1, 2> | %v3 = mul i32 %p0, %v2;
|
| +152:0| 3: <10, 1> | ret i32 %v3;
|
| +154:4| 0: <65534> | }
|
| +156:0|0: <65534> |}
|
| +</pre>
|
| +<p>Note that there are three columns in this output. The first column contains the
|
| +bit positions of the records within the bitcode file. The second column contains
|
| +the sequence of records within the bitcode file. The third column contains the
|
| +corresponding PNaClAsm program.</p>
|
| +<p>Bit positions are defined by a pair <em>B:N</em>. <em>B</em> is the number of bytes, while <em>N</em>
|
| +is the bit offset within the <em>Bth</em> byte. Hence, the bit position (in bits) is:</p>
|
| +<pre class="prettyprint">
|
| +B*8 + N
|
| +</pre>
|
| +<p>Hence, the first <em>header</em> record is at bit offset 0 (0*8+0). The second record
|
| +is at bit offset 128 (16*8+0). The third record is at bit offset 192 (24*8+0).
|
| +The fourth record is at bit offset 212 (26*8+4).</p>
|
| +<p>The header record is a sequence of 16 bytes, defining the contents of the first
|
| +16 bytes of the bitcode file. These bytes never change, and are expected for all
|
| +version 2, PNaClBitcode files. The first four bytes define the magic number of
|
| +the file, i.e. ‘PEXE’. All PEXE bitcode files begin with these four bytes.</p>
|
| +<p>All but the header record has an abbreviation index associated with it. Since no
|
| +user-defined abbreviations are provided, all records were converted to
|
| +bitsequences using default abbreviations.</p>
|
| +<p>The types block (starting at bit address 40:0), defines 4 types: <em>i1</em>, <em>i32</em>,
|
| +<em>void</em>, and function signature <em>i32 (i32)</em>.</p>
|
| +<p>Bit address 64:0 declares the factorial function address @f0, and its
|
| +corresponding type signature. Bit address 88:0 associates the name “fact” with
|
| +function address @f0.</p>
|
| +<p>Bit address 100:0 defines the function block that implements function
|
| +“fact”. The entry point is %b0 (at bit address 128:0). It uses the 32-bit
|
| +integer constant 1 (defined at bit addresses 122:4). Bit address 128:0 defines
|
| +an equality comparison of the argument %p0 with 1 (constant %c0). Bit address
|
| +132:6 defines a conditional branch. If the result of the previous comparison
|
| +(%v0) is true, the program will branch to block %b1. Otherwise it will branch to
|
| +block %b2.</p>
|
| +<p>Bit address 136:6 returns constant 1 (%c0) when the input parameter is 1.
|
| +Instructions between bit address 139:2 and 154:4 compute and return “n *
|
| +fact(n-1)”.</p>
|
| +</section><section id="memory-blocks-and-alignment">
|
| +<span id="link-for-memory-blocks-and-alignment-section"></span><h2 id="memory-blocks-and-alignment"><span id="link-for-memory-blocks-and-alignment-section"></span>Memory Blocks and Alignment</h2>
|
| +<p>In general, variable and heap allocated data are represented as byte addressable
|
| +memory blocks. Alignment is address placement of these memory blocks. Alignment
|
| +is always a power of 2, and defines an expectation on the memory address. That
|
| +is, an alignment is met if the memory address is (evenly) divisible by the
|
| +alignment. Note that alignment of 0 is never allowed.</p>
|
| +<blockquote>
|
| +<div>Alignment plays a role at two points:</div></blockquote>
|
| +<ul class="small-gap">
|
| +<li>When you create a local/global variable</li>
|
| +<li>When you load/store data using a pointer.</li>
|
| +</ul>
|
| +<p>PNaClAsm allows most types to be placed at any address, and therefore can
|
| +have alignment of 1. However, many architectures can load more efficiently
|
| +if the data has an alignment that is larger than 1. As such, chosing a larger
|
| +alignment can make load/stores more efficient.</p>
|
| +<p>On loads and stores, the aligment in the instruction is used to communicate what
|
| +assumptions the PNaCl translator can make when choosing the appropriate machine
|
| +instructions. If the alignment is 1, it can’t assume anything about the memory
|
| +address used by the instruction. When the alignment is greater than one, it can
|
| +use that information to potentially chose a more efficent sequence of
|
| +instructions to do the load/store.</p>
|
| +<p>When laying out data within a variable, one also considers alignment. The reason
|
| +for this is that if you want an address to be aligned, within the bytes defining
|
| +the variable, you must choose an alignment for the variable that guarantees that
|
| +alignment.</p>
|
| +<p>In PNaClAsm, the valid load/store alignments are:</p>
|
| +<table border="1" class="docutils">
|
| +<colgroup>
|
| +</colgroup>
|
| +<thead valign="bottom">
|
| +<tr class="row-odd"><th class="head">Type</th>
|
| +<th class="head">Alignment</th>
|
| +</tr>
|
| +</thead>
|
| +<tbody valign="top">
|
| +<tr class="row-even"><td>i1</td>
|
| +<td>1</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>i8</td>
|
| +<td>1</td>
|
| +</tr>
|
| +<tr class="row-even"><td>i16</td>
|
| +<td>1</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>i32</td>
|
| +<td>1</td>
|
| +</tr>
|
| +<tr class="row-even"><td>i64</td>
|
| +<td>1</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>Float</td>
|
| +<td>1, 4</td>
|
| +</tr>
|
| +<tr class="row-even"><td>Double</td>
|
| +<td>1, 8</td>
|
| +</tr>
|
| +<tr class="row-odd"><td><16 x i8></td>
|
| +<td>1</td>
|
| +</tr>
|
| +<tr class="row-even"><td><8 x i16></td>
|
| +<td>2</td>
|
| +</tr>
|
| +<tr class="row-odd"><td><4 x i32></td>
|
| +<td>4</td>
|
| +</tr>
|
| +<tr class="row-even"><td><4 x float></td>
|
| +<td>4</td>
|
| +</tr>
|
| +</tbody>
|
| +</table>
|
| +<p>Note that only vectors do not have an alignment value of 1. Hence, they can’t be
|
| +placed at any memory address.</p>
|
| +</section><section id="intrinsic-functions">
|
| +<span id="link-for-intrinsic-functions-section"></span><h2 id="intrinsic-functions"><span id="link-for-intrinsic-functions-section"></span>Intrinsic functions</h2>
|
| +<p>Intrinsic functions are special in PNaClAsm. They are implemented as specially
|
| +named (external) function calls. The purpose of these intrinsic functions is to
|
| +extend the PNaClAsm instruction set with additional functionality that is
|
| +architecture specific. Hence, they either can’t be implemented within PNaClAsm,
|
| +or a non-architecture specific implementation may be too slow on some
|
| +architectures. In such cases, the PNaCl translator must fill in the
|
| +corresponding implementation, since only it knows the architecture it is
|
| +compiling down to.</p>
|
| +<p>Examples of intrinsic function calls are for concurrent operations, atomic
|
| +operations, bulk memory moves, thread pointer operations, and long jumps.</p>
|
| +<p>It should be noted that calls to intrinsic functions do not have the same
|
| +calling type constraints as ordinary functions. That is, an instrisic can use
|
| +any integral type for arguments/results, unlike ordinary functions (which
|
| +restrict integral types to i32 and i64).</p>
|
| +<p>See the <a class="reference internal" href="/native-client/reference/pnacl-bitcode-abi.html"><em>PNaCl bitcode reference manual</em></a> for the full
|
| +set of intrinsic functions allowed.</p>
|
| +</section><section id="global-state">
|
| +<span id="link-for-global-state-section"></span><h2 id="global-state"><span id="link-for-global-state-section"></span>Global State</h2>
|
| +<p>This section describes the global state associated with PNaClAsm. It is used to
|
| +define contextual data that is carried between records. The following
|
| +subsections describe each element of the global state.</p>
|
| +<section id="typing">
|
| +<h3 id="typing">Typing</h3>
|
| +<p>Associated with most identifiers is a type. This type defines what type the
|
| +corresponding value has. It is defined by the (initially empty) map</p>
|
| +<pre class="prettyprint">
|
| +TypeOf: ID -> Type
|
| +</pre>
|
| +<p>For each type in the <a class="reference internal" href="#link-for-types-block-section"><em>types block</em></a>, a
|
| +corresponding inverse map</p>
|
| +<pre class="prettyprint">
|
| +TypeID: Type -> ID
|
| +</pre>
|
| +<p>is maintained to convert syntactic types to the corresponding type ID.</p>
|
| +<p>Note: This document assumes that map <em>TypeID</em> is automatically maintained during
|
| +updates to map <em>TypeOf</em> (when given a type ID). Hence, <em>updates</em> subsections
|
| +will not contain assignments to this map.</p>
|
| +<p>Associated with each function identifier is its type signature. This is
|
| +different than the type of the function identifier, since function identifiers
|
| +represent the function addrress which is a pointer (and pointers are alwyas
|
| +implemented as a 32-bit integer following the ILP32 data model).</p>
|
| +<p>Function type signatures are maintained using:</p>
|
| +<pre class="prettyprint">
|
| +TypeOfFcn: ID -> Type
|
| +</pre>
|
| +<p>In addition, if a function address has an implementing block, there is a
|
| +corresponding implementation associated with the function address. To capture
|
| +this association, we use the set:</p>
|
| +<pre class="prettyprint">
|
| +DefiningFcnIDs: set(ID)
|
| +</pre>
|
| +</section><section id="id-counters">
|
| +<h3 id="id-counters">ID Counters</h3>
|
| +<p>Each block defines one (or more) kinds of values. Value indices are generated
|
| +sequentially, starting at zero. To capture this, the following counters are
|
| +defined:</p>
|
| +<dl class="docutils">
|
| +<dt>NumTypes</dt>
|
| +<dd>The number of types defined so far (in the types block)</dd>
|
| +<dt>NumFuncAddresses</dt>
|
| +<dd>The number of function addresses defined so far (in the module block).</dd>
|
| +<dt>NumGlobalAddresses</dt>
|
| +<dd>The number of global variable/constant addresses defined so far (in the
|
| +globals block).</dd>
|
| +<dt>NumParams</dt>
|
| +<dd>The number of parameters defined for a function.</dd>
|
| +<dt>NumFcnConsts</dt>
|
| +<dd>The number of constants defined in a function so far.</dd>
|
| +<dt>NumBasicBlocks</dt>
|
| +<dd>The number of basic blocks defined so far (within a function block).</dd>
|
| +<dt>NumValuedInsts</dt>
|
| +<dd>The number of instructions, generating values, defined so far (within a
|
| +function block) so far.</dd>
|
| +</dl>
|
| +</section><section id="size-variables">
|
| +<h3 id="size-variables">Size Variables</h3>
|
| +<p>A number of blocks define expected sizes of constructs. These sizes are recorded
|
| +in the following size variables:</p>
|
| +<dl class="docutils">
|
| +<dt>ExpectedBasicBlocks</dt>
|
| +<dd>The expected number of basic blocks within a function implementation.</dd>
|
| +<dt>ExpectedTypes</dt>
|
| +<dd>The expected number of types defined in the types block.</dd>
|
| +<dt>ExpectedGlobals</dt>
|
| +<dd>The expected number of global variable/constant addresses in the globals
|
| +block.</dd>
|
| +<dt>ExpectedInitializers</dt>
|
| +<dd>The expected number of initializers for a global variable/constant address in
|
| +the globals block.</dd>
|
| +</dl>
|
| +</section><section id="other-variables">
|
| +<h3 id="other-variables">Other Variables</h3>
|
| +<dl class="docutils">
|
| +<dt>EnclosingFcnID</dt>
|
| +<dd>The function ID of the function block being processed.</dd>
|
| +<dt>ConstantsSetType</dt>
|
| +<dd>Holds the type associated with the last <em>set type</em> record in the
|
| +constants block. Note: at the beginning of each constants block, this
|
| +variable is set to type void.</dd>
|
| +</dl>
|
| +</section></section><section id="global-records">
|
| +<h2 id="global-records">Global records</h2>
|
| +<p>There are four global PNaCl records, each having its own record code. These
|
| +global records are:</p>
|
| +<dl class="docutils">
|
| +<dt>Header</dt>
|
| +<dd>The header record is the first record of a PNaCl bitcode file, and identifies
|
| +the file’s magic number, as well as the bitcode version it uses. The record
|
| +defines the sequence of bytes that make up the header and uniquely identifies
|
| +the file as a PNaCl bitcode file.</dd>
|
| +<dt>Enter</dt>
|
| +<dd>An enter record defines the beginning of a block. Since blocks can be nested,
|
| +one can appear inside other blocks, as well as at the top level.</dd>
|
| +<dt>Exit</dt>
|
| +<dd>An exit record defines the end of a block. Hence, it must appear in every
|
| +block, to end the block.</dd>
|
| +<dt>Abbreviation</dt>
|
| +<dd>An abbreviation record defines a user-defined abbreviation to be applied to
|
| +records within blocks. Abbreviation records appearing in the abbreviations
|
| +block define global abbreviations. All other abbreviations are local to the
|
| +block they appear in, and can only be used in that block.</dd>
|
| +</dl>
|
| +<p>All special records can’t have user-defined abbreviations associated with
|
| +them. The default abbreviation is always used.</p>
|
| +<section id="header-record">
|
| +<h3 id="header-record">Header Record</h3>
|
| +<p>The header record must be the first record in the file. It is the only record in
|
| +the bitcode file that doesn’t have a corresponding construct in PNaClAsm. In
|
| +addition, no abbreviation index is associated with it.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<p>There is no syntax for header records in PNaClAsm.</p>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +<65532, 80, 69, 88, 69, 1, 0, 8, 0, 17, 0, 4, 0, 2, 0, 0, 0>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The header record defines the initial sequence of bytes that must appear at the
|
| +beginning of all (PNaCl bitcode version 2) files. That sequence is the list of
|
| +bytes inside the record (excluding the record code). As such, it uniquely
|
| +identifies all PNaCl bitcode files.</p>
|
| +<p><strong>Examples</strong></p>
|
| +<p>There are no examples for the header record, since it is not part of PNaClAsm.</p>
|
| +</section><section id="enter-block-record">
|
| +<span id="link-for-enter-block-record-section"></span><h3 id="enter-block-record"><span id="link-for-enter-block-record-section"></span>Enter Block Record</h3>
|
| +<p>Block records can be top-level, as well as nested in other blocks. Blocks must
|
| +begin with an <em>enter</em> record, and end with an <em>exit</em> record.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +N { <B>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +1: <65535, ID, B>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>Enter block records define the beginning of a block. <em>B</em>, if present, is the
|
| +number of bits needed to represent all possible abbreviation indices used within
|
| +the block. If omitted, B=2 is assumed.</p>
|
| +<p>The block <em>ID</em> value is dependent on the name <em>N</em>. Valid names and corresponding
|
| +<em>BlockID</em> values are defined as follows:</p>
|
| +<table border="1" class="docutils">
|
| +<colgroup>
|
| +</colgroup>
|
| +<thead valign="bottom">
|
| +<tr class="row-odd"><th class="head">N</th>
|
| +<th class="head">Block ID</th>
|
| +</tr>
|
| +</thead>
|
| +<tbody valign="top">
|
| +<tr class="row-even"><td>abbreviations</td>
|
| +<td>0</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>constants</td>
|
| +<td>11</td>
|
| +</tr>
|
| +<tr class="row-even"><td>function</td>
|
| +<td>12</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>globals</td>
|
| +<td>19</td>
|
| +</tr>
|
| +<tr class="row-even"><td>module</td>
|
| +<td>8</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>types</td>
|
| +<td>17</td>
|
| +</tr>
|
| +<tr class="row-even"><td>valuesymtab</td>
|
| +<td>14</td>
|
| +</tr>
|
| +</tbody>
|
| +</table>
|
| +<p>Note: For readability, PNaClAsm defines a more readable form of a function block
|
| +enter record. See <a class="reference internal" href="#link-for-function-blocks-section"><em>function blocks</em></a> for
|
| +more details.</p>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| +16:0|1: <65535, 8, 2> |module { // BlockID = 8
|
| +24:0| 3: <1, 1> | version 1;
|
| +26:4| 1: <65535, 0, 2> | abbreviations { // BlockID = 0
|
| +36:0| 0: <65534> | }
|
| +40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| +48:0| 3: <1, 2> | count 2;
|
| +50:4| 3: <2> | @t0 = void;
|
| +52:2| 3: <21, 0, 0> | @t1 = void ();
|
| +55:4| 0: <65534> | }
|
| +56:0| 3: <8, 1, 0, 1, 0> | declare external void @f0();
|
| +60:6| 1: <65535, 19, 2> | globals { // BlockID = 19
|
| +68:0| 3: <5, 0> | count 0;
|
| +70:4| 0: <65534> | }
|
| +72:0|0: <65534> |}
|
| +</pre>
|
| +</section><section id="exit-block-record">
|
| +<h3 id="exit-block-record">Exit Block Record</h3>
|
| +<p>Block records can be top-level, as well as nested, records. Blocks must begin
|
| +with an <em>enter</em> record, and end with an <em>exit</em> record.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +}
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +0: <65534>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>All exit records are identical, no matter what block they are ending. An exit
|
| +record defines the end of the block.</p>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| +16:0|1: <65535, 8, 2> |module { // BlockID = 8
|
| +24:0| 3: <1, 1> | version 1;
|
| +26:4| 1: <65535, 0, 2> | abbreviations { // BlockID = 0
|
| +36:0| 0: <65534> | }
|
| +40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| +48:0| 3: <1, 2> | count 2;
|
| +50:4| 3: <2> | @t0 = void;
|
| +52:2| 3: <21, 0, 0> | @t1 = void ();
|
| +55:4| 0: <65534> | }
|
| +56:0| 3: <8, 1, 0, 1, 0> | declare external void @f0();
|
| +60:6| 1: <65535, 19, 2> | globals { // BlockID = 19
|
| +68:0| 3: <5, 0> | count 0;
|
| +70:4| 0: <65534> | }
|
| +72:0|0: <65534> |}
|
| +</pre>
|
| +</section><section id="abbreviation-record">
|
| +<h3 id="abbreviation-record">Abbreviation Record</h3>
|
| +<p>Abbreviation records define abbreviations. See
|
| +<a class="reference internal" href="#link-for-abbreviations-section"><em>Abbreviations</em></a> for details on how abbreviations should be
|
| +written. This section only presents the mechanical details for converting
|
| +an abbreviation into a PNaCl record.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +A = abbrev <E1, ... , EM>;
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +<65533, M, EE1, ... , EEM>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>Defines an abbreviation <em>A</em> as the sequence of encodings <em>E1</em> through <em>EM</em>. If
|
| +the abbreviation appears within the abbreviations block, <em>A</em> must be a global
|
| +abbreviation. Otherwise, <em>A</em> must be a local abbreviation.</p>
|
| +<p>Abbreviations within a block (or a section within the abbreviations block), must
|
| +be enumerated in order, starting at index 0.</p>
|
| +<p>Valid encodings <em>Ei</em>, and the corresponding sequence of (unsigned) integers
|
| +<em>EEi</em>, ( for 1 <= i <= M) are defined by the following table:</p>
|
| +<table border="1" class="docutils">
|
| +<colgroup>
|
| +</colgroup>
|
| +<thead valign="bottom">
|
| +<tr class="row-odd"><th class="head">Ei</th>
|
| +<th class="head">EEi</th>
|
| +<th class="head">Form</th>
|
| +</tr>
|
| +</thead>
|
| +<tbody valign="top">
|
| +<tr class="row-even"><td>C</td>
|
| +<td>1, C</td>
|
| +<td>Literal C in corresponding position in record.</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>Fixed(N)</td>
|
| +<td>0, 1, N</td>
|
| +<td>Encode value as a fixed sequence of N bit.</td>
|
| +</tr>
|
| +<tr class="row-even"><td>Vbr(N)</td>
|
| +<td>0, 2, N</td>
|
| +<td>Encode value using a variable bit rate of N</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>Char6</td>
|
| +<td>0, 4</td>
|
| +<td>Encode value as 6-bit char containing characters [a-zA-Z0-9._].</td>
|
| +</tr>
|
| +<tr class="row-even"><td>Array</td>
|
| +<td>0, 3</td>
|
| +<td>Allow zero or more of the enclosed encoding</td>
|
| +</tr>
|
| +</tbody>
|
| +</table>
|
| +<p>Notationally, Array encloses the encoding that immediately follows it, and must
|
| +appear at the end of the abbreviation.</p>
|
| +<p><strong>Examples</strong></p>
|
| +<p>The following example shows the standard abbreviations used by <em>pnacl-finalize</em>.</p>
|
| +<pre class="prettyprint">
|
| + 0:0|<65532, 80, 69, 88, 69, 1, 0,|Magic Number: 'PEXE' (80, 69, 88, 69)
|
| + | 8, 0, 17, 0, 4, 0, 2, 0, 0, |PNaCl Version: 2
|
| + | 0> |
|
| + 16:0|1: <65535, 8, 2> |module { // BlockID = 8
|
| + 24:0| 3: <1, 1> | version 1;
|
| + 26:4| 1: <65535, 0, 2> | abbreviations { // BlockID = 0
|
| + 36:0| 1: <1, 14> | valuesymtab:
|
| + 38:4| 2: <65533, 4, 0, 1, 3, 0,| @a0 = abbrev <fixed(3), vbr(8),
|
| + | 2, 8, 0, 3, 0, 1, 8> | array(fixed(8))>;
|
| + 43:2| 2: <65533, 4, 1, 1, 0, 2,| @a1 = abbrev <1, vbr(8),
|
| + | 8, 0, 3, 0, 1, 7> | array(fixed(7))>;
|
| + 48:0| 2: <65533, 4, 1, 1, 0, 2,| @a2 = abbrev <1, vbr(8),
|
| + | 8, 0, 3, 0, 4> | array(char6)>;
|
| + 52:1| 2: <65533, 4, 1, 2, 0, 2,| @a3 = abbrev <2, vbr(8),
|
| + | 8, 0, 3, 0, 4> | array(char6)>;
|
| + 56:2| 1: <1, 11> | constants:
|
| + 58:6| 2: <65533, 2, 1, 1, 0, 1,| @a0 = abbrev <1, fixed(2)>;
|
| + | 2> |
|
| + 61:7| 2: <65533, 2, 1, 4, 0, 2,| @a1 = abbrev <4, vbr(8)>;
|
| + | 8> |
|
| + 65:0| 2: <65533, 2, 1, 4, 1, 0>| @a2 = abbrev <4, 0>;
|
| + 68:1| 2: <65533, 2, 1, 6, 0, 2,| @a3 = abbrev <6, vbr(8)>;
|
| + | 8> |
|
| + 71:2| 1: <1, 12> | function:
|
| + 73:6| 2: <65533, 4, 1, 20, 0, | @a0 = abbrev <20, vbr(6), vbr(4),
|
| + | 2, 6, 0, 2, 4, 0, 2, | vbr(4)>;
|
| + | 4> |
|
| + 79:1| 2: <65533, 4, 1, 2, 0, 2,| @a1 = abbrev <2, vbr(6), vbr(6),
|
| + | 6, 0, 2, 6, 0, 1, 4> | fixed(4)>;
|
| + 84:4| 2: <65533, 4, 1, 3, 0, 2,| @a2 = abbrev <3, vbr(6),
|
| + | 6, 0, 1, 2, 0, 1, 4> | fixed(2), fixed(4)>;
|
| + 89:7| 2: <65533, 1, 1, 10> | @a3 = abbrev <10>;
|
| + 91:7| 2: <65533, 2, 1, 10, 0, | @a4 = abbrev <10, vbr(6)>;
|
| + | 2, 6> |
|
| + 95:0| 2: <65533, 1, 1, 15> | @a5 = abbrev <15>;
|
| + 97:0| 2: <65533, 3, 1, 43, 0, | @a6 = abbrev <43, vbr(6),
|
| + | 2, 6, 0, 1, 2> | fixed(2)>;
|
| +101:2| 2: <65533, 4, 1, 24, 0, | @a7 = abbrev <24, vbr(6), vbr(6),
|
| + | 2, 6, 0, 2, 6, 0, 2, | vbr(4)>;
|
| + | 4> |
|
| +106:5| 1: <1, 19> | globals:
|
| +109:1| 2: <65533, 3, 1, 0, 0, 2,| @a0 = abbrev <0, vbr(6),
|
| + | 6, 0, 1, 1> | fixed(1)>;
|
| +113:3| 2: <65533, 2, 1, 1, 0, 2,| @a1 = abbrev <1, vbr(8)>;
|
| + | 8> |
|
| +116:4| 2: <65533, 2, 1, 2, 0, 2,| @a2 = abbrev <2, vbr(8)>;
|
| + | 8> |
|
| +119:5| 2: <65533, 3, 1, 3, 0, 3,| @a3 = abbrev <3, array(fixed(8))>
|
| + | 0, 1, 8> | ;
|
| +123:2| 2: <65533, 2, 1, 4, 0, 2,| @a4 = abbrev <4, vbr(6)>;
|
| + | 6> |
|
| +126:3| 2: <65533, 3, 1, 4, 0, 2,| @a5 = abbrev <4, vbr(6), vbr(6)>;
|
| + | 6, 0, 2, 6> |
|
| +130:5| 0: <65534> | }
|
| +132:0| 1: <65535, 17, 3> | types { // BlockID = 17
|
| +140:0| 2: <65533, 4, 1, 21, 0, | %a0 = abbrev <21, fixed(1),
|
| + | 1, 1, 0, 3, 0, 1, 2> | array(fixed(2))>;
|
| +144:7| 3: <1, 3> | count 3;
|
| +147:4| 3: <7, 32> | @t0 = i32;
|
| +150:7| 4: <21, 0, 0, 0, 0> | @t1 = i32 (i32, i32); <%a0>
|
| +152:7| 3: <2> | @t2 = void;
|
| +154:6| 0: <65534> | }
|
| +156:0| 3: <8, 1, 0, 0, 0> | define external i32 @f0(i32, i32);
|
| +160:6| 1: <65535, 19, 4> | globals { // BlockID = 19
|
| +168:0| 3: <5, 0> | count 0;
|
| +170:6| 0: <65534> | }
|
| +172:0| 1: <65535, 14, 3> | valuesymtab { // BlockID = 14
|
| +180:0| 6: <1, 0, 102> | @f0 : "f"; <@a2>
|
| +182:7| 0: <65534> | }
|
| +184:0| 1: <65535, 12, 4> | function i32 @f0(i32 %p0, i32 %p1) {
|
| + | | // BlockID = 12
|
| +192:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +194:6| 5: <2, 2, 1, 0> | %v0 = add i32 %p0, %p1; <@a1>
|
| +197:2| 5: <2, 3, 1, 0> | %v1 = add i32 %p0, %v0; <@a1>
|
| +199:6| 8: <10, 1> | ret i32 %v1; <@a4>
|
| +201:0| 0: <65534> | }
|
| +204:0|0: <65534> |}
|
| +</pre>
|
| +</section></section><section id="types-block">
|
| +<span id="link-for-types-block-section"></span><h2 id="types-block"><span id="link-for-types-block-section"></span>Types Block</h2>
|
| +<p>The types block defines all types used in a program. It must appear in the
|
| +module block, before any function address records, the globals block, the
|
| +valuesymtab block, and any function blocks.</p>
|
| +<p>All types used in a program must be defined in the types block. Many PNaClAsm
|
| +constructs allow one to use explicit type names, rather than the type
|
| +identifiers defined by this block. However, they are internally converted to the
|
| +corresponding type identifer in the types block. Hence, the requirement that the
|
| +types block must appear early in the module block.</p>
|
| +<p>Each record in the types block defines a type used by the program. Types can be
|
| +broken into the following groups:</p>
|
| +<dl class="docutils">
|
| +<dt>Primitive value types</dt>
|
| +<dd>Defines the set of base types for values. This includes various sizes of
|
| +integral and floating types.</dd>
|
| +<dt>Void type</dt>
|
| +<dd>A primitive type that doesn’t represent any value and has no size.</dd>
|
| +<dt>Function types</dt>
|
| +<dd>The type signatures of functions.</dd>
|
| +<dt>Vector type</dt>
|
| +<dd>Defines vectors of primitive types.</dd>
|
| +</dl>
|
| +<p>In addition, any type that is not defined using another type is a primitive
|
| +type. All other types (i.e. function and vector) are composite types.</p>
|
| +<p>Types must be defined in a topological order, causing primitive types to appear
|
| +before the composite types that use them. Each type must be unique. There are no
|
| +additional restrictions on the order that types can be defined in a types block.</p>
|
| +<p>The following subsections introduce each valid PNaClAsm type, and the
|
| +corresponding PNaClAsm construct that defines the type. Types not defined in the
|
| +types block, can’t be used in a PNaCl program.</p>
|
| +<p>The first record of a types block must be a <em>count</em> record, defining how many
|
| +types are defined by the types block. All remaining records defines a type. The
|
| +following subsections define valid records within a types block. The order of
|
| +type records is important. The position of each defining record implicitly
|
| +defines the type ID that will be used to denote that type, within other PNaCl
|
| +records of the bitcode file.</p>
|
| +<p>To make this more concrete, consider the following example types block:</p>
|
| +<pre class="prettyprint">
|
| +40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| +48:0| 3: <1, 4> | count 4;
|
| +50:4| 3: <7, 32> | @t0 = i32;
|
| +53:6| 3: <3> | @t1 = float;
|
| +55:4| 3: <2> | @t2 = void;
|
| +57:2| 3: <21, 0, 2, 0, 1> | @t3 = void (i32, float);
|
| +62:0| 0: <65534> | }
|
| +</pre>
|
| +<p>This example defines a types block that defines four type IDs:</p>
|
| +<dl class="docutils">
|
| +<dt>@t0</dt>
|
| +<dd>A 32-bit integer type.</dd>
|
| +<dt>@t1</dt>
|
| +<dd>A 32-bit floating type.</dd>
|
| +<dt>@t2</dt>
|
| +<dd>The void type.</dd>
|
| +<dt>@t3</dt>
|
| +<dd>A function, taking 32-bit integer and float arguments that returns void.</dd>
|
| +</dl>
|
| +<section id="count-record">
|
| +<h3 id="count-record">Count Record</h3>
|
| +<p>The <em>count record</em> defines how many types are defined in the types
|
| +block. Following the types count record are records that define types used by
|
| +the PNaCl program.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +count: N; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <1, N>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>This construct defines the number of types used by the PNaCl program. <em>N</em> is
|
| +the number of types defined in the types block. It is an error to define more
|
| +(or fewer) types than value <em>N</em>, within the enclosing types block.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +0 == NumTypes
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +ExpectedTypes = N;
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| +40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| +48:0| 3: <1, 4> | count 4;
|
| +50:4| 3: <7, 32> | @t0 = i32;
|
| +53:6| 3: <3> | @t1 = float;
|
| +55:4| 3: <2> | @t2 = void;
|
| +57:2| 3: <21, 0, 2, 0, 1> | @t3 = void (i32, float);
|
| +62:0| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="void-type">
|
| +<h3 id="void-type">Void Type</h3>
|
| +<p>The <em>void</em> type record defines the void type, which corresponds to the type that
|
| +doesn’t define any value, and has no size.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +@tN = void; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <2>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The void type record defines the type that has no values and has no size.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +N == NumTypes
|
| +NumTypes < ExpectedTypes
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumTypes;
|
| +TypeOf(@tN) = void;
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| +@t0 = void;
|
| +</pre>
|
| +<p>defines the record</p>
|
| +<pre class="prettyprint">
|
| +40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| +48:0| 3: <1, 4> | count 4;
|
| +50:4| 3: <7, 32> | @t0 = i32;
|
| +53:6| 3: <3> | @t1 = float;
|
| +55:4| 3: <2> | @t2 = void;
|
| +57:2| 3: <21, 0, 2, 0, 1> | @t3 = void (i32, float);
|
| +62:0| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="integer-types">
|
| +<h3 id="integer-types">Integer Types</h3>
|
| +<p>PNaClAsm allows integral types for various bit sizes. Valid bit sizes are 1, 8,
|
| +16, 32, and 64. Integers can be signed or unsigned, but the signed component of
|
| +an integer is not specified by the type. Rather, individual instructions
|
| +determine whether the value is assumed to be signed or unsigned.</p>
|
| +<p>It should be noted that in PNaClAsm, all pointers are implemented as 32-bit
|
| +(unsigned) integers. There isn’t a separate type for pointers. The only way to
|
| +tell that a 32-bit integer is a pointer, is when it is used in an instruction
|
| +that requires a pointer (such as load and store instructions).</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +@tN = iB; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <7, B>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>An integer type record defines an integral type. <em>B</em> defines the number of bits
|
| +of the integral type.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +N == NumTypes
|
| +NumTypes < ExpectedTypes
|
| +B in {1, 8, 16, 32, 64}
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumTypes;
|
| +TypeOf(@tN) = iB;
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| +40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| +48:0| 3: <1, 7> | count 7;
|
| +50:4| 3: <7, 64> | @t0 = i64;
|
| +53:6| 3: <7, 1> | @t1 = i1;
|
| +56:2| 3: <7, 8> | @t2 = i8;
|
| +58:6| 3: <7, 16> | @t3 = i16;
|
| +61:2| 3: <7, 32> | @t4 = i32;
|
| +64:4| 3: <21, 0, 0, 1> | @t5 = i64 (i1);
|
| +68:4| 3: <2> | @t6 = void;
|
| +70:2| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="bit-floating-point-type">
|
| +<h3 id="bit-floating-point-type">32-Bit Floating Point Type</h3>
|
| +<p>PNaClAsm allows computation on 32-bit floating point values. A float type record
|
| +defines the 32-bit floating point type.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +@tN = float; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <3>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>A floating type record defines the 32-bit floating point type.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A).
|
| +N == NumTypes
|
| +NumTypes < ExpectedTypes
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumTypes;
|
| +TypeOf(@tN) = float;
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| +40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| +48:0| 3: <1, 4> | count 4;
|
| +50:4| 3: <4> | @t0 = double;
|
| +52:2| 3: <3> | @t1 = float;
|
| +54:0| 3: <21, 0, 0, 1> | @t2 = double (float);
|
| +58:0| 3: <2> | @t3 = void;
|
| +59:6| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="id1">
|
| +<h3 id="id1">64-bit Floating Point Type</h3>
|
| +<p>PNaClAsm allows computation on 64-bit floating point values. A double type
|
| +record defines the 64-bit floating point type.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +@tN = double; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <4>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>A double type record defines the 64-bit floating point type.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +N == NumTypes
|
| +NumTypes < ExpectedTypes
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumTypes;
|
| +TypeOf(@tN) = double;
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| +40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| +48:0| 3: <1, 4> | count 4;
|
| +50:4| 3: <4> | @t0 = double;
|
| +52:2| 3: <3> | @t1 = float;
|
| +54:0| 3: <21, 0, 0, 1> | @t2 = double (float);
|
| +58:0| 3: <2> | @t3 = void;
|
| +59:6| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="vector-types">
|
| +<h3 id="vector-types">Vector Types</h3>
|
| +<p>A vector type is a derived type that represents a vector of elements. Vector
|
| +types are used when multiple primitve data are operated in parallel using a
|
| +single instruction (SIMD). A vector type requires a size (number of elements)
|
| +and an uderlying primitive data type.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +@tN = < E x T > <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <12, E, TT>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The vector type defines a vector of elements. <em>T</em> is the type of each
|
| +element. <em>E</em> is the number of elements in the vector.</p>
|
| +<p>Vector types can only be defined on i1, i8, i16, i32, and float.
|
| +All vector types, except those on i1, must contain exactly 128 bits.
|
| +The valid element sizes are restricted as follows:</p>
|
| +<table border="1" class="docutils">
|
| +<colgroup>
|
| +</colgroup>
|
| +<thead valign="bottom">
|
| +<tr class="row-odd"><th class="head">Type</th>
|
| +<th class="head">Valid element sizes</th>
|
| +</tr>
|
| +</thead>
|
| +<tbody valign="top">
|
| +<tr class="row-even"><td>i1</td>
|
| +<td>4, 8, 16</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>i8</td>
|
| +<td>16</td>
|
| +</tr>
|
| +<tr class="row-even"><td>i16</td>
|
| +<td>8</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>i32</td>
|
| +<td>4</td>
|
| +</tr>
|
| +<tr class="row-even"><td>float</td>
|
| +<td>4</td>
|
| +</tr>
|
| +</tbody>
|
| +</table>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +TT == AbsoluteIndex(TypeID(T))
|
| +N == NumTypes
|
| +NumTypes < ExpectedTypes
|
| +</pre>
|
| +<p><em>Updates</em></p>
|
| +<pre class="prettyprint">
|
| +++NumTypes
|
| +TypeOf(@tN) = <E x T>
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<p>The following types block defines all valid vector types:</p>
|
| +<pre class="prettyprint">
|
| +40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| +48:0| 3: <1, 14> | count 14;
|
| +50:4| 3: <7, 32> | @t0 = i32;
|
| +53:6| 3: <7, 1> | @t1 = i1;
|
| +56:2| 3: <2> | @t2 = void;
|
| +58:0| 3: <12, 4, 1> | @t3 = <4 x i1>;
|
| +61:2| 3: <12, 8, 1> | @t4 = <8 x i1>;
|
| +64:4| 3: <12, 16, 1> | @t5 = <16 x i1>;
|
| +67:6| 3: <7, 8> | @t6 = i8;
|
| +70:2| 3: <12, 16, 6> | @t7 = <16 x i8>;
|
| +73:4| 3: <7, 16> | @t8 = i16;
|
| +76:0| 3: <12, 8, 8> | @t9 = <8 x i16>;
|
| +79:2| 3: <12, 4, 0> | @t10 = <4 x i32>;
|
| +82:4| 3: <3> | @t11 = float;
|
| +84:2| 3: <12, 4, 11> | @t12 = <4 x float>;
|
| +87:4| 3: <21, 0, 2> | @t13 = void ();
|
| +90:6| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="function-type">
|
| +<h3 id="function-type">Function Type</h3>
|
| +<p>The <em>function</em> type can be thought of as a function signature. It consists of a
|
| +return type, and a (possibly empty) list of formal parameter types.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +%tN = RT (T1, ... , TM) <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <21, 0, IRT, IT1, ... , ITM>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The function type defines the signature of a function. <em>RT</em> is the return type
|
| +of the function, while types <em>T1</em> through <em>TM</em> are the types of the
|
| +arguments. Indices to the corresponding type identifiers are stored in the
|
| +corresponding record.</p>
|
| +<p>The return value must either be a primitive type, type <em>void</em>, or a vector type.
|
| +Parameter types can be a primitive or vector type.</p>
|
| +<p>For ordinary functions, the only valid integral types that can be used for a
|
| +return or parameter type are i32 and i64. All other integral types are not
|
| +allowed. For intrisic functions, all integral types are allowed for both return and
|
| +parameter types.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +M >= 0
|
| +IRT == AbsoluteIndex(TypeID(RT))
|
| +IT1 == AbsoluteIndex(TypeID(T1))
|
| +...
|
| +ITM == AbsoluteIndex(TypeID(TM))
|
| +N == NumTypes
|
| +NumTypes < ExpectedTypes
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumTypes
|
| +TypeOf(@tN) = RT (T1, ... , TM)
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| +40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| +48:0| 3: <1, 7> | count 7;
|
| +50:4| 3: <7, 32> | @t0 = i32;
|
| +53:6| 3: <3> | @t1 = float;
|
| +55:4| 3: <4> | @t2 = double;
|
| +57:2| 3: <21, 0, 2, 1> | @t3 = double (float);
|
| +61:2| 3: <2> | @t4 = void;
|
| +63:0| 3: <21, 0, 4> | @t5 = void ();
|
| +66:2| 3: <21, 0, 0, 0, 1, 0, 2>| @t6 =
|
| + | | i32 (i32, float, i32, double);
|
| +72:4| 0: <65534> | }
|
| +</pre>
|
| +</section></section><section id="globals-block">
|
| +<span id="link-for-globals-block-section"></span><h2 id="globals-block"><span id="link-for-globals-block-section"></span>Globals block</h2>
|
| +<p>The globals block defines global addresses of variables and constants, used by
|
| +the PNaCl program. It also defines the memory associated with the global
|
| +addresses, and how to initialize each global variable/constant. It must appear
|
| +in the module block. It must appear after the types block, as well as after all
|
| +function address records. But, it must also appear before the valuesymtab block,
|
| +and any function blocks.</p>
|
| +<p>The globals block begins with a count record, defining how many global addresses
|
| +are defined by the PNaCl program. It is then followed by a sequence of records
|
| +that defines each global address, and how each global address is initialized.</p>
|
| +<p>The standard sequence, for defining global addresses, begins with a global
|
| +address record. It is then followed by a sequence of records defining how the
|
| +global address is initialized. If the initializer is simple, a single record is
|
| +used. Otherwise, the initializer is preceded with a compound record, specifying
|
| +a number <em>N</em>, followed by sequence of <em>N</em> simple initializer records.</p>
|
| +<p>The size of the memory referenced by each global address is defined by its
|
| +initializer records. All simple initializer records define a sequence of
|
| +bytes. A compound initializer defines the sequence of bytes by concatenating the
|
| +corresponding sequence of bytes for each of its simple initializer records.</p>
|
| +<p>For notational convenience, PNaClAsm begins a compound record with a “{”, and
|
| +inserts a “}” after the last initializer record associated compound record. This
|
| +latter “}” does not correspond to any record. It is implicitly assumed by the
|
| +size specified in the compound record, and is added only to improve readability.</p>
|
| +<p>Explicit alignment is specified for global addresses, and must be a power of
|
| +2. See <a class="reference internal" href="#link-for-memory-blocks-and-alignment-section"><em>Memory Blocks and Alignment</em></a> for a more detailed
|
| +discussion on how to define alignment.</p>
|
| +<p>For example, consider the following pnacl-bcdis output snippet:</p>
|
| +<pre class="prettyprint">
|
| +52:0| 1: <65535, 19, 2> | globals { // BlockID = 19
|
| +60:0| 3: <5, 2> | count 2;
|
| +62:4| 3: <0, 1, 1> | const @g0, align 1,
|
| +65:6| 3: <2, 8> | zerofill 8;
|
| +68:2| 3: <0, 1, 0> | var @g1, align 1,
|
| +71:4| 3: <1, 2> | initializers 2 {
|
| +74:0| 3: <3, 1, 2, 3, 4> | { 1, 2, 3, 4}
|
| +78:6| 3: <2, 2> | zerofill 2;
|
| + | | }
|
| +81:2| 0: <65534> | }
|
| +</pre>
|
| +<p>This snippet defines the global constant <em>@g0</em>, and the global variable
|
| +<em>@g1</em>. @g0 is 8 bytes long, and initialized to zero. @g1 is with 6 bytes: “1 2 3
|
| +4 0 0”.</p>
|
| +<section id="id2">
|
| +<h3 id="id2">Count Record</h3>
|
| +<p>The count record defines the number of global addresses used by the PNaCl
|
| +program.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +count: N; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <5, N>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>This record must appear first in the globals block. The count record defines
|
| +the number of global addresses used by the program.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +ExpectedGlobals = N;
|
| +ExpectedInitializers = 0;
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| +52:0| 1: <65535, 19, 2> | globals { // BlockID = 19
|
| +60:0| 3: <5, 2> | count 2;
|
| +62:4| 3: <0, 1, 1> | const @g0, align 1,
|
| +65:6| 3: <2, 8> | zerofill 8;
|
| +68:2| 3: <0, 1, 0> | var @g1, align 1,
|
| +71:4| 3: <1, 2> | initializers 2 {
|
| +74:0| 3: <3, 1, 2, 3, 4> | { 1, 2, 3, 4}
|
| +78:6| 3: <2, 2> | zerofill 2;
|
| + | | }
|
| +81:2| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="global-variable-addressses">
|
| +<h3 id="global-variable-addressses">Global Variable Addressses</h3>
|
| +<p>A global variable address record defines a global address to global data. The
|
| +global variable address record must be immediately followed by initializer
|
| +record(s) that define how the corresponding global variable is initialized.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +var @gN, align V, <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <0, VV, 0>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>A global variable address record defines a global address for a global variable.
|
| +<em>V</em> is the memory alignment for the global variable address, and is a power
|
| +of 2.</p>
|
| +<p>It is assumed that the memory, referenced by the global variable address, can be
|
| +both read and written to.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +N == NumGlobalAddresses
|
| +NumGlobalAddresses < ExpectedGlobals
|
| +ExpectedInitializers == 0
|
| +VV == Log2(V+1)
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumGlobalAddresses;
|
| +ExpectedInitializers = 1;
|
| +TypeOf(@gN) = i32;
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| +52:0| 1: <65535, 19, 2> | globals { // BlockID = 19
|
| +60:0| 3: <5, 2> | count 2;
|
| +62:4| 3: <0, 3, 0> | var @g0, align 4,
|
| +65:6| 3: <2, 8> | zerofill 8;
|
| +68:2| 3: <0, 1, 0> | var @g1, align 1,
|
| +71:4| 3: <3, 1, 2, 3, 4> | { 1, 2, 3, 4}
|
| +76:2| 0: <65534> | }
|
| +80:0|0: <65534> |}
|
| +</pre>
|
| +</section><section id="global-constant-addresses">
|
| +<h3 id="global-constant-addresses">Global Constant Addresses</h3>
|
| +<p>A global constant address record defines an address corresponding to a global
|
| +constant that can’t be modified by the program. The global constant address
|
| +record must be immediately followed by initializer record(s) that define how
|
| +the corresponding global constant is initialized.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +const @gN, align V, <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <0, VV, 1>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>A global constant address record defines a global address for a global constant.
|
| +<em>V</em> is the memory alignment for the global constant address, and is a power
|
| +of 2.</p>
|
| +<p>It is assumed that the memory, referenced by the global constant address, is
|
| +only read, and can’t be written to.</p>
|
| +<p>Note that the only difference between a global variable address and a global
|
| +constant address record is the third element of the record. If the value is
|
| +zero, it defines a global variable address. If the value is one, it defines a
|
| +global constant address.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +N == NumGlobalAddresses
|
| +NumGlobalAddresses < ExpectedGlobals
|
| +ExpectedInitializers == 0
|
| +VV == Log2(V+1)
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumGlobalAddresses;
|
| +ExpectedInitializers = 1;
|
| +TypeOf(@gN) = i32;
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| +52:0| 1: <65535, 19, 2> | globals { // BlockID = 19
|
| +60:0| 3: <5, 2> | count 2;
|
| +62:4| 3: <0, 3, 1> | const @g0, align 4,
|
| +65:6| 3: <2, 8> | zerofill 8;
|
| +68:2| 3: <0, 1, 1> | const @g1, align 1,
|
| +71:4| 3: <3, 1, 2, 3, 4> | { 1, 2, 3, 4}
|
| +76:2| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="zerofill-initializer">
|
| +<h3 id="zerofill-initializer">Zerofill Initializer</h3>
|
| +<p>The zerofill initializer record initializes a sequence of bytes, associated with
|
| +a global address, with zeros.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +zerofill N; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <2, N>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>A zerofill initializer record intializes a sequence of bytes, associated with a
|
| +global address, with zeros. The number of bytes initialized to zero is <em>N</em>.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +ExpectedInitializers > 0;
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +--ExpectedInitializers;
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| +52:0| 1: <65535, 19, 2> | globals { // BlockID = 19
|
| +60:0| 3: <5, 2> | count 2;
|
| +62:4| 3: <0, 3, 1> | const @g0, align 4,
|
| +65:6| 3: <2, 8> | zerofill 8;
|
| +68:2| 3: <0, 1, 0> | var @g1, align 1,
|
| +71:4| 3: <2, 4> | zerofill 4;
|
| +74:0| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="data-initializer">
|
| +<h3 id="data-initializer">Data Initializer</h3>
|
| +<p>Data records define a sequence of bytes. These bytes define the initial value of
|
| +the contents of the corresponding memory.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +{ B1 , .... , BN } <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <3, B1, ..., BN>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>A data record defines a sequence of bytes <em>B1</em> through <em>BN</em>, that initialize <em>N</em>
|
| +bytes of memory.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +ExpectedInitializers > 0
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +--ExpectedInitializers;
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 56:0| 3: <8, 1, 0, 1, 0> | declare external void @f0();
|
| + 60:6| 1: <65535, 19, 2> | globals { // BlockID = 19
|
| + 68:0| 3: <5, 2> | count 2;
|
| + 70:4| 3: <0, 1, 1> | const @g0, align 1,
|
| + 73:6| 3: <3, 1, 2, 97, 36, 44, | { 1, 2, 97, 36, 44, 88,
|
| + | 88, 44, 50> | 44, 50}
|
| + 86:0| 3: <0, 1, 1> | const @g1, align 1,
|
| + 89:2| 3: <1, 3> | initializers 3 {
|
| + 91:6| 3: <3, 1, 2, 3, 4> | { 1, 2, 3, 4}
|
| + 96:4| 3: <4, 0> | reloc @f0;
|
| + 99:0| 3: <3, 99, 66, 22, 12> | { 99, 66, 22, 12}
|
| + | | }
|
| +105:2| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="relocation-initializer">
|
| +<h3 id="relocation-initializer">Relocation Initializer</h3>
|
| +<p>A relocation initializer record allows one to define the initial value of a
|
| +global address with the value of another global address (i.e. either function,
|
| +variable, or constant). Since addresses are pointers, a relocation initializer
|
| +record defines 4 bytes of memory.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +reloc V; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <4, VV>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>A relocation initializer record defines a 4-byte value containing the specified
|
| +global address <em>V</em>.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +VV == AbsoluteIndex(V);
|
| +VV >= NumFuncAddresses
|
| +VV < NumFuncAddresses + ExpectedGlobals
|
| +ExpectedInitializers > 0
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +--ExpectedInitializers;
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| +40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| +48:0| 3: <1, 2> | count 2;
|
| +50:4| 3: <2> | @t0 = void;
|
| +52:2| 3: <21, 0, 0> | @t1 = void ();
|
| +55:4| 0: <65534> | }
|
| +56:0| 3: <8, 1, 0, 1, 0> | declare external void @f0();
|
| +60:6| 1: <65535, 19, 2> | globals { // BlockID = 19
|
| +68:0| 3: <5, 2> | count 2;
|
| +70:4| 3: <0, 1, 0> | var @g0, align 1,
|
| +73:6| 3: <1, 3> | initializers 3 {
|
| +76:2| 3: <4, 0> | reloc @f0;
|
| +78:6| 3: <4, 1> | reloc @g0;
|
| +81:2| 3: <4, 2> | reloc @g1;
|
| + | | }
|
| +83:6| 3: <0, 3, 0> | var @g1, align 4,
|
| +87:0| 3: <2, 4> | zerofill 4;
|
| +89:4| 0: <65534> | }
|
| +</pre>
|
| +<p>This example defines global address <em>@g0</em> and <em>g1</em>. <em>g0</em> defines 12 bytes of
|
| +memory, and is initialized with three addresses <em>@f1</em>, <em>@g0</em>, and <em>@g1</em>. Note
|
| +that all global addresses can be used in a relocation initialization record,
|
| +even if it isn’t defined yet.</p>
|
| +</section><section id="subfield-relocation-initializer">
|
| +<h3 id="subfield-relocation-initializer">Subfield Relocation Initializer</h3>
|
| +<p>A subfield relocation initializer record allows one to define the initial value
|
| +of a global address with the value of another (non-function) global address
|
| +(i.e. either variable or constant), plus a constant. Since addresses are
|
| +pointers, a relocation initializer record defines 4 bytes of memory.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +reloc V + O; <A>
|
| +reloc V - O; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <4, VV, OOO>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>A relocation initializer record defines a 4-byte value containing the specified
|
| +global (non-function) address <em>V</em>, modified by the unsigned offset <em>O</em>. <em>OO</em> is
|
| +the corresponding signed offset. In the first form, <em>OO == O</em>. In the second
|
| +form, <em>OO == - O</em>.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +VV == AbsoluteIndex(V)
|
| +VV >= NumFuncAddresses
|
| +VV < NumFuncAddresses + ExpectedGlobals
|
| +ExpectedInitializers > 0
|
| +OOO == SignRotate(OO)
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +--ExpectedInitializers;
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| +40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| +48:0| 3: <1, 0> | count 0;
|
| +50:4| 0: <65534> | }
|
| +52:0| 1: <65535, 19, 2> | globals { // BlockID = 19
|
| +60:0| 3: <5, 3> | count 3;
|
| +62:4| 3: <0, 1, 0> | var @g0, align 1,
|
| +65:6| 3: <1, 3> | initializers 3 {
|
| +68:2| 3: <4, 0, 1> | reloc @g0 + 1;
|
| +71:4| 3: <4, 1, 4294967295> | reloc @g1 - 1;
|
| +79:2| 3: <4, 2, 4> | reloc @g2 + 4;
|
| + | | }
|
| +82:4| 3: <0, 3, 0> | var @g1, align 4,
|
| +85:6| 3: <2, 4> | zerofill 4;
|
| +88:2| 3: <0, 3, 0> | var @g2, align 4,
|
| +91:4| 3: <2, 8> | zerofill 8;
|
| +94:0| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="compound-initializer">
|
| +<h3 id="compound-initializer">Compound Initializer</h3>
|
| +<p>The compound initializer record must immediately follow a global
|
| +variable/constant address record. It defines how many simple initializer records
|
| +are used to define the initializer. The size of the corresponding memory is the
|
| +sum of the bytes needed for each of the succeeding initializers.</p>
|
| +<p>Note that a compound initializer can’t be used as a simple initializer of
|
| +another compound initializer (i.e. nested compound initializers are not
|
| +allowed).</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +initializers N { <A>
|
| + ...
|
| +}
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <1, N>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>Defines that the next <em>N</em> initializers should be associated with the global
|
| +address of the previous record.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +ExpectedInitializers == 1
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +ExpectedInitializers = N;
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| +40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| +48:0| 3: <1, 0> | count 0;
|
| +50:4| 0: <65534> | }
|
| +52:0| 1: <65535, 19, 2> | globals { // BlockID = 19
|
| +60:0| 3: <5, 2> | count 2;
|
| +62:4| 3: <0, 0, 1> | const @g0, align 0,
|
| +65:6| 3: <1, 2> | initializers 2 {
|
| +68:2| 3: <2, 8> | zerofill 8;
|
| +70:6| 3: <3, 3, 2, 1, 0> | { 3, 2, 1, 0}
|
| + | | }
|
| +75:4| 3: <0, 0, 0> | var @g1, align 0,
|
| +78:6| 3: <1, 2> | initializers 2 {
|
| +81:2| 3: <3, 1, 2, 3, 4> | { 1, 2, 3, 4}
|
| +86:0| 3: <2, 2> | zerofill 2;
|
| + | | }
|
| +88:4| 0: <65534> | }
|
| +</pre>
|
| +</section></section><section id="valuesymtab-block">
|
| +<span id="link-for-valuesymtab-block-section"></span><h2 id="valuesymtab-block"><span id="link-for-valuesymtab-block-section"></span>Valuesymtab Block</h2>
|
| +<p>The valuesymtab block ref does not define any values. Its only goal is to
|
| +associate text names with external function addresses. Each association is
|
| +defined by a record in the valuesymtab block. Currently, only
|
| +<a class="reference internal" href="#link-for-intrinsic-functions-section"><em>intrinsic</em></a> function addresses and
|
| +the (external) start function (<em>_start</em>) can be named. All named function
|
| +addresses must be external (see the module block’s
|
| +<a class="reference internal" href="#link-for-function-address-section"><em>Function Address</em></a> record). Each record in the
|
| +valuesymtab block is a <em>entry</em> record, defining a single name association.</p>
|
| +<section id="entry-record">
|
| +<h3 id="entry-record">Entry Record</h3>
|
| +<p>The <em>entry</em> record defines a name for a function address.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +V : "NAME"; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <1, B1, ... , BN>
|
| +</pre>
|
| +<p><strong>Semnatics</strong></p>
|
| +<p>The <em>entry</em> record defines a name <em>NAME</em> for function address <em>V</em>. <em>NAME</em> is a
|
| +sequence of anscii characters <em>B1</em> through <em>BN</em>.</p>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 72:0| 3: <8, 4, 0, 1, 0> | declare external
|
| + | | void @f0(i32, i32, i32, i32, i1);
|
| + 76:6| 3: <8, 4, 0, 1, 0> | declare external
|
| + | | void @f1(i32, i32, i32, i32, i1);
|
| + 81:4| 3: <8, 5, 0, 0, 0> | define external void @f2(i32);
|
| + 86:2| 1: <65535, 19, 2> | globals { // BlockID = 19
|
| + 92:0| 3: <5, 0> | count 0;
|
| + 94:4| 0: <65534> | }
|
| + 96:0| 1: <65535, 14, 2> | valuesymtab { // BlockID = 14
|
| +104:0| 3: <1, 1, 108, 108, 118, | @f1 : "llvm.memmove.p0i8.p0i8.i32";
|
| + | 109, 46, 109, 101, |
|
| + | 109, 109, 111, 118, |
|
| + | 101, 46, 112, 48, |
|
| + | 105, 56, 46, 112, 48,|
|
| + | 105, 56, 46, 105, 51,|
|
| + | 50> |
|
| +145:4| 3: <1, 2, 95, 115, 116, | @f2 : "_start";
|
| + | 97, 114, 116> |
|
| +157:0| 3: <1, 0, 108, 108, 118, | @f0 : "llvm.memcpy.p0i8.p0i8.i32";
|
| + | 109, 46, 109, 101, |
|
| + | 109, 99, 112, 121, |
|
| + | 46, 112, 48, 105, 56,|
|
| + | 46, 112, 48, 105, 56,|
|
| + | 46, 105, 51, 50> |
|
| +197:0| 0: <65534> | }
|
| +</pre>
|
| +</section></section><section id="module-block">
|
| +<h2 id="module-block">Module Block</h2>
|
| +<p>The module block, like all blocks, is enclosed in a pair of enter/exit records,
|
| +using block ID 8. A well-formed module block consists of the following records
|
| +(in order):</p>
|
| +<dl class="docutils">
|
| +<dt>A version record</dt>
|
| +<dd>The version record communicates which version of the PNaCl bitcode
|
| +reader/writer should be used. Note that this is different than the PNaCl
|
| +bitcode (ABI) version. The PNaCl bitcode (ABI) version defines what is
|
| +expected in records, and is defined in the header record of the bitcode
|
| +file. The version record defines the version of the PNaCl bitcode
|
| +reader/writer to use to convert records into bit sequences.</dd>
|
| +<dt>Optional local abbreviations</dt>
|
| +<dd>Defines a list of local abbreviations to use for records within the module
|
| +block.</dd>
|
| +<dt>An abbreviations block</dt>
|
| +<dd>The abbreviations block defines user-defined, global abbreviations that are
|
| +used to convert PNaCl records to bit sequences in blocks following the
|
| +abbreviations block.</dd>
|
| +<dt>A types block</dt>
|
| +<dd>The types block defines the set of all types used in the program.</dd>
|
| +<dt>A non-empty sequence of function address records</dt>
|
| +<dd>Each record defines a function address used by the program. Function
|
| +addresses must either be external, or defined internally by the program. If
|
| +they are defined by the program, there must be a function block (appearing
|
| +later in the module) that defines the sequence of instructions for each
|
| +defined function.</dd>
|
| +<dt>A globals block defining the global variables.</dt>
|
| +<dd>This block defines the set of global variable (addresses) used by the
|
| +program. In addition to the addresses, each global variable also defines how
|
| +the corresponding global variable is initialized.</dd>
|
| +<dt>An optional value symbol table block.</dt>
|
| +<dd>This block, if defined, provides textual names for function and global
|
| +variable addresses (previously defined in the module). Note that only names
|
| +for intrinsic functions and the start function are specified.</dd>
|
| +<dt>A sequence of function blocks.</dt>
|
| +<dd>Each function block defines the corresponding control flow graph for each
|
| +defined function. The order of function blocks is used to associate them with
|
| +function addresses. The order of the defined function blocks must follow the
|
| +same order as the corresponding function addresses defined in the module
|
| +block.</dd>
|
| +</dl>
|
| +<p>Descriptions of the <a class="reference internal" href="#link-for-abbreviations-section"><em>abbreviations</em></a>,
|
| +<a class="reference internal" href="#link-for-types-block-section"><em>types</em></a>,
|
| +<a class="reference internal" href="#link-for-globals-block-section"><em>globals</em></a>, <a class="reference internal" href="#link-for-valuesymtab-block-section"><em>value symbol
|
| +table</em></a>, and
|
| +<a class="reference internal" href="#link-for-function-blocks-section"><em>function</em></a> blocks are not provided
|
| +here. See the appropriate reference for more details. The following subsections
|
| +describe each of the records that can appear in a module block.</p>
|
| +<section id="version">
|
| +<h3 id="version">Version</h3>
|
| +<p>The version record defines the implementation of the PNaCl bitstream
|
| +reader/writer to use. That is, the implementation that converts PNaCl records to
|
| +bit sequences, and converts them back to PNaCl records. Note that this is
|
| +different than the PNaCl version of the bitcode file (encoded in the header
|
| +record of the bitcode file). The PNaCl version defines the valid forms of PNaCl
|
| +records. The version record is specific to the PNaCl version, and may have
|
| +different values for different PNaCl versions.</p>
|
| +<p>Note that currently, only PNaCl bitcode version 2, and version record value 1 is
|
| +defined.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +version N; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <1, N>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The version record defines which PNaCl reader/writer rules should be
|
| +followed. <em>N</em> is the version number. Currently <em>N</em> must be 1. Future versions of
|
| +PNaCl may define additional legal values.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +</pre>
|
| +<p><em>Examples</em></p>
|
| +<pre class="prettyprint">
|
| +16:0|1: <65535, 8, 2> |module { // BlockID = 8
|
| +24:0| 3: <1, 1> | version 1;
|
| +26:4| 1: <65535, 0, 2> | abbreviations { // BlockID = 0
|
| +36:0| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="function-address">
|
| +<span id="link-for-function-address-section"></span><h3 id="function-address"><span id="link-for-function-address-section"></span>Function Address</h3>
|
| +<p>A function address record describes a function address. <em>Defined</em> function
|
| +addresses define implementations while <em>declared</em> function addresses do not.</p>
|
| +<p>Since a PNaCl program is assumed to be a complete (statically linked)
|
| +executable, All functions should be <em>defined</em> and <em>internal</em>. The exception to
|
| +this are <em>intrinsic</em> functions, which should only be <em>declared</em> and <em>external</em>,
|
| +since intrinsic functions will automatically converted to appropriate code by
|
| +the PNaCl translator.</p>
|
| +<p>The implementation of a <em>defined</em> function address is provided by a
|
| +corresponding function block, appearing later in the module block. The
|
| +association of a <em>defined</em> function address with the corresponding function
|
| +block is based on position. The <em>Nth</em> defined function address record, in the
|
| +module block, has its implementation in the <em>Nth</em> function block of that module
|
| +block.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +PN LN T0 @fN ( T1 , ... , TM ); <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <8, T, C, P, L>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>Decribes the function address <em>@fN</em>. <em>PN</em> is the name that specifies the
|
| +prototype value <em>P</em> associated with the function. A function address is
|
| +<em>defined</em> only if <em>P==0</em>. Otherwise, it is only <em>declared</em>. The type of the
|
| +function is function type <em>@tT</em>. <em>L</em> is the linkage specification corresponding
|
| +to name <em>LN</em>. <em>C</em> is the calling convention used by the function.</p>
|
| +<p>Note that function signature must be defined by a function type in the types
|
| +block. Hence, the return value must either be a primitive type, type <em>void</em>, or
|
| +a vector type.</p>
|
| +<p>For ordinary functions, integral parameter and types can only be i32 and i64.
|
| +All other integer types are not allowed.</p>
|
| +<p>Valid prototype names <em>PN</em>, and corresponding <em>P</em> values, are:</p>
|
| +<table border="1" class="docutils">
|
| +<colgroup>
|
| +</colgroup>
|
| +<thead valign="bottom">
|
| +<tr class="row-odd"><th class="head">P</th>
|
| +<th class="head">PN</th>
|
| +</tr>
|
| +</thead>
|
| +<tbody valign="top">
|
| +<tr class="row-even"><td>1</td>
|
| +<td>declare</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>0</td>
|
| +<td>define</td>
|
| +</tr>
|
| +</tbody>
|
| +</table>
|
| +<p>Valid linkage names <em>LN</em>, and corresponding <em>L</em> values, are:</p>
|
| +<table border="1" class="docutils">
|
| +<colgroup>
|
| +</colgroup>
|
| +<thead valign="bottom">
|
| +<tr class="row-odd"><th class="head">L</th>
|
| +<th class="head">LN</th>
|
| +</tr>
|
| +</thead>
|
| +<tbody valign="top">
|
| +<tr class="row-even"><td>3</td>
|
| +<td>internal</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>0</td>
|
| +<td>external</td>
|
| +</tr>
|
| +</tbody>
|
| +</table>
|
| +<p>Currently, only one calling convention <em>C</em> is supported:</p>
|
| +<table border="1" class="docutils">
|
| +<colgroup>
|
| +</colgroup>
|
| +<thead valign="bottom">
|
| +<tr class="row-odd"><th class="head">C</th>
|
| +<th class="head">Calling Convention</th>
|
| +</tr>
|
| +</thead>
|
| +<tbody valign="top">
|
| +<tr class="row-even"><td>0</td>
|
| +<td>C calling convention</td>
|
| +</tr>
|
| +</tbody>
|
| +</table>
|
| +<p><strong>Constraint</strong></p>
|
| +<pre class="prettyprint">
|
| +AA = AbbrevIndex(A)
|
| +T = TypeID(TypeOf(T0 ( T1 , ... , TN )))
|
| +N = NumFuncAddresses
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumFuncAddresses;
|
| +TypeOf(@fN) = TypeOf(TypeID(i32));
|
| +TypeOfFcn(@fN) = TypeOf(@tT);
|
| +
|
| +if PN == 0:
|
| + DefiningFcnIDs += @FN;
|
| + ++NumDefinedFunctionAddresses;
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| +40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| +48:0| 3: <1, 7> | count 7;
|
| +50:4| 3: <7, 32> | @t0 = i32;
|
| +53:6| 3: <3> | @t1 = float;
|
| +55:4| 3: <4> | @t2 = double;
|
| +57:2| 3: <2> | @t3 = void;
|
| +59:0| 3: <21, 0, 2, 1> | @t4 = double (float);
|
| +63:0| 3: <21, 0, 0, 0, 1, 0, 2>| @t5 =
|
| + | | i32 (i32, float, i32, double);
|
| +69:2| 3: <21, 0, 3> | @t6 = void ();
|
| +72:4| 0: <65534> | }
|
| +76:0| 3: <8, 4, 0, 1, 0> | declare external double @f0(float);
|
| +80:6| 3: <8, 5, 0, 1, 0> | declare external
|
| + | | i32 @f1(i32, float, i32, double);
|
| +85:4| 3: <8, 6, 0, 0, 0> | define external void @f2();
|
| +</pre>
|
| +</section></section><section id="constants-blocks">
|
| +<h2 id="constants-blocks">Constants Blocks</h2>
|
| +<p>Constants blocks define literal constants used within each function. It’s intent
|
| +it to define them once, before instructions. A constants block can only appear
|
| +in a function block, and must appear before any instructions in the function
|
| +block.</p>
|
| +<p>Currently, only literal integrals, floating point literals, and undefined vector
|
| +constants can be defined.</p>
|
| +<p>To minimize type information put in a constants block, the type information is
|
| +separated from the constants. This allows a sequence of constants to be given
|
| +the same type. This is done by defining a <em>set type</em> record, followed by a
|
| +sequence of literal constants. These literal constants all get converted to the
|
| +type of the preceding <em>set type</em> record.</p>
|
| +<p>Note that constants that are used for switch case selectors should not be added
|
| +to the constants block, since the switch instruction contains the constants used
|
| +for case selectors. All other constants in the function block must be put into a
|
| +constants block, so that instructions can use them.</p>
|
| +<p>To make this more concrete, consider the following example constants block:</p>
|
| +<pre class="prettyprint">
|
| +types {
|
| + @t0 = i1;
|
| + ...
|
| +}
|
| +...
|
| +constants {
|
| + i1:
|
| + %c0 = i1 1;
|
| + %c2 = i1 2;
|
| +}
|
| +</pre>
|
| +<p>The corresponding records for the constants block are:</p>
|
| +<pre class="prettyprint">
|
| +<65535, 11, 2>
|
| +<1, 0>
|
| +<4, 0>
|
| +<4, 2>
|
| +<65534>
|
| +</pre>
|
| +<p>TODO(kschimpf) Generate pnacl-bcdis output for above.</p>
|
| +<section id="set-type">
|
| +<h3 id="set-type">Set Type</h3>
|
| +<p>The <em>set type</em> record defines the type to use for the (immediately) succeeding
|
| +literals.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +T: <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <1, TT>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The <em>set type</em> record deifnes type <em>T</em> to be used to type the (immediately)
|
| +succeeding literals. <em>T</em> must be a non-void primitive value type or a vector
|
| +type.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +TT == TypeID(T)
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +ConstantsSetType = T;
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| +106:4| 1: <65535, 11, 2> | constants { // BlockID = 11
|
| +116:0| 3: <1, 0> | i32:
|
| +118:4| 3: <4, 2> | %c0 = i32 1;
|
| +121:0| 3: <4, 4> | %c1 = i32 2;
|
| +123:4| 3: <1, 2> | i8:
|
| +126:0| 3: <4, 8> | %c2 = i8 4;
|
| +128:4| 3: <4, 6> | %c3 = i8 3;
|
| +131:0| 3: <1, 1> | float:
|
| +133:4| 3: <6, 1065353216> | %c4 = float 1;
|
| +139:6| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="undefined-literal">
|
| +<h3 id="undefined-literal">Undefined Literal</h3>
|
| +<p>The <em>undefined</em> literal record creates an undefined literal for the type <em>T</em>
|
| +defined by the preceding <em>set type</em> record.</p>
|
| +<p>Note: See <a class="reference internal" href="#link-for-insert-element-instruction-section"><em>Insert Element Instruction</em></a> for an example of
|
| +how you would use the undefined literal with vector types.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +%cN = T undef; <50>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <3>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The <em>undefined</em> lieral record creates an undefined literal constant <em>%cN</em> for
|
| +type <em>T</em>. <em>T</em> must be the type defined by the preceding <em>set type</em> record, and
|
| +be a primitive value type or a vector type.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +N == NumFcnConsts
|
| +T == ConstantsSetType
|
| +IsPrimitive(T) or IsVector(T)
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumFcnConsts;
|
| +TypeOf(%cN) = T;
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 5> | count 5;
|
| + 50:4| 3: <7, 32> | @t0 = i32;
|
| + 53:6| 3: <3> | @t1 = float;
|
| + 55:4| 3: <2> | @t2 = void;
|
| + 57:2| 3: <12, 4, 0> | @t3 = <4 x i32>;
|
| + 60:4| 3: <21, 0, 2> | @t4 = void ();
|
| + 63:6| 0: <65534> | }
|
| + ...
|
| +106:4| 1: <65535, 11, 2> | constants { // BlockID = 11
|
| +116:0| 3: <1, 0> | i32:
|
| +118:4| 3: <3> | %c0 = i32 undef;
|
| +120:2| 3: <4, 2> | %c1 = i32 1;
|
| +122:6| 3: <1, 3> | <4 x i32>:
|
| +125:2| 3: <3> | %c2 = <4 x i32> undef;
|
| +127:0| 3: <1, 1> | float:
|
| +129:4| 3: <3> | %c3 = float undef;
|
| +131:2| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="integer-literal">
|
| +<h3 id="integer-literal">Integer Literal</h3>
|
| +<p>The <em>integer literal</em> record creates an integer literal for the integral type <em>T</em>
|
| +defined by the preceding <em>set type</em> record.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +%cN = T V; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <4, VV>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The <em>integer literal</em> record creates an integer literal constant <em>%cN</em> for type
|
| +<em>T</em>. <em>T</em> must be the type defined by the preceding <em>set type</em> record, and an
|
| +integral type. The literal <em>V</em> can be signed, but must be definable by type <em>T</em>.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +N == NumFcnConsts
|
| +T == ConsgtantsSetType
|
| +VV == SignRotate(V)
|
| +IsInteger(T)
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<blockquote>
|
| +<div>TypeOf(%cN) = T;</div></blockquote>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 7> | count 7;
|
| + 50:4| 3: <7, 8> | @t0 = i8;
|
| + 53:0| 3: <7, 16> | @t1 = i16;
|
| + 55:4| 3: <7, 32> | @t2 = i32;
|
| + 58:6| 3: <7, 64> | @t3 = i64;
|
| + 62:0| 3: <7, 1> | @t4 = i1;
|
| + 64:4| 3: <2> | @t5 = void;
|
| + 66:2| 3: <21, 0, 5> | @t6 = void ();
|
| + 69:4| 0: <65534> | }
|
| + ...
|
| +114:4| 1: <65535, 11, 2> | constants { // BlockID = 11
|
| +124:0| 3: <1, 0> | i8:
|
| +126:4| 3: <4, 2> | %c0 = i8 1;
|
| +129:0| 3: <4, 4> | %c1 = i8 2;
|
| +131:4| 3: <1, 1> | i16:
|
| +134:0| 3: <4, 6> | %c2 = i16 3;
|
| +136:4| 3: <4, 8> | %c3 = i16 4;
|
| +139:0| 3: <1, 2> | i32:
|
| +141:4| 3: <4, 10> | %c4 = i32 5;
|
| +144:0| 3: <4, 12> | %c5 = i32 6;
|
| +146:4| 3: <1, 3> | i64:
|
| +149:0| 3: <4, 3> | %c6 = i64 -1;
|
| +151:4| 3: <4, 5> | %c7 = i64 -2;
|
| +154:0| 3: <1, 4> | i1:
|
| +156:4| 3: <4, 3> | %c8 = i1 1;
|
| +159:0| 3: <4, 0> | %c9 = i1 0;
|
| +161:4| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="floating-point-literal">
|
| +<h3 id="floating-point-literal">Floating point literal</h3>
|
| +<p>The <em>floating point literal</em> record creates a floating point literal for the
|
| +floating type <em>T</em> defined by the preceding <em>set type</em> record.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +%cN = T V; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <6, V>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The <em>floating point literal</em> record creates a floating point literal constant
|
| +<em>%cN</em> for type <em>T</em>. <em>T</em> must the type type defined by the preceding <em>set type</em>
|
| +record, and be a floating point type. The literal <em>V</em> must be a valid IEE 754
|
| +32-bit (unsigned integer) value if <em>T</em> is float, and a IEEE 754 64-bit (unsigned
|
| +integer) value if <em>T</em> is double.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +N == NumFcnConsts
|
| +T == ConstantsSetType
|
| +IsFloat(T)
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +TypeOf(%cN) = T;
|
| +</pre>
|
| +<p>** Examples **</p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 4> | count 4;
|
| + 50:4| 3: <3> | @t0 = float;
|
| + 52:2| 3: <4> | @t1 = double;
|
| + 54:0| 3: <2> | @t2 = void;
|
| + 55:6| 3: <21, 0, 2> | @t3 = void ();
|
| + 59:0| 0: <65534> | }
|
| + ...
|
| +102:4| 1: <65535, 11, 2> | constants { // BlockID = 11
|
| +112:0| 3: <1, 0> | float:
|
| +114:4| 3: <6, 0> | %c0 = float 0;
|
| +117:0| 3: <6, 1065353216> | %c1 = float 1;
|
| +123:2| 3: <6, 1088421888> | %c2 = float 7;
|
| +130:2| 3: <6, 1090519040> | %c3 = float 8;
|
| +137:2| 3: <3> | %c4 = float undef;
|
| +139:0| 3: <6, 2143289344> | %c5 = float nan;
|
| +146:0| 3: <6, 2139095040> | %c6 = float inf;
|
| +153:0| 3: <6, 4286578688> | %c7 = float -inf;
|
| +160:0| 3: <1, 1> | double:
|
| +162:4| 3: <6, | %c8 = double 1;
|
| + | 4607182418800017408> |
|
| +174:0| 3: <6, 0> | %c9 = double 0;
|
| +176:4| 3: <6, | %c10 = double 5;
|
| + | 4617315517961601024> |
|
| +188:0| 3: <6, | %c11 = double 6;
|
| + | 4618441417868443648> |
|
| +199:4| 3: <6, | %c12 = double nan;
|
| + | 9221120237041090560> |
|
| +211:0| 3: <6, | %c13 = double inf;
|
| + | 9218868437227405312> |
|
| +222:4| 3: <6, | %c14 = double -inf;
|
| + | 18442240474082181120>|
|
| +234:0| 0: <65534> | }
|
| +</pre>
|
| +</section></section><section id="function-blocks">
|
| +<span id="link-for-function-blocks-section"></span><h2 id="function-blocks"><span id="link-for-function-blocks-section"></span>Function Blocks</h2>
|
| +<p>A function block defines the implementation of a <em>defined</em> function address. The
|
| +function address it defines is based on the position of the corresponding
|
| +<em>defined</em> function address. The Nth <em>defined</em> function address always
|
| +corresponds to the Nth function block in the module block.</p>
|
| +<p>A function implementation contains a list of basic blocks, forming the CFG
|
| +(control flow graph). Each basic block contains a list of instructions, and ends
|
| +with a <a class="reference internal" href="#link-for-terminator-instruction-section"><em>terminator</em></a> (e.g. branch)
|
| +instruction.</p>
|
| +<p>Basic blocks are not represented by records. Rather, context is implicit. The
|
| +first basic block begins with the first instruction record in the function
|
| +block. Blocks boundaries are determined by <em>terminator</em> instructions. The
|
| +instruction that follows a terminator instruction begins a new basic block.</p>
|
| +<p>The first basic block in a function is special in two ways: it is immediately
|
| +executed on entrance to the function, and it is not allowed to have predecessor
|
| +basic blocks (i.e. there can’t be any branches to the entry block of a
|
| +function). Because the entry block has no predecessors, it also can’t have any
|
| +<a class="reference internal" href="#link-for-phi-instruction-section"><em>phi</em></a> instructions.</p>
|
| +<p>The parameters are implied by the type of the corresponding function
|
| +address. One parameter is defined for each argument of the function type
|
| +signature.</p>
|
| +<p>The number of basic blocks is defined by the count record. Each terminator
|
| +instruction ends the current basic block, and the next instruction begins a new
|
| +basic block. Basic blocks are numbered by the order they appear (starting with
|
| +index 0). Basic block IDs have the form <em>%bN</em>, where <em>N</em> corresponds to the
|
| +position of the basic block within the function block.</p>
|
| +<p>Each instruction, within a function block, corresponds to a corresponding PNaCl
|
| +record. The layout of a function block is the (basic block) count record,
|
| +followed by a sequence of instruction records.</p>
|
| +<p>For readability, PNaClAsm introduces basic block IDs. These basic block IDs do
|
| +not correspond to PNaCl records, since basic block boundaries are defined
|
| +implicitly, after terminator instructions. They appear only for readability.</p>
|
| +<p>Operands of instructions are defined using an <a class="reference internal" href="#link-for-absolute-index-section"><em>absolute
|
| +index</em></a>. This absolute index implicitly encodes
|
| +function addresses, global addresses, parameters, constants, and instructions
|
| +that generate values. The encoding takes advantage of the implied ordering of
|
| +these values in the bitcode file, defining a contiguous sequence of indices for
|
| +each kind of identifier. That is, indices are ordered by putting function
|
| +address identifiers first, followed by global address identifiers, followed by
|
| +parameter identifiers, followed by constant identifiers, and lastly instruction
|
| +value identifiers.</p>
|
| +<p>To save space in the encoded bitcode file, most operands are encoded using a
|
| +relative index value, rather than absolute. This is done because most
|
| +instruction operands refer to values defined earlier in the (same) basic block.
|
| +As a result, the relative distance (back) from the next value defining
|
| +instruction is frequently a small number. Small numbers tend to require fewer
|
| +bits when they are converted to bit sequences.</p>
|
| +<p>The following subsections define records that can appear in a function block.</p>
|
| +<section id="function-enter">
|
| +<h3 id="function-enter">Function enter</h3>
|
| +<p>PNaClAsm defines a function enter block construct. The corresponding record is
|
| +simply an enter block record, with BlockID value 12. All context about the
|
| +defining address is implicit by the position of the function block, and the
|
| +corresponding defining function address. To improve readability, PNaClAsm
|
| +includes the function signature into the syntax rule.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +function TR @fN ( T0 %p0, ... , TM %pM ) { <B>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<blockquote>
|
| +<div>1: <65535, 12, B></div></blockquote>
|
| +<p><strong>Semantics</strong></p>
|
| +<p><em>B</em> is the number of bits reserved for abbreviations in the block. If it is
|
| +omitted, 2 is assumed. See <a class="reference internal" href="#link-for-enter-block-record-section"><em>enter</em></a>
|
| +block records for more details.</p>
|
| +<p>The value of <em>N</em> corresponds to the positional index of the corresponding
|
| +defining function address this block is associated with. <em>M</em> is the number of
|
| +defined parameters (minus one) in the function heading.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +N == NumFcnImpls
|
| +@fN in DefiningFcnIDs
|
| +TypeOfFcn(@fN) == TypeOf(TypeID(TR (T0, ... , TM)))
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumFcnImpls;
|
| +EnclosingFcnID = @fN;
|
| +NumBasicBlocks = 0;
|
| +ExpectedBlocks = 0;
|
| +NumParams = M;
|
| +for I in [0..M]:
|
| + TypeOf(%pI) = TypeOf(TypeID(TI));
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 4> | count 4;
|
| + 50:4| 3: <7, 32> | @t0 = i32;
|
| + 53:6| 3: <2> | @t1 = void;
|
| + 55:4| 3: <21, 0, 1> | @t2 = void ();
|
| + 58:6| 3: <21, 0, 0, 0> | @t3 = i32 (i32);
|
| + 62:6| 0: <65534> | }
|
| + ...
|
| +104:0| 1: <65535, 12, 2> | function void @f0() {
|
| + | | // BlockID = 12
|
| +112:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +114:4| 3: <10> | ret void;
|
| +116:2| 0: <65534> | }
|
| +120:0| 1: <65535, 12, 2> | function i32 @f1(i32 %p0) {
|
| + | | // BlockID = 12
|
| +128:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +130:4| 3: <10, 1> | ret i32 %p0;
|
| +133:0| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="id3">
|
| +<h3 id="id3">Count Record</h3>
|
| +<p>The count record, within a function block, defines the number of basic blocks
|
| +used to define the function implementation. It must be the first record in the
|
| +function block.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| + blocks: N; <A>
|
| +%b0:
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <1, N>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The count record defines the number <em>N</em> of basic blocks in the implemented
|
| +function.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +ExpectedBasicBlocks == N
|
| +NumBasicBlocks = 0
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +104:0| 1: <65535, 12, 2> | function void @f0() {
|
| + | | // BlockID = 12
|
| +112:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +114:4| 3: <10> | ret void;
|
| +116:2| 0: <65534> | }
|
| +120:0| 1: <65535, 12, 2> | function i32 @f1(i32 %p0) {
|
| + | | // BlockID = 12
|
| +128:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +130:4| 3: <10, 1> | ret i32 %p0;
|
| +133:0| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="terminator-instructions">
|
| +<span id="link-for-terminator-instruction-section"></span><h3 id="terminator-instructions"><span id="link-for-terminator-instruction-section"></span>Terminator Instructions</h3>
|
| +<p>Terminator instructions are instructions that appear in a function block, and
|
| +define the end of the current basic block. A terminator instruction indicates
|
| +which block should be executed after the current block is finished. The function
|
| +block is well formed only if the number of terminator instructions, in the
|
| +function block, corresponds to the value defined by the corresponding count
|
| +block.</p>
|
| +<section id="return-void-instruction">
|
| +<h4 id="return-void-instruction">Return Void Instruction</h4>
|
| +<p>The return void instruction is used to return control from a function back to
|
| +the caller, without returning any value.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| + ret void; <A>
|
| +%bB:
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <10>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The return instruction returns control to the calling function.</p>
|
| +<p><em>B</em> is the number associated with the next basic block. Label <em>%bB:</em> only
|
| +appears if <em>B < ExpectedBasicBlocks</em>. That is, the label is omitted only if this
|
| +terminator instruction is the last instruction in the function block.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +B == NumBasicBlocks + 1
|
| +NumBasicBlocks < ExpectedBasicBLocks
|
| +ReturnType(TypeOf(EnclosingFcnID)) == void
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumBasicBlocks;
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| +104:0| 1: <65535, 12, 2> | function void @f0() {
|
| + | | // BlockID = 12
|
| +112:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +114:4| 3: <10> | ret void;
|
| +116:2| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="return-value-instruction">
|
| +<h4 id="return-value-instruction">Return Value Instruction</h4>
|
| +<p>The return value instruction is used to return control from a function back to
|
| +the caller, including a value. The value must correspond to the return type of
|
| +the enclosing function.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| + ret T V; <A>
|
| +%bB:
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <10, VV>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The return value instruction returns control to the calling function, returning
|
| +the provided value.</p>
|
| +<p><em>V</em> is the value to return. Type <em>T</em> must be of the type returned by the
|
| +function. It must also be the type associated with value <em>V</em>.</p>
|
| +<p><em>B</em> is the number associated with the next basic block. Label <em>%bB:</em> only
|
| +appears if <em>B < ExpectedBasicBlocks</em>. That is, the label is omitted only if this
|
| +terminator instruction is the last instruction in the function block.</p>
|
| +<p>The return type <em>T</em> must either be a (non-void) primitive type, or a vector
|
| +type. If the function block is implementing an ordinary function, and the return
|
| +type is an integral type, it must be either i32 or i64.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +VV == RelativeIndex(V)
|
| +B == NumBasicBlocks + 1
|
| +NumBasicBlocks < ExpectedBasicBlocks
|
| +T == TypeOf(V) == ReturnType(TypeOf(EnclosingFcnID))
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumBasicBlocks;
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| +120:0| 1: <65535, 12, 2> | function i32 @f1(i32 %p0) {
|
| + | | // BlockID = 12
|
| +128:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +130:4| 3: <10, 1> | ret i32 %p0;
|
| +</pre>
|
| +</section><section id="unconditional-branch-instruction">
|
| +<h4 id="unconditional-branch-instruction">Unconditional Branch Instruction</h4>
|
| +<p>The unconditional branch instruction is used to cause control flow to transfer
|
| +to a different basic block of the function.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| + br %bN; <A>
|
| +%bB:
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <11, N>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The unconditional branch instruction causes control flow to transfer to basic
|
| +block <em>N</em>.</p>
|
| +<p><em>B</em> is the number associated with the next basic block. Label <em>%bB:</em> only
|
| +appears if <em>B < ExpectedBasicBlocks</em>. That is, the label is omitted only if this
|
| +terminator instruction is the last instruction in the function block.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +0 < N
|
| +N < ExpectedBasicBlocks
|
| +B == NumBasicBlocks + 1
|
| +NumBasicBlocks < ExpectedBasicBlocks
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumBasicBlocks;
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 88:0| 1: <65535, 12, 2> | function void @f0() {
|
| + | | // BlockID = 12
|
| + 96:0| 3: <1, 5> | blocks 5;
|
| + | | %b0:
|
| + 98:4| 3: <11, 3> | br label %b3;
|
| + | | %b1:
|
| +101:0| 3: <11, 4> | br label %b4;
|
| + | | %b2:
|
| +103:4| 3: <11, 1> | br label %b1;
|
| + | | %b3:
|
| +106:0| 3: <11, 2> | br label %b2;
|
| + | | %b4:
|
| +108:4| 3: <10> | ret void;
|
| +110:2| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="conditional-branch-instruction">
|
| +<h4 id="conditional-branch-instruction">Conditional Branch Instruction</h4>
|
| +<p>The conditional branch instruction is used to cause control flow to transfer to
|
| +a different basic block of the function, based on a boolean test condition.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| + br i1 C, %bT, %bBF; <A>
|
| +%bB:
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <11, T, F, CC>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>Upon execution of a conditional branch instruction, the <em>i1</em> (boolean) argument
|
| +<em>C</em> is evaluated. If the value is <em>true</em>, control flows to basic block
|
| +<em>%bT</em>. Otherwise control flows to basic block <em>%bF</em>.</p>
|
| +<p><em>B</em> is the number associated with the next basic block. Label <em>%bB:</em> only
|
| +appears if <em>B < ExpectedBasicBlocks</em>. That is, the label is omitted only if this
|
| +terminator instruction is the last instruction in the function block.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +CC == RelativeIndex(C)
|
| +0 < T
|
| +B1 < ExpectedBasicBlocks
|
| +0 < F
|
| +B2 < ExpectedBasicBlocks
|
| +B == NumBasicBlocks + 1
|
| +NumBasicBlocks < ExpectedBasicBlocks
|
| +TypeOf(C) == i1
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumBasicBlocks;
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 92:0| 1: <65535, 12, 2> | function void @f0() {
|
| + | | // BlockID = 12
|
| +100:0| 3: <1, 5> | blocks 5;
|
| +102:4| 1: <65535, 11, 2> | constants { // BlockID = 11
|
| +112:0| 3: <1, 1> | i1:
|
| +114:4| 3: <4, 3> | %c0 = i1 1;
|
| +117:0| 3: <4, 0> | %c1 = i1 0;
|
| +119:4| 0: <65534> | }
|
| + | | %b0:
|
| +120:0| 3: <11, 3> | br label %b3;
|
| + | | %b1:
|
| +122:4| 3: <11, 2, 4, 2> | br i1 %c0, label %b2, label %b4;
|
| + | | %b2:
|
| +126:4| 3: <11, 3> | br label %b3;
|
| + | | %b3:
|
| +129:0| 3: <10> | ret void;
|
| + | | %b4:
|
| +130:6| 3: <11, 2, 3, 1> | br i1 %c1, label %b2, label %b3;
|
| +134:6| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="unreachable">
|
| +<h4 id="unreachable">Unreachable</h4>
|
| +<p>The unreachable instruction has no defined semantics. The instruction is used to
|
| +inform the <em>PNaCl translator</em> that control can’t reach this instruction.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| + unreachable; <A>
|
| +%bB:
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <15>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>Directive to the <em>PNaCl translator</em> that this instruction is unreachable. <em>B</em>
|
| +is the number associated with the next basic block. Label <em>%bB:</em> only appears if
|
| +<em>B < ExpectedBasicBlocks</em>. That is, the label is omitted only if this terminator
|
| +instruction is the last instruction in the function block.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +B == NumBasicBlocks + 1
|
| +NumBasicBlocks < ExpectedBasicBlocks
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumBasicBlocks;
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| +108:0| 1: <65535, 12, 2> | function void @f0(i32 %p0) {
|
| + | | // BlockID = 12
|
| +116:0| 3: <1, 5> | blocks 5;
|
| +118:4| 1: <65535, 11, 2> | constants { // BlockID = 11
|
| +128:0| 3: <1, 2> | i1:
|
| +130:4| 3: <4, 3> | %c0 = i1 1;
|
| +133:0| 3: <4, 0> | %c1 = i1 0;
|
| +135:4| 0: <65534> | }
|
| + | | %b0:
|
| +136:0| 3: <11, 1, 2, 2> | br i1 %c0, label %b1, label %b2;
|
| + | | %b1:
|
| +140:0| 3: <11, 3, 4, 1> | br i1 %c1, label %b3, label %b4;
|
| + | | %b2:
|
| +144:0| 3: <15> | unreachable;
|
| + | | %b3:
|
| +145:6| 3: <15> | unreachable;
|
| + | | %b4:
|
| +147:4| 3: <10> | ret void;
|
| +149:2| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="switch-instruction">
|
| +<h4 id="switch-instruction">Switch Instruction</h4>
|
| +<p>The <em>switch</em> instruction transfers control flow to one of several different
|
| +places, based on a selector value. It is a generaliation of the conditional
|
| +branch instruction.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| + switch T V0 {
|
| + default: br label %bB0;
|
| + T V1: br label %bB1;
|
| + ...
|
| + T VN: br label %bBN;
|
| + } <A>
|
| +%bB:
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <12, TT, B0, N, (1, 1, VVI, BI | 1 <= i <= N)>
|
| +</pre>
|
| +<p><strong>Sematics</strong></p>
|
| +<p>The switch instruction transfer control to a basic block in B0 through BN.
|
| +Value <em>V</em> is used to conditionally select which block to branch to. <em>T</em> is the
|
| +type of <em>V</em> and <em>V1</em> through <em>VN</em>, and must be an integral type. Value <em>V1</em>
|
| +through <em>VN</em> are integers to compare against <em>V</em>. If selector <em>V</em> matches <em>VI</em>
|
| +(for some I, 1 <= I <= N), then the instruction branches to block <em>BI</em>. If <em>V</em>
|
| +is not in <em>V1</em> through <em>VN</em>, the instruction branches to block <em>B0</em>.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +TT == TypeID(T)
|
| +VI == SignRotate(VI) for all I, 1 <= I <= N
|
| +B == NumBasicBlocks + 1
|
| +NumBasicBlocks < ExpectedBasicBlocks
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| +116:0| 1: <65535, 12, 2> | function void @f0(i32 %p0) {
|
| + | | // BlockID = 12
|
| +124:0| 3: <1, 6> | blocks 6;
|
| + | | %b0:
|
| +126:4| 3: <12, 1, 1, 2, 4, 1, 1,| switch i32 %p0 {
|
| + | 2, 3, 1, 1, 4, 3, 1, | default: br label %b2;
|
| + | 1, 8, 4, 1, 1, 10, 4>| i32 1: br label %b3;
|
| + | | i32 2: br label %b3;
|
| + | | i32 4: br label %b4;
|
| + | | i32 5: br label %b4;
|
| + | | }
|
| + | | %b1:
|
| +143:2| 3: <11, 5> | br label %b5;
|
| + | | %b2:
|
| +145:6| 3: <11, 5> | br label %b5;
|
| + | | %b3:
|
| +148:2| 3: <11, 5> | br label %b5;
|
| + | | %b4:
|
| +150:6| 3: <11, 5> | br label %b5;
|
| + | | %b5:
|
| +153:2| 3: <10> | ret void;
|
| +155:0| 0: <65534> | }
|
| +156:0| 1: <65535, 12, 2> | function void @f1(i64 %p0) {
|
| + | | // BlockID = 12
|
| +164:0| 3: <1, 6> | blocks 6;
|
| + | | %b0:
|
| +166:4| 3: <12, 2, 1, 2, 4, 1, 1,| switch i64 %p0 {
|
| + | 2, 3, 1, 1, 4, 3, 1, | default: br label %b2;
|
| + | 1, 8, 4, 1, 1, | i64 1: br label %b3;
|
| + | 39777555332, 4> | i64 2: br label %b3;
|
| + | | i64 4: br label %b4;
|
| + | | i64 19888777666: br label %b4;
|
| + | | }
|
| + | | %b1:
|
| +188:4| 3: <11, 5> | br label %b5;
|
| + | | %b2:
|
| +191:0| 3: <11, 5> | br label %b5;
|
| + | | %b3:
|
| +193:4| 3: <11, 5> | br label %b5;
|
| + | | %b4:
|
| +196:0| 3: <11, 5> | br label %b5;
|
| + | | %b5:
|
| +198:4| 3: <10> | ret void;
|
| +200:2| 0: <65534> | }
|
| +</pre>
|
| +</section></section><section id="integer-binary-instructions">
|
| +<h3 id="integer-binary-instructions">Integer Binary Instructions</h3>
|
| +<p>Binary instructions are used to do most of the computation in a program. This
|
| +section focuses on binary instructions that operator on integral values, or
|
| +vectors of integral values.</p>
|
| +<p>All binary operations require two operands of the same type, execute an
|
| +operation on them, and produce a value. The value may represent multiple values
|
| +if the type is a vector type. The result value always has the same type as its
|
| +operands.</p>
|
| +<p>Some integer binary operations can be applied to both signed and unsigned
|
| +integers. Others, the sign is significant. In general, if the sign plays a role
|
| +in the instruction, the sign information is encoded into the name of the
|
| +instruction.</p>
|
| +<p>For most binary operations (except some of the logical operations), integral
|
| +type i1 is disallowed.</p>
|
| +<section id="integer-add">
|
| +<h4 id="integer-add">Integer Add</h4>
|
| +<p>The integer add instruction returns the sum of its two arguments. Both arguments
|
| +and the result must be of the same type. That type must be integral, or an
|
| +integral vector type.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +%vN = add T V1, V2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <2, VV1, VV2, 0>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The integer add instruction returns the sum of its two arguments. Arguments <em>V1</em>
|
| +and <em>V2</em>, and the result <em>%vN</em>, must be of type <em>T</em>. <em>T</em> must be an integral
|
| +type, or an integral vector type. <em>N</em> is defined by the record position,
|
| +defining the corresponding value generated by the instruction.</p>
|
| +<p>The result returned is the mathematical result modulo <em>exp(2,n)</em>, where <em>n</em> is
|
| +the bitwidth of the integer result.</p>
|
| +<p>Because integers are assumed to use a two’s complement representation,
|
| +this instruction is appropriate for both signed and unsigned integers.</p>
|
| +<p>In the add instruction, integral type i1 (and a vector on integral type i1) is
|
| +disallowed.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +VV1 == RelativeIndex(V1)
|
| +VV2 == RelativeIndex(V2)
|
| +T == TypeOf(V1) == TypeOf(V2)
|
| +IsInteger(UnderlyingType(T))
|
| +UnderlyingType(T) != i1
|
| +N == NumValuedInsts
|
| +NumBasicBlocks < ExpectedBasicBlocks
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 96:0| 1: <65535, 12, 2> | function i32 @f0(i32 %p0, i32 %p1) {
|
| + | | // BlockID = 12
|
| +104:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +106:4| 3: <2, 2, 1, 0> | %v0 = add i32 %p0, %p1;
|
| +110:4| 3: <2, 3, 1, 0> | %v1 = add i32 %p0, %v0;
|
| +114:4| 3: <10, 1> | ret i32 %v1;
|
| +117:0| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="integer-subtract">
|
| +<h4 id="integer-subtract">Integer Subtract</h4>
|
| +<p>The integer subtract instruction returns the difference of its two arguments.
|
| +Both arguments and the result must be of the same type. That type must be
|
| +integral, or an integral vector type.</p>
|
| +<p>Note: Since there isn’t a negate instruction, subtraction from constant zero
|
| +should be used to negate values.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +%vN = sub T V1, V2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <2, VV1, VV2, 1>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The integer subtract returns the difference of its two arguments. Arguments <em>V1</em>
|
| +and <em>V2</em>, and the result <em>%vN</em> must be of type <em>T</em>. <em>T</em> must be an integral
|
| +type, or an integral vector type. <em>N</em> is defined by the record position,
|
| +defining the corresponding value generated by the instruction.</p>
|
| +<p>The result returned is the mathematical result modulo <em>exp(2, n)</em>, where <em>n</em> is
|
| +the integer bitwidth of the result.</p>
|
| +<p>Because integers are assumed to use a two’s complement representation,
|
| +this instruction is appropriate for both signed and unsigned integers.</p>
|
| +<p>In the subtract instruction, integral type i1 (and a vector on integral type i1)
|
| +is disallowed.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +VV1 == RelativeIndex(V1)
|
| +VV2 == RelativeIndex(V2)
|
| +T == TypeOf(V1) == TypeOf(V2)
|
| +IsInteger(UnderlyingType(T))
|
| +UnderlyingType(T) != i1
|
| +N == NumValuedInsts
|
| +NumBasicBlocks < ExpectedBasicBlocks
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 96:0| 1: <65535, 12, 2> | function i32 @f0(i32 %p0, i32 %p1) {
|
| + | | // BlockID = 12
|
| +104:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +106:4| 3: <2, 2, 1, 1> | %v0 = sub i32 %p0, %p1;
|
| +110:4| 3: <2, 3, 1, 1> | %v1 = sub i32 %p0, %v0;
|
| +114:4| 3: <10, 1> | ret i32 %v1;
|
| +117:0| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="integer-multiply">
|
| +<h4 id="integer-multiply">Integer Multiply</h4>
|
| +<p>The integer multiply instruction returns the product of its two arguments. Both
|
| +arguments and the result must be of the same type. That type must be integral,
|
| +or an integral based vector type.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +&vN = mul T V1, V2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <2, VV1, VV2, 2>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The integer multiply instruction returns the product of its two
|
| +arguments. Arguments <em>V1</em> and <em>V2</em>, and the result <em>%vN</em>, must be of type <em>T</em>.
|
| +<em>T</em> must be an integral type, or an integral vector type. <em>N</em> is defined by the
|
| +record position, defining the corresponding value generated by the instruction.</p>
|
| +<p>The result returned is the mathematical result modulo <em>exp(2, n)</em>, where <em>n</em> is
|
| +the bitwidth of the result.</p>
|
| +<p>Because integers are assumed to use a two’s complement representation,
|
| +this instruction is appropriate for both signed and unsigned integers.</p>
|
| +<p>In the subtract instruction, integral type i1 (or a vector on integrap type i1)
|
| +is disallowed.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +VV1 == RelativeIndex(V1)
|
| +VV2 == RelativeIndex(V2)
|
| +T == TypeOf(V1) == TypeOf(V2)
|
| +IsInteger(UnderlyingType(T))
|
| +UnderlyingType(T) != i1
|
| +N == NumValuedInsts
|
| +NumBasicBlocks < ExpectedBasicBlocks
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 96:0| 1: <65535, 12, 2> | function i32 @f0(i32 %p0, i32 %p1) {
|
| + | | // BlockID = 12
|
| +104:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +106:4| 3: <2, 2, 1, 2> | %v0 = mul i32 %p0, %p1;
|
| +110:4| 3: <2, 1, 3, 2> | %v1 = mul i32 %v0, %p0;
|
| +114:4| 3: <10, 1> | ret i32 %v1;
|
| +117:0| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="signed-integer-divide">
|
| +<h4 id="signed-integer-divide">Signed Integer Divide</h4>
|
| +<p>The signed integer divide instruction returns the quotient of its two arguments.
|
| +Both arguments and the result must be of the same type. That type must be
|
| +integral, or an integral vector type.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +%vN = sdiv T V1, V2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <2, VV1, VV2, 4>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The signed integer divide instruction returns the quotient of its two
|
| +arguments. Arguments <em>V1</em> and <em>V2</em>, and the result <em>%vN</em>, must be of type
|
| +<em>T</em>. <em>T</em> must be a integral type, or an integral vector type. <em>N</em> is defined by
|
| +the record position, defining the corresponding value generated by the
|
| +instruction.</p>
|
| +<p>Signed values are assumed. Note that signed and unsigned integer division are
|
| +distinct operations. For unsigned integer division use the unsigned integer
|
| +divide instruction (udiv).</p>
|
| +<p>In the signed integer divide instruction, integral type i1 (and a vector on
|
| +integral type i1) is disallowed. Integer division by zero is guaranteed to trap.</p>
|
| +<p>Note that overflow can happen with this instruction when dividing the maximum
|
| +negative integer by -1. The behaviour for this case is undefined.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +VV1 == RelativeIndex(V1)
|
| +VV2 == RelativeIndex(V2)
|
| +T == TypeOf(V1) == TypeOf(V2)
|
| +IsInteger(UnderlyingType(T))
|
| +UnderlyingType(T) != i1
|
| +N == NumValuedInsts
|
| +NumBasicBlocks < ExpectedBasicBlocks
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 96:0| 1: <65535, 12, 2> | function i32 @f0(i32 %p0, i32 %p1) {
|
| + | | // BlockID = 12
|
| +104:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +106:4| 3: <2, 2, 1, 4> | %v0 = sdiv i32 %p0, %p1;
|
| +110:4| 3: <2, 1, 2, 4> | %v1 = sdiv i32 %v0, %p1;
|
| +114:4| 3: <10, 1> | ret i32 %v1;
|
| +117:0| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="unsigned-integer-divide">
|
| +<h4 id="unsigned-integer-divide">Unsigned Integer Divide</h4>
|
| +<p>The unsigned integer divide instruction returns the quotient of its two
|
| +arguments. Both the arguments and the result must be of the same type. That type
|
| +must be integral, or an integral vector type.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +%vN = udiv T V1, V2; <a>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <2, A1, A2, 3>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The unsigned integer divide instruction returns the quotient of its two
|
| +arguments. Arguments <em>V1</em> and <em>V2</em>, and the result <em>%vN</em>, must be of type
|
| +<em>T</em>. <em>T</em> must be an integral type, or an integral vector type. <em>N</em> is defined
|
| +by the record position, defining the corresponding value generated by the
|
| +instruction.</p>
|
| +<p>Unsigned integral values are assumed. Note that signed and unsigned integer
|
| +division are distinct operations. For signed integer division use the signed
|
| +integer divide instruction (sdiv).</p>
|
| +<p>In the unsigned integer divide instruction, integral type i1 (and a vector on
|
| +integral type i1) is disallowed. Division by zero is guaranteed to trap.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +VV1 == RelativeIndex(V1)
|
| +VV2 == RelativeIndex(V2)
|
| +T == TypeOf(V1) == TypeOf(V2)
|
| +IsInteger(UnderlyingType(T))
|
| +UnderlyingType(T) != i1
|
| +N == NumValuedInsts
|
| +NumBasicBlocks < ExpectedBasicBlocks
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 96:0| 1: <65535, 12, 2> | function i32 @f0(i32 %p0, i32 %p1) {
|
| + | | // BlockID = 12
|
| +104:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +106:4| 3: <2, 2, 1, 3> | %v0 = udiv i32 %p0, %p1;
|
| +110:4| 3: <2, 1, 2, 3> | %v1 = udiv i32 %v0, %p1;
|
| +114:4| 3: <10, 1> | ret i32 %v1;
|
| +117:0| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="signed-integer-remainder">
|
| +<h4 id="signed-integer-remainder">Signed Integer Remainder</h4>
|
| +<p>The signed integer remainder instruction returns the remainder of the quotient
|
| +of its two arguments. Both arguments and the result must be of the same
|
| +type. That type must be integral, or an integral based vector type.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +%vN = srem T V1, V2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <2, VV1, VV2, 6>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The signed integer remainder instruction returns the remainder of the quotient
|
| +of its two arguments. Arguments <em>V1</em> and <em>V2</em>, and the result <em>%vN</em>, must be of
|
| +type <em>T</em>. <em>T</em> must be a integral type, or an integral vector type. <em>N</em> is
|
| +defined by the record position, defining the corresponding value generated by
|
| +the instruction.</p>
|
| +<p>Signed values are assumed. Note that signed and unsigned integer division are
|
| +distinct operations. For unsigned integer division use the unsigned integer
|
| +remainder instruction (urem).</p>
|
| +<p>In the signed integer remainder instruction, integral type i1 (and a vector on
|
| +integral type i1) is disallowed. Division by zero is guaranteed to trap.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +VV1 == RelativeIndex(V1)
|
| +VV2 == RelativeIndex(V2)
|
| +T == TypeOf(V1) == TypeOf(V2)
|
| +IsInteger(UnderlyingType(T))
|
| +UnderlyingType(T) != i1
|
| +N == NumValuedInsts
|
| +NumBasicBlocks < ExpectedBasicBlocks
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 96:0| 1: <65535, 12, 2> | function i32 @f0(i32 %p0, i32 %p1) {
|
| + | | // BlockID = 12
|
| +104:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +106:4| 3: <2, 2, 1, 6> | %v0 = srem i32 %p0, %p1;
|
| +110:4| 3: <2, 1, 2, 6> | %v1 = srem i32 %v0, %p1;
|
| +114:4| 3: <10, 1> | ret i32 %v1;
|
| +117:0| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="unsigned-integer-remainder-instruction">
|
| +<h4 id="unsigned-integer-remainder-instruction">Unsigned Integer Remainder Instruction</h4>
|
| +<p>The unsigned integer remainder instruction returns the remainder of the quotient
|
| +of its two arguments. Both the arguments and the result must be of the same
|
| +type. The type must be integral, or an integral vector type.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +%vN = urem T V1, V2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <2, A1, A2, 5>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The unsigned integer remainder instruction returns the remainder of the quotient
|
| +of its two arguments. Arguments <em>V1</em> and <em>V2</em>, and the result <em>%vN</em>, must be of
|
| +type <em>T</em>. <em>T</em> must be an integral type, or an integral vector type. <em>N</em> is
|
| +defined by the record position, defining the corresponding value generated by
|
| +the instruction.</p>
|
| +<p>Unsigned values are assumed. Note that signed and unsigned integer division are
|
| +distinct operations. For signed integer division use the remainder instruction
|
| +(srem).</p>
|
| +<p>In the unsigned integer remainder instruction, integral type i1 (and a vector on
|
| +integral type i1) is disallowed. Division by zero is guaranteed to trap.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +VV1 == RelativeIndex(V1)
|
| +VV2 == RelativeIndex(V2)
|
| +T == TypeOf(V1) == TypeOf(V2)
|
| +IsInteger(UnderlyingType(T))
|
| +UnderlyingType(T) != i1
|
| +N == NumValuedInsts
|
| +NumBasicBlocks < ExpectedBasicBlocks
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 96:0| 1: <65535, 12, 2> | function i32 @f0(i32 %p0, i32 %p1) {
|
| + | | // BlockID = 12
|
| +104:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +106:4| 3: <2, 2, 1, 5> | %v0 = urem i32 %p0, %p1;
|
| +110:4| 3: <2, 1, 2, 5> | %v1 = urem i32 %v0, %p1;
|
| +114:4| 3: <10, 1> | ret i32 %v1;
|
| +117:0| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="shift-left">
|
| +<h4 id="shift-left">Shift Left</h4>
|
| +<p>The (integer) shift left instruction returns the first operand, shifted to the
|
| +left a specified number of bits with zero fill. The shifted value must be
|
| +integral, or an integral vector type.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +%vN = shl T V1, V2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <2, VV1, VV2, 7>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>This instruction performs a shift left operation. Arguments <em>V1</em> and <em>V2</em> and
|
| +the result <em>%vN</em> must be of type <em>T</em>. <em>T</em> nust be an integral, or a vector of
|
| +integrals. <em>N</em> is defined by the record position, defining the corresponding
|
| +value generated by the instruction.</p>
|
| +<p><em>V2</em> is assumed to be unsigned. The least significant bits of the
|
| +result will be filled with zero bits after the shift. If <em>V2</em> is
|
| +(statically or dynamically) is negative or equal to or larger than the
|
| +number of bits in <em>V1</em>, the result is undefined. If the arguments are
|
| +vectors, each vector element of <em>V1</em> is shifted by the corresponding
|
| +shift amount in <em>V2</em>.</p>
|
| +<p>In the shift left instruction, integral type i1 (and a vector on integral type
|
| +i1) is disallowed.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +VV1 == RelativeIndex(V1)
|
| +VV2 == RelativeIndex(V2)
|
| +T == TypeOf(V1) == TypeOf(V2)
|
| +IsInteger(UnderlyingType(T))
|
| +UnderlyingType(T) != i1
|
| +N == NumValuedInsts
|
| +NumBasicBlocks < ExpectedBasicBlocks
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 96:0| 1: <65535, 12, 2> | function i32 @f0(i32 %p0, i32 %p1) {
|
| + | | // BlockID = 12
|
| +104:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +106:4| 3: <2, 2, 1, 7> | %v0 = shl i32 %p0, %p1;
|
| +110:4| 3: <2, 1, 2, 7> | %v1 = shl i32 %v0, %p1;
|
| +114:4| 3: <10, 1> | ret i32 %v1;
|
| +117:0| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="logical-shift-right">
|
| +<h4 id="logical-shift-right">Logical Shift Right</h4>
|
| +<p>The logical shift right instruction returns the first operand, shifted to the
|
| +right a specified number of bits with zero fill.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +%vN = lshr T V1, V2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <2, VV1, VV2, 8>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>This instruction performs a logical shift right operation. Arguments <em>V1</em> and
|
| +<em>V2</em> and the result <em>%vN</em> must be of type <em>T</em>. <em>T</em> nust be an integral, or a
|
| +vector of integrals. <em>N</em> is defined by the record position, defining the
|
| +corresponding value generated by the instruction.</p>
|
| +<p><em>V2</em> is assumed to be unsigned. The most significant bits of the result will be
|
| +filled with zero bits after the shift. If <em>V2</em> is (statically or dynamically)
|
| +negative or equal to or larger than the number of bits in <em>V1</em>, the result is
|
| +undefined. If the arguments are vectors, each vector element of <em>V1</em> is shifted
|
| +by the corresponding shift amount in <em>V2</em>.</p>
|
| +<p>In the logical shift right instruction, integral type i1 (and a vector on
|
| +integral type i1) is disallowed.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +VV1 == RelativeIndex(V1)
|
| +VV2 == RelativeIndex(V2)
|
| +T == TypeOf(V1) == TypeOf(V2)
|
| +IsInteger(UnderlyingType(T))
|
| +UnderlyingType(T) != i1
|
| +N == NumValuedInsts
|
| +NumBasicBlocks < ExpectedBasicBlocks
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 96:0| 1: <65535, 12, 2> | function i32 @f0(i32 %p0, i32 %p1) {
|
| + | | // BlockID = 12
|
| +104:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +106:4| 3: <2, 2, 1, 8> | %v0 = lshr i32 %p0, %p1;
|
| +110:4| 3: <2, 1, 2, 8> | %v1 = lshr i32 %v0, %p1;
|
| +114:4| 3: <10, 1> | ret i32 %v1;
|
| +117:0| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="arithmetic-shift-right">
|
| +<h4 id="arithmetic-shift-right">Arithmetic Shift Right</h4>
|
| +<p>The arithmetic shift right instruction returns the first operand, shifted to the
|
| +right a specified number of bits with sign extension.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +%vN = ashr T V1, V2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <2, VV1, VVA2, 9>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>This instruction performs an arithmetic shift right operation. Arguments <em>V1</em>
|
| +and <em>V2</em> and and the result <em>%vN</em> must be of type <em>T</em>. <em>T</em> nust be an integral,
|
| +or a vector of integrals. <em>N</em> is defined by the record position, defining the
|
| +corresponding value generated by the instruction.</p>
|
| +<p><em>V2</em> is assumed to be unsigned. The most significant bits of the result will be
|
| +filled with the sign bit of <em>V1</em>. If <em>V2</em> is (statically or dynamically)
|
| +negative or equal to or larger than the number of bits in <em>V1</em>, the result is
|
| +undefined. If the arguments are vectors, each vector element of <em>V1</em> is shifted
|
| +by the corresponding shift amount in <em>V2</em>.</p>
|
| +<p>In the arithmetic shift right instruction, integral type i1 (and a vector on
|
| +integrl type i1) is disallowed.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +VV1 == RelativeIndex(V1)
|
| +VV2 == RelativeIndex(V2)
|
| +T == TypeOf(V1) == TypeOf(V2)
|
| +IsInteger(UnderlyingType(T))
|
| +UnderlyingType(T) != i1
|
| +N == NumValuedInsts
|
| +NumBasicBlocks < ExpectedBasicBlocks
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 96:0| 1: <65535, 12, 2> | function i32 @f0(i32 %p0, i32 %p1) {
|
| + | | // BlockID = 12
|
| +104:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +106:4| 3: <2, 2, 1, 9> | %v0 = ashr i32 %p0, %p1;
|
| +110:4| 3: <2, 1, 2, 9> | %v1 = ashr i32 %v0, %p1;
|
| +114:4| 3: <10, 1> | ret i32 %v1;
|
| +117:0| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="logical-and">
|
| +<h4 id="logical-and">Logical And</h4>
|
| +<p>The <em>and</em> instruction returns the bitwise logical and of its two operands.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +%vN = and T V1, V2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <2, VV1, VV2, 10>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>This instruction performs a bitwise logical and of its arguments. Arguments
|
| +<em>V1</em> and <em>V2</em>, and the result <em>%vN</em> must be of type <em>T</em>. <em>T</em> nust be an
|
| +integral, or a vector of integrals. <em>N</em> is defined by the record position,
|
| +defining the corresponding value generated by the instruction. <em>A</em> is the
|
| +(optional) abbreviation associated with the corresponding record.</p>
|
| +<p>The truth table used for the <em>and</em> instruction is:</p>
|
| +<table border="1" class="docutils">
|
| +<colgroup>
|
| +</colgroup>
|
| +<thead valign="bottom">
|
| +<tr class="row-odd"><th class="head">Arg 1</th>
|
| +<th class="head">Arg 2</th>
|
| +<th class="head">Result</th>
|
| +</tr>
|
| +</thead>
|
| +<tbody valign="top">
|
| +<tr class="row-even"><td>0</td>
|
| +<td>0</td>
|
| +<td>0</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>0</td>
|
| +<td>1</td>
|
| +<td>0</td>
|
| +</tr>
|
| +<tr class="row-even"><td>1</td>
|
| +<td>0</td>
|
| +<td>0</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>1</td>
|
| +<td>1</td>
|
| +<td>1</td>
|
| +</tr>
|
| +</tbody>
|
| +</table>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +VV1 == RelativeIndex(V1)
|
| +VV2 == RelativeIndex(V2)
|
| +T == TypeOf(V1) == TypeOf(V2)
|
| +IsInteger(UnderlyingType(T)))
|
| +N == NumValuedInsts
|
| +NumBasicBlocks < ExpectedBasicBlocks
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 96:0| 1: <65535, 12, 2> | function i32 @f0(i32 %p0, i32 %p1) {
|
| + | | // BlockID = 12
|
| +104:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +106:4| 3: <2, 2, 1, 10> | %v0 = and i32 %p0, %p1;
|
| +110:4| 3: <2, 1, 2, 10> | %v1 = and i32 %v0, %p1;
|
| +114:4| 3: <10, 1> | ret i32 %v1;
|
| +117:0| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="logical-or">
|
| +<h4 id="logical-or">Logical Or</h4>
|
| +<p>The <em>or</em> instruction returns the bitwise logical inclusive or of its
|
| +two operands.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +%vN = or T V1, V2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <2, VV1, VV2, 11>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>This instruction performs a bitwise logical inclusive or of its arguments.
|
| +Arguments <em>V1</em> and <em>V2</em>, and the result <em>%vN</em> must be of type <em>T</em>. <em>T</em> nust be
|
| +an integral, or a vector of integrals. <em>N</em> is defined by the record position,
|
| +defining the corresponding value generated by the instruction.</p>
|
| +<p>The truth table used for the <em>or</em> instruction is:</p>
|
| +<table border="1" class="docutils">
|
| +<colgroup>
|
| +</colgroup>
|
| +<thead valign="bottom">
|
| +<tr class="row-odd"><th class="head">Arg 1</th>
|
| +<th class="head">Arg 2</th>
|
| +<th class="head">Result</th>
|
| +</tr>
|
| +</thead>
|
| +<tbody valign="top">
|
| +<tr class="row-even"><td>0</td>
|
| +<td>0</td>
|
| +<td>0</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>0</td>
|
| +<td>1</td>
|
| +<td>1</td>
|
| +</tr>
|
| +<tr class="row-even"><td>1</td>
|
| +<td>0</td>
|
| +<td>1</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>1</td>
|
| +<td>1</td>
|
| +<td>1</td>
|
| +</tr>
|
| +</tbody>
|
| +</table>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +VV1 == RelativeIndex(V1)
|
| +VV2 == RelativeIndex(V2)
|
| +T == TypeOf(V1) == TypeOf(V2)
|
| +IsInteger(UnderlyingType(T)))
|
| +N == NumValuedInsts
|
| +NumBasicBlocks < ExpectedBasicBlocks
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 96:0| 1: <65535, 12, 2> | function i32 @f0(i32 %p0, i32 %p1) {
|
| + | | // BlockID = 12
|
| +104:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +106:4| 3: <2, 2, 1, 11> | %v0 = or i32 %p0, %p1;
|
| +110:4| 3: <2, 1, 2, 11> | %v1 = or i32 %v0, %p1;
|
| +114:4| 3: <10, 1> | ret i32 %v1;
|
| +117:0| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="logical-xor">
|
| +<h4 id="logical-xor">Logical Xor</h4>
|
| +<p>The <em>xor</em> instruction returns the bitwise logical exclusive or of its
|
| +two operands.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +%vN = xor T V1, V2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <2, VV1, VV2, 12>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>This instruction performs a bitwise logical exclusive or of its
|
| +arguments. Arguments <em>V1</em> and <em>V2</em>, and the result <em>%vN</em> must be of
|
| +type <em>T</em>. <em>T</em> nust be an integral, or a vector of integrals. <em>N</em> is
|
| +defined by the record position, defining the corresponding value
|
| +generated by the instruction.</p>
|
| +<p>The truth table used for the <em>or</em> instruction is:</p>
|
| +<table border="1" class="docutils">
|
| +<colgroup>
|
| +</colgroup>
|
| +<thead valign="bottom">
|
| +<tr class="row-odd"><th class="head">Arg 1</th>
|
| +<th class="head">Arg 2</th>
|
| +<th class="head">Result</th>
|
| +</tr>
|
| +</thead>
|
| +<tbody valign="top">
|
| +<tr class="row-even"><td>0</td>
|
| +<td>0</td>
|
| +<td>0</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>0</td>
|
| +<td>1</td>
|
| +<td>1</td>
|
| +</tr>
|
| +<tr class="row-even"><td>1</td>
|
| +<td>0</td>
|
| +<td>1</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>1</td>
|
| +<td>1</td>
|
| +<td>0</td>
|
| +</tr>
|
| +</tbody>
|
| +</table>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +A1 == RelativeIndex(V1)
|
| +A2 == RelativeIndex(V2)
|
| +T == TypeOf(V1) == TypeOf(V2)
|
| +IsInteger(UnderlyingType(T)))
|
| +N == NumValuedInsts
|
| +NumBasicBlocks < ExpectedBasicBlocks
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 96:0| 1: <65535, 12, 2> | function i32 @f0(i32 %p0, i32 %p1) {
|
| + | | // BlockID = 12
|
| +104:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +106:4| 3: <2, 2, 1, 12> | %v0 = xor i32 %p0, %p1;
|
| +110:4| 3: <2, 1, 2, 12> | %v1 = xor i32 %v0, %p1;
|
| +114:4| 3: <10, 1> | ret i32 %v1;
|
| +117:0| 0: <65534> | }
|
| +</pre>
|
| +</section></section><section id="floating-point-binary-instructions">
|
| +<h3 id="floating-point-binary-instructions">Floating Point Binary Instructions</h3>
|
| +<p>Floating point binary instructions require two operands of the same type,
|
| +execute an operation on them, and produce a value. The value may represent
|
| +multiple values if the type is a vector type. The result value always has the
|
| +same type as its operands.</p>
|
| +<section id="floating-point-add">
|
| +<h4 id="floating-point-add">Floating Point Add</h4>
|
| +<p>The floating point add instruction returns the sum of its two arguments. Both
|
| +arguments and the result must be of the same type. That type must be a floating
|
| +point type, or a vector of a floating point type.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +%vN = fadd T V1, V2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <2, VV1, VV2, 0>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The floating point add instruction returns the sum of its two arguments.
|
| +Arguments <em>V1</em> and <em>V2</em> and the result <em>%vN</em> must be of type <em>T</em>. <em>T</em> must be a
|
| +floating point type, or a vector of a floating point type. <em>N</em> is defined by the
|
| +record position, defining the corresponding value generated by the instruction.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +VV1 == RelativeIndex(V1)
|
| +VV2 == RelativeIndex(V2)
|
| +T == TypeOf(V1) == TypeOf(V2)
|
| +IsFloat(UnderlyingType(T))
|
| +N == NumValuedInsts
|
| +NumBasicBlocks < ExpectedBasicBlocks
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 92:0| 1: <65535, 12, 2> | function
|
| + | | float @f0(float %p0, float %p1) {
|
| + | | // BlockID = 12
|
| +100:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +102:4| 3: <2, 2, 1, 0> | %v0 = fadd float %p0, %p1;
|
| +106:4| 3: <2, 3, 1, 0> | %v1 = fadd float %p0, %v0;
|
| +110:4| 3: <10, 1> | ret float %v1;
|
| +113:0| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="floating-point-subtract">
|
| +<h4 id="floating-point-subtract">Floating Point Subtract</h4>
|
| +<p>The floating point subtract instruction returns the difference of its two
|
| +arguments. Both arguments and the result must be of the same type. That type
|
| +must be a floating point type, or a vector of a floating point type.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +%vN = fsub T V1, V2; <a>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <2, VV1, VV2, 1>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The floating point subtract instruction returns the difference of its two
|
| +arguments. Arguments <em>V1</em> and <em>V2</em>, and the result <em>%vN</em> must be of type
|
| +<em>T</em>. <em>T</em> must be a floating point type, or a vector of a floating point
|
| +type. <em>N</em> is defined by the record position, defining the corresponding value
|
| +generated by the instruction.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +VV1 == RelativeIndex(V1)
|
| +VV2 == RelativeIndex(V2)
|
| +T == TypeOf(V1) == TypeOf(V2)
|
| +IsFloat(UnderlyingType(T))
|
| +N == NumValuedInsts
|
| +NumBasicBlocks < ExpectedBasicBlocks
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 92:0| 1: <65535, 12, 2> | function
|
| + | | float @f0(float %p0, float %p1) {
|
| + | | // BlockID = 12
|
| +100:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +102:4| 3: <2, 2, 1, 1> | %v0 = fsub float %p0, %p1;
|
| +106:4| 3: <2, 3, 1, 1> | %v1 = fsub float %p0, %v0;
|
| +110:4| 3: <10, 1> | ret float %v1;
|
| +113:0| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="floating-point-multiply">
|
| +<h4 id="floating-point-multiply">Floating Point Multiply</h4>
|
| +<p>The floating point multiply instruction returns the product of its two
|
| +arguments. Both arguments and the result must be of the same type. That type
|
| +must be a floating point type, or a vector of a floating point type.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +&vN = fmul T V1, V2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <2, VV1, VV2, 2>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The floating point multiply instruction returns the product of its two
|
| +arguments. Arguments <em>V1</em> and <em>V2</em>, and the result <em>%vN</em> must be of type <em>T</em>.
|
| +<em>T</em> must be a floating point type, or a vector of a floating point type. <em>N</em> is
|
| +defined by the record position, defining the corresponding value generated by
|
| +the instruction.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +VV1 == RelativeIndex(V1)
|
| +VV2 == RelativeIndex(V2)
|
| +T == TypeOf(V1) == TypeOf(V2)
|
| +IsFloat(UnderlyingType(T))
|
| +N == NumValuedInsts
|
| +NumBasicBlocks < ExpectedBasicBlocks
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 92:0| 1: <65535, 12, 2> | function
|
| + | | float @f0(float %p0, float %p1) {
|
| + | | // BlockID = 12
|
| +100:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +102:4| 3: <2, 2, 1, 2> | %v0 = fmul float %p0, %p1;
|
| +106:4| 3: <2, 3, 1, 2> | %v1 = fmul float %p0, %v0;
|
| +110:4| 3: <10, 1> | ret float %v1;
|
| +113:0| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="floating-point-divide">
|
| +<h4 id="floating-point-divide">Floating Point Divide</h4>
|
| +<p>The floating point divide instruction returns the quotient of its two
|
| +arguments. Both arguments and the result must be of the same type. That type
|
| +must be a floating point type, or a vector of a floating point type.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +%vN = fdiv T V1, V2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <2, V1, V2, 4>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The float divide instruction returns the quotient of its two
|
| +arguments. Arguments <em>V1</em> and <em>V2</em>, and the result <em>%vN</em> must be of type
|
| +<em>T</em>. <em>T</em> must be a floating type, or a vector of a floating point type. <em>N</em> is
|
| +defined by the record position, defining the corresponding value generated by
|
| +the instruction.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +VV1 == RelativeIndex(V1)
|
| +VV22 == RelativeIndex(V2)
|
| +T == TypeOf(V1) == TypeOf(V2)
|
| +IsFloat(UnderlyingType(T))
|
| +N == NumValuedInsts
|
| +NumBasicBlocks < ExpectedBasicBlocks
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 92:0| 1: <65535, 12, 2> | function
|
| + | | double
|
| + | | @f0(double %p0, double %p1) {
|
| + | | // BlockID = 12
|
| +100:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +102:4| 3: <2, 2, 1, 4> | %v0 = fdiv double %p0, %p1;
|
| +106:4| 3: <2, 3, 1, 4> | %v1 = fdiv double %p0, %v0;
|
| +110:4| 3: <10, 1> | ret double %v1;
|
| +113:0| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="floating-point-remainder">
|
| +<h4 id="floating-point-remainder">Floating Point Remainder</h4>
|
| +<p>The floatint point remainder instruction returns the remainder of the quotient
|
| +of its two arguments. Both arguments and the result must be of the same
|
| +type. That type must be a floating point type, or a vector of a floating point
|
| +type.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +%vN = frem T V1, V2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <2, VV1, VV2, 6>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The floating point remainder instruction returns the remainder of the quotient
|
| +of its two arguments. Arguments <em>V1</em> and <em>V2</em>, and the result <em>%vN</em> must be of
|
| +type <em>T</em>. <em>T</em> must be a floating point type, or a vector of a floating point
|
| +type. <em>N</em> is defined by the record position, defining the corresponding value
|
| +generated by the instruction.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +VV1 == RelativeIndex(V1)
|
| +VV2 == RelativeIndex(V2)
|
| +T == TypeOf(V1) == TypeOf(V2)
|
| +IsFloat(UnderlyingType(T))
|
| +N == NumValuedInsts
|
| +NumBasicBlocks < ExpectedBasicBlocks
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 92:0| 1: <65535, 12, 2> | function
|
| + | | double
|
| + | | @f0(double %p0, double %p1) {
|
| + | | // BlockID = 12
|
| +100:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +102:4| 3: <2, 2, 1, 6> | %v0 = frem double %p0, %p1;
|
| +106:4| 3: <2, 3, 1, 6> | %v1 = frem double %p0, %v0;
|
| +110:4| 3: <10, 1> | ret double %v1;
|
| +113:0| 0: <65534> | }
|
| +</pre>
|
| +</section></section><section id="memory-creation-and-access-instructions">
|
| +<h3 id="memory-creation-and-access-instructions">Memory Creation And Access Instructions</h3>
|
| +<p>A key design point of SSA-based representation is how it represents
|
| +memory. In PNaCl bitcode files, no memory locations are in SSA
|
| +form. This makes things very simple.</p>
|
| +<section id="alloca-instruction">
|
| +<h4 id="alloca-instruction">Alloca Instruction</h4>
|
| +<p>The <em>alloca</em> instruction allocates memory on the stack frame of the
|
| +currently executing function. This memory is automatically released
|
| +when the function returns to its caller.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +%vN = alloca i8, i32 S, align V; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <19, SS, VV>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The <em>alloca</em> instruction allocates memory on the stack frame of the currently
|
| +executing function. The resulting value is a pointer to the allocated memory
|
| +(i.e. of type i32). <em>S</em> is the number of bytes that are allocated on the
|
| +stack. <em>S</em> must be of integral type i32. <em>V</em> is the alignment of the generated
|
| +stack address.</p>
|
| +<p>Alignment must be a power of 2. See <a class="reference internal" href="#link-for-memory-blocks-and-alignment-section"><em>memory blocks and
|
| +alignment</em></a> for a more detailed
|
| +discussion on how to define alignment.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +VV == Log2(V+1)
|
| +SS == RelativeIndex(S)
|
| +i32 == TypeOf(S)
|
| +N == NumValuedInsts
|
| +NumBasicBlocks < ExpectedBasicBlocks
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = i32;
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| +112:0| 1: <65535, 12, 2> | function void @f1() {
|
| + | | // BlockID = 12
|
| +120:0| 3: <1, 1> | blocks 1;
|
| +122:4| 1: <65535, 11, 2> | constants { // BlockID = 11
|
| +132:0| 3: <1, 0> | i32:
|
| +134:4| 3: <4, 4> | %c0 = i32 2;
|
| +137:0| 3: <4, 8> | %c1 = i32 4;
|
| +139:4| 3: <4, 16> | %c2 = i32 8;
|
| +142:0| 0: <65534> | }
|
| + | | %b0:
|
| +144:0| 3: <19, 3, 1> | %v0 = alloca i8, i32 %c0, align 1;
|
| +147:2| 3: <19, 3, 3> | %v1 = alloca i8, i32 %c1, align 4;
|
| +150:4| 3: <19, 3, 4> | %v2 = alloca i8, i32 %c2, align 8;
|
| +153:6| 3: <10> | ret void;
|
| +155:4| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="load-instruction">
|
| +<h4 id="load-instruction">Load Instruction</h4>
|
| +<p>The <em>load</em> instruction is used to read from memory.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +%vN = load T* P, align V; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <20, PP, VV, TT>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The load instruction is used to read from memory. <em>P</em> is the identifier of the
|
| +memory address to read. The type of <em>P</em> must be an i32 integer. <em>T</em> is the type
|
| +of value to read. <em>V</em> is the alignment of the memory address. <em>A</em> is the
|
| +(optional) abbreviation associated with the record.</p>
|
| +<p>Type <em>T</em> must be a vector, integral, or floating point type. Both float and
|
| +double types are allowed for floating point types. All integral types except i1
|
| +are allowed.</p>
|
| +<p>Alignment must be a power of 2. See <a class="reference internal" href="#link-for-memory-blocks-and-alignment-section"><em>memory blocks and
|
| +alignment</em></a> for a more detailed
|
| +discussion on how to define alignment.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<blockquote>
|
| +<div>AA == AbbrevIndex(A)
|
| +i32 == TypeOf(P)
|
| +PP == RelativeIndex(P)
|
| +VV == Log2(V+1)
|
| +%tTT == TypeID(T)
|
| +N == NumValuedInsts
|
| +NumBasicBlocks < ExpectedBasicBlocks</div></blockquote>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T;
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 4> | count 4;
|
| + 50:4| 3: <7, 32> | @t0 = i32;
|
| + 53:6| 3: <2> | @t1 = void;
|
| + 55:4| 3: <4> | @t2 = double;
|
| + 57:2| 3: <21, 0, 1, 0> | @t3 = void (i32);
|
| + 61:2| 0: <65534> | }
|
| + ...
|
| + 96:0| 1: <65535, 12, 2> | function void @f0(i32 %p0) {
|
| + | | // BlockID = 12
|
| +104:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +106:4| 3: <20, 1, 1, 0> | %v0 = load i32* %p0, align 1;
|
| +110:4| 3: <20, 1, 4, 2> | %v1 = load double* %v0, align 8;
|
| +114:4| 3: <10> | ret void;
|
| +116:2| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="store-instruction">
|
| +<h4 id="store-instruction">Store Instruction</h4>
|
| +<p>The <em>store</em> instruction is used to write to memory.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +store T S, T* P, align V; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <24, PP, SS, VV>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The store instruction is used to write to memory. <em>P</em> is the identifier of the
|
| +memory address to write to. The type of <em>P</em> must be an i32 integer. <em>T</em> is the
|
| +type of value to store. <em>S</em> is the value to store, and must be of type <em>T</em>. <em>V</em>
|
| +is the alignment of the memory address. <em>A</em> is the (optional) abbreviation
|
| +index associated with the record.</p>
|
| +<p>Type <em>T</em> must be an integral or floating point type. Both float and double types
|
| +are allowed for floating point types. All integral types except i1 are allowed.</p>
|
| +<p>Alignment must be a power of 2. See <a class="reference internal" href="#link-for-memory-blocks-and-alignment-section"><em>memory blocks and
|
| +alignment</em></a> for a more detailed
|
| +discussion on how to define alignment.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +i32 == TypeOf(P)
|
| +PP == RelativeIndex(P)
|
| +VV == Log2(V+1)
|
| +NumBasicBlocks < ExpectedBasicBlocks
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<p>The following instructions store an i32 integer and a 32-bit floating
|
| +value.</p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 4> | count 4;
|
| + 50:4| 3: <7, 32> | @t0 = i32;
|
| + 53:6| 3: <2> | @t1 = void;
|
| + 55:4| 3: <4> | @t2 = double;
|
| + 57:2| 3: <21, 0, 1, 0, 0, 0, 2>| @t3 = void (i32, i32, i32, double);
|
| + 63:4| 0: <65534> | }
|
| + ...
|
| + 96:0| 1: <65535, 12, 2> | function
|
| + | | void
|
| + | | @f0(i32 %p0, i32 %p1, i32 %p2,
|
| + | | double %p3) {
|
| + | | // BlockID = 12
|
| +104:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +106:4| 3: <24, 4, 3, 1> | store i32 %p1, i32* %p0, align 1;
|
| +110:4| 3: <24, 2, 1, 4> | store double %p3, double* %p2,
|
| + | | align 8;
|
| +114:4| 3: <10> | ret void;
|
| +116:2| 0: <65534> | }
|
| +</pre>
|
| +</section></section><section id="conversion-instructions">
|
| +<h3 id="conversion-instructions">Conversion Instructions</h3>
|
| +<p>Conversion instructions all take a single operand and a type. The value is
|
| +converted to the corresponding type.</p>
|
| +<section id="integer-truncating-instruction">
|
| +<h4 id="integer-truncating-instruction">Integer Truncating Instruction</h4>
|
| +<p>The integer truncating instruction takes a value to truncate, and a type
|
| +defining the truncated type. Both types must be integer types, or integral
|
| +vectors with the same number of elements. The bit size of the value must be
|
| +larger than the bit size of the destination type. Equal sized types are not
|
| +allowed.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +%vN = trunc T1 V to T2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <3, VV, TT2, 0>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The integer truncating instruction takes a value <em>V</em>, and truncates to type
|
| +<em>T2</em>. Both <em>T1</em> and <em>T2</em> must be integer types, or integral vectors with the
|
| +same number of elements. <em>T1</em> has to be wider than <em>T2</em>. If the value doesn’t
|
| +fit in in <em>T2</em>, then the higer order bits are dropped.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +TypeOf(V) == T1
|
| +*VV* == RelativeIndex(*V*)
|
| +%tTT2 == TypeID(T2)
|
| +BitSizeOf(UnderlyingType(T1)) > BitSizeOf(UnderlyingType(T2))
|
| +UnderlyingCount(T1) == UnderlyingCount(T2)
|
| +IsInteger(UnderlyingType(T1))
|
| +IsInteger(UnderlyingType(T2))
|
| +N == NumValuedInsts
|
| +NumBasicBlocks < ExpectedBasicBlocks
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T2;
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 5> | count 5;
|
| + 50:4| 3: <7, 32> | @t0 = i32;
|
| + 53:6| 3: <2> | @t1 = void;
|
| + 55:4| 3: <7, 16> | @t2 = i16;
|
| + 58:0| 3: <21, 0, 1, 0> | @t3 = void (i32);
|
| + 62:0| 3: <7, 8> | @t4 = i8;
|
| + 64:4| 0: <65534> | }
|
| + ...
|
| +100:0| 1: <65535, 12, 2> | function void @f0(i32 %p0) {
|
| + | | // BlockID = 12
|
| +108:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +110:4| 3: <3, 1, 2, 0> | %v0 = trunc i32 %p0 to i16;
|
| +114:4| 3: <3, 1, 4, 0> | %v1 = trunc i16 %v0 to i8;
|
| +118:4| 3: <10> | ret void;
|
| +120:2| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="floating-point-truncating-instruction">
|
| +<h4 id="floating-point-truncating-instruction">Floating Point Truncating Instruction</h4>
|
| +<p>The floating point truncating instruction takes a value to truncate, and a type
|
| +defining the truncated type. Both types must be floating point types, or
|
| +floating point vectors with the same number of elements. The bit size of the
|
| +source type must be larger than the bit size of the destination type. Equal
|
| +sized types are not allowed.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +%vN = fptrunc T1 V to T2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <3, VV, TT2, 7>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The floating truncating instruction takes a value <em>V</em>, and truncates to type
|
| +<em>T2</em>. Both <em>T1</em> and <em>T2</em> must be floating point types, or floating point vectors
|
| +with the same number of elements. <em>T1</em> has to be wider than <em>T2</em>. If the value
|
| +can’t fit within the destination type <em>T2</em>, the results are undefined.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +TypeOf(V) == T1
|
| +double == UnderlyingType(T1)
|
| +float == UnderlyingType(T2)
|
| +*VV* == RelativeIndex(*V*)
|
| +%tTT2 == TypeID(T2)
|
| +BitSizeOf(UnderlyingType(T1)) > BitSizeOf(UnderlyingType(T2))
|
| +UnderlyingCount(T1) == UnderlyingCount(T2)
|
| +IsFloat(UnderlyingType(T1))
|
| +IsFloat(UnderlyingType(T2))
|
| +N == NumValuedInsts
|
| +NumBasicBlocks < ExpectedBasicBlocks
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T2;
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 4> | count 4;
|
| + 50:4| 3: <3> | @t0 = float;
|
| + 52:2| 3: <4> | @t1 = double;
|
| + 54:0| 3: <21, 0, 0, 1> | @t2 = float (double);
|
| + 58:0| 3: <2> | @t3 = void;
|
| + 59:6| 0: <65534> | }
|
| +...
|
| + 92:0| 1: <65535, 12, 2> | function float @f0(double %p0) {
|
| + | | // BlockID = 12
|
| +100:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +102:4| 3: <3, 1, 0, 7> | %v0 = fptrunc double %p0 to float;
|
| +106:4| 3: <10, 1> | ret float %v0;
|
| +109:0| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="zero-extending-instruction">
|
| +<h4 id="zero-extending-instruction">Zero Extending Instruction</h4>
|
| +<p>The zero extending instruction takes a value to extend, and a type to extend it
|
| +to. Both types must be integer types, or integral vectors with the same number
|
| +of elements. The bit size of the source type must be smaller than the bit size
|
| +of the destination type. Equal sized types are not allowed.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +%vN = zext T1 V to T2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <3, VV, TT2, 1>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The zero extending instruction takes a value <em>V</em>, and expands it to type
|
| +<em>T2</em>. Both <em>T1</em> and <em>T2</em> must be integral types, or integral vectors with the
|
| +same number of elements. <em>T2</em> must be wider than <em>T1</em>.</p>
|
| +<p>The instruction fills the high order bits of the value with zero bits until it
|
| +reaches the size of the destination type. When zero extending from i1, the
|
| +result will always be either 0 or 1.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +TypeOf(V) == T1
|
| +*VV* == RelativeIndex(*V*)
|
| +%tTT2 == TypeID(T2)
|
| +BitSizeOf(UnderlyingType(T1)) < BitSizeOf(UnderlyingType(T2))
|
| +UnderlyingCount(T1) == UnderlyingCount(T2)
|
| +IsInteger(UnderlyingType(T1))
|
| +IsInteger(UnderlyingType(T2))
|
| +N == NumValuedInsts
|
| +NumBasicBlocks < ExpectedBasicBlocks
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T2;
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 5> | count 5;
|
| + 50:4| 3: <7, 64> | @t0 = i64;
|
| + 53:6| 3: <7, 32> | @t1 = i32;
|
| + 57:0| 3: <21, 0, 0> | @t2 = i64 ();
|
| + 60:2| 3: <7, 8> | @t3 = i8;
|
| + 62:6| 3: <2> | @t4 = void;
|
| + 64:4| 0: <65534> | }
|
| + ...
|
| +100:0| 1: <65535, 12, 2> | function i64 @f0() { // BlockID = 12
|
| +108:0| 3: <1, 1> | blocks 1;
|
| +110:4| 1: <65535, 11, 2> | constants { // BlockID = 11
|
| +120:0| 3: <1, 3> | i8:
|
| +122:4| 3: <4, 2> | %c0 = i8 1;
|
| +125:0| 0: <65534> | }
|
| + | | %b0:
|
| +128:0| 3: <3, 1, 1, 1> | %v0 = zext i8 %c0 to i32;
|
| +132:0| 3: <3, 1, 0, 1> | %v1 = zext i32 %v0 to i64;
|
| +136:0| 3: <10, 1> | ret i64 %v1;
|
| +138:4| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="sign-extending-instruction">
|
| +<h4 id="sign-extending-instruction">Sign Extending Instruction</h4>
|
| +<p>The sign extending instruction takes a value to cast, and a type to extend it
|
| +to. Both types must be integral types, or integarl vectors with the same number
|
| +of Elements. The bit size of the source type must be smaller than the bit size
|
| +of the destination type. Equal sized types are not allowed.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +%vN = sext T1 V to T2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <3, VV, TT2, 2>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The sign extending instruction takes a value <em>V</em>, and expands it to type
|
| +<em>T2</em>. Both <em>T1</em> and <em>T2</em> must be integral types, or integral vectors with the
|
| +same number of integers. <em>T2</em> has to be wider than <em>T1</em>.</p>
|
| +<p>When sign extending, the instruction fills the high order bits of the value with
|
| +the (current) high order bit of the value. When sign extending from i1, the
|
| +extension always results in -1 or 0.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +TypeOf(V) == T1
|
| +*VV* == RelativeIndex(*V*)
|
| +%tTT2 == TypeID(T2)
|
| +BitSizeOf(UnderlyingType(T1)) < BitSizeOf(UnderlyingType(T2))
|
| +UnderlyingCount(T1) == UnderlyingCount(T2)
|
| +IsInteger(UnderlyingType(T1))
|
| +IsInteger(UnderlyingType(T2))
|
| +N == NumValuedInsts
|
| +NumBasicBlocks < ExpectedBasicBlocks
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T2;
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 5> | count 5;
|
| + 50:4| 3: <7, 64> | @t0 = i64;
|
| + 53:6| 3: <7, 32> | @t1 = i32;
|
| + 57:0| 3: <21, 0, 0> | @t2 = i64 ();
|
| + 60:2| 3: <7, 8> | @t3 = i8;
|
| + 62:6| 3: <2> | @t4 = void;
|
| + 64:4| 0: <65534> | }
|
| + ...
|
| +100:0| 1: <65535, 12, 2> | function i64 @f0() { // BlockID = 12
|
| +108:0| 3: <1, 1> | blocks 1;
|
| +110:4| 1: <65535, 11, 2> | constants { // BlockID = 11
|
| +120:0| 3: <1, 3> | i8:
|
| +122:4| 3: <4, 3> | %c0 = i8 -1;
|
| +125:0| 0: <65534> | }
|
| + | | %b0:
|
| +128:0| 3: <3, 1, 1, 2> | %v0 = sext i8 %c0 to i32;
|
| +132:0| 3: <3, 1, 0, 2> | %v1 = sext i32 %v0 to i64;
|
| +136:0| 3: <10, 1> | ret i64 %v1;
|
| +138:4| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="floating-point-extending-instruction">
|
| +<h4 id="floating-point-extending-instruction">Floating point Extending Instruction</h4>
|
| +<p>The floating point extending instruction takes a value to extend, and a type to
|
| +extend it to. Both types must be floating types, or vectors of floating a
|
| +floating type with the same number of elements. The source value must be of
|
| +float type, or a vector of float type. The extended value must be a double type,
|
| +or a vector of double type. If the source is a vector, the destination must
|
| +also be vector with the same size as the source.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +%vN = fpext T1 V to T2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <3, VV, TT2, 8>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The floating point extending instruction converts float values to double. <em>V</em>
|
| +is the value to extend, and <em>T2</em> is the type to extend it to. Both <em>T1</em> and <em>T2</em>
|
| +must be floating point types, or floating point vector types with the same
|
| +number of floating values. <em>T2</em> has to be wider than <em>T1</em>.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +TypeOf(V) == T1
|
| +VV == RelativeIndex(V)
|
| +%tTT2 == TypeID(T2)
|
| +BitSizeOf(UnderlyingType(T1)) < BitSizeOf(UnderlyingType(T2))
|
| +UnderlyingCount(T1) == UnderlyingCount(T2)
|
| +IsFloat(UnderlyingType(T1))
|
| +IsFloat(UnderlyingType(T2))
|
| +N == NumValuedInsts
|
| +NumBasicBlocks < ExpectedBasicBlocks
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T2;
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 4> | count 4;
|
| + 50:4| 3: <4> | @t0 = double;
|
| + 52:2| 3: <3> | @t1 = float;
|
| + 54:0| 3: <21, 0, 0, 1> | @t2 = double (float);
|
| + 58:0| 3: <2> | @t3 = void;
|
| + 59:6| 0: <65534> | }
|
| + ...
|
| + 92:0| 1: <65535, 12, 2> | function double @f0(float %p0) {
|
| + | | // BlockID = 12
|
| +100:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +102:4| 3: <3, 1, 0, 8> | %v0 = fpext float %p0 to double;
|
| +106:4| 3: <10, 1> | ret double %v0;
|
| +109:0| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="floating-point-to-unsigned-integer-instruction">
|
| +<h4 id="floating-point-to-unsigned-integer-instruction">Floating Point To Unsigned Integer Instruction</h4>
|
| +<p>The floating point to unsigned integer instruction converts floating point
|
| +values to an unsigned integers.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +%vN = fptoui T1 V to T2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <3, VV, TT2, 3>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The floating point to unsigned integer instruction coverts floating point values
|
| +in <em>V</em> to its unsigned integer equivalent of type <em>T2</em>. <em>T1</em> must be a floating
|
| +point type, or a floating point vector type. <em>T2</em> must be an integral type, or a
|
| +integral vector type. If either type is a vector type, they both must be and
|
| +have the same number of elements.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +TypeOf(V) == T1
|
| +VV == RelativeIndex(V)
|
| +%tTT2 == TypeID(T2)
|
| +UnderlyingCount(T1) == UnderlyingCount(T2)
|
| +IsFloat(UnderlyingType(T1))
|
| +IsInteger(UnderlyingType(T2))
|
| +N == NumValuedInsts
|
| +NumBasicBlocks < ExpectedBasicBlocks
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T2;
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 6> | count 6;
|
| + 50:4| 3: <3> | @t0 = float;
|
| + 52:2| 3: <4> | @t1 = double;
|
| + 54:0| 3: <2> | @t2 = void;
|
| + 55:6| 3: <21, 0, 2, 0, 1> | @t3 = void (float, double);
|
| + 60:4| 3: <7, 32> | @t4 = i32;
|
| + 63:6| 3: <7, 16> | @t5 = i16;
|
| + 66:2| 0: <65534> | }
|
| + ...
|
| +100:0| 1: <65535, 12, 2> | function
|
| + | | void @f0(float %p0, double %p1) {
|
| + | | // BlockID = 12
|
| +108:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +110:4| 3: <3, 2, 4, 3> | %v0 = fptoui float %p0 to i32;
|
| +114:4| 3: <3, 2, 5, 3> | %v1 = fptoui double %p1 to i16;
|
| +118:4| 3: <10> | ret void;
|
| +120:2| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="floating-point-to-signed-integer-instruction">
|
| +<h4 id="floating-point-to-signed-integer-instruction">Floating Point To Signed Integer Instruction</h4>
|
| +<p>The floating point to signed integer instruction converts floating point
|
| +values to signed integers.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +%vN = fptosi T1 V to T2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <3, VV, TT2, 4>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The floating point to signed integer instruction coverts floating point values
|
| +in <em>V</em> to its signed integer equivalent of type <em>T2</em>. <em>T1</em> must be a floating
|
| +point type, or a floating point vector type. <em>T2</em> must be an integral type, or a
|
| +integral vector type. If either type is a vector type, they both must be and
|
| +have the same number of elements.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +TypeOf(V) == T1
|
| +VV == RelativeIndex(V)
|
| +%tTT2 = TypeID(T2)
|
| +UnderlyingCount(T1) = UnderlyingCount(T2)
|
| +IsFloat(UnderlyingType(T1))
|
| +IsInteger(UnderlyingType(T2))
|
| +N = NumValuedInsts
|
| +NumBasicBlocks < ExpectedBasicBlocks
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<blockquote>
|
| +<div>++NumValuedInsts;
|
| +TypeOf(%vN) = T2;</div></blockquote>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 6> | count 6;
|
| + 50:4| 3: <3> | @t0 = float;
|
| + 52:2| 3: <4> | @t1 = double;
|
| + 54:0| 3: <2> | @t2 = void;
|
| + 55:6| 3: <21, 0, 2, 0, 1> | @t3 = void (float, double);
|
| + 60:4| 3: <7, 8> | @t4 = i8;
|
| + 63:0| 3: <7, 16> | @t5 = i16;
|
| + 65:4| 0: <65534> | }
|
| + ...
|
| +100:0| 1: <65535, 12, 2> | function
|
| + | | void @f0(float %p0, double %p1) {
|
| + | | // BlockID = 12
|
| +108:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +110:4| 3: <3, 2, 4, 4> | %v0 = fptosi float %p0 to i8;
|
| +114:4| 3: <3, 2, 5, 4> | %v1 = fptosi double %p1 to i16;
|
| +118:4| 3: <10> | ret void;
|
| +120:2| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="unsigned-integer-to-floating-point-instruction">
|
| +<h4 id="unsigned-integer-to-floating-point-instruction">Unsigned Integer To Floating Point Instruction</h4>
|
| +<p>The unsigned integer to floating point instruction converts unsigned integers to
|
| +floating point values.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +%vN = uitofp T1 V to T2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <3, VV, TT2, 5>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The unsigned integer to floating point instruction converts unsigned integers to
|
| +its floating point equivalent of type <em>T2</em>. <em>T1</em> must be an integral type, or a
|
| +integral vector type. <em>T2</em> must be a floating point type, or a floating point
|
| +vector type. If either type is a vector type, they both must be and have the
|
| +same number of elements.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +TypeOf(V) == T1
|
| +VV == RelativeIndex(V)
|
| +%tTT2 = TypeID(T2)
|
| +UnderlyingCount(T1) == UnderlyingCount(T2)
|
| +IsInteger(UnderlyingType(T1))
|
| +IsFloat(UnderlyingType(T2))
|
| +N == NumValuedInsts
|
| +NumBasicBlocks < ExpectedBasicBlocks
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) == T2;
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 7> | count 7;
|
| + 50:4| 3: <7, 32> | @t0 = i32;
|
| + 53:6| 3: <7, 64> | @t1 = i64;
|
| + 57:0| 3: <2> | @t2 = void;
|
| + 58:6| 3: <3> | @t3 = float;
|
| + 60:4| 3: <21, 0, 2, 0, 1> | @t4 = void (i32, i64);
|
| + 65:2| 3: <7, 1> | @t5 = i1;
|
| + 67:6| 3: <4> | @t6 = double;
|
| + 69:4| 0: <65534> | }
|
| +...
|
| +104:0| 1: <65535, 12, 2> | function void @f0(i32 %p0, i64 %p1) {
|
| + | | // BlockID = 12
|
| +112:0| 3: <1, 1> | blocks 1;
|
| +114:4| 1: <65535, 11, 2> | constants { // BlockID = 11
|
| +124:0| 3: <1, 5> | i1:
|
| +126:4| 3: <4, 3> | %c0 = i1 1;
|
| +129:0| 0: <65534> | }
|
| + | | %b0:
|
| +132:0| 3: <3, 1, 6, 5> | %v0 = uitofp i1 %c0 to double;
|
| +136:0| 3: <3, 4, 3, 5> | %v1 = uitofp i32 %p0 to float;
|
| +140:0| 3: <3, 4, 3, 5> | %v2 = uitofp i64 %p1 to float;
|
| +144:0| 3: <10> | ret void;
|
| +145:6| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="signed-integer-to-floating-point-instruction">
|
| +<h4 id="signed-integer-to-floating-point-instruction">Signed Integer To Floating Point Instruction</h4>
|
| +<p>The signed integer to floating point instruction converts signed integers to
|
| +floating point values.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +%vN = sitofp T1 V to T2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <3, VV, TT2, 6>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The signed integer to floating point instruction converts signed integers to its
|
| +floating point equivalent of type <em>T2</em>. <em>T1</em> must be an integral type, or a
|
| +integral vector type. <em>T2</em> must be a floating point type, or a floating point
|
| +vector type. If either type is a vector type, they both must be and have the
|
| +same number of elements.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +TypeOf(V) == T1
|
| +VV == RelativeIndex(V)
|
| +%tTT2 = TypeID(T2)
|
| +UnderlyingCount(T1) == UnderlyingCount(T2)
|
| +IsInteger(UnderlyingType(T1))
|
| +IsFloat(UnderlyingType(T2))
|
| +N == NumValuedInsts
|
| +NumBasicBlocks < ExpectedBasicBlocks
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T2;
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 7> | count 7;
|
| + 50:4| 3: <7, 32> | @t0 = i32;
|
| + 53:6| 3: <7, 64> | @t1 = i64;
|
| + 57:0| 3: <2> | @t2 = void;
|
| + 58:6| 3: <3> | @t3 = float;
|
| + 60:4| 3: <21, 0, 2, 0, 1> | @t4 = void (i32, i64);
|
| + 65:2| 3: <7, 8> | @t5 = i8;
|
| + 67:6| 3: <4> | @t6 = double;
|
| + 69:4| 0: <65534> | }
|
| + ...
|
| +104:0| 1: <65535, 12, 2> | function void @f0(i32 %p0, i64 %p1) {
|
| + | | // BlockID = 12
|
| +112:0| 3: <1, 1> | blocks 1;
|
| +114:4| 1: <65535, 11, 2> | constants { // BlockID = 11
|
| +124:0| 3: <1, 5> | i8:
|
| +126:4| 3: <4, 3> | %c0 = i8 -1;
|
| +129:0| 0: <65534> | }
|
| + | | %b0:
|
| +132:0| 3: <3, 1, 6, 6> | %v0 = sitofp i8 %c0 to double;
|
| +136:0| 3: <3, 4, 3, 6> | %v1 = sitofp i32 %p0 to float;
|
| +140:0| 3: <3, 4, 3, 6> | %v2 = sitofp i64 %p1 to float;
|
| +144:0| 3: <10> | ret void;
|
| +145:6| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="bitcast-instruction">
|
| +<h4 id="bitcast-instruction">Bitcast Instruction</h4>
|
| +<p>The bitcast instruction converts the type of the value without changing the bit
|
| +contents of the value. The bitsize of the type of the value must be the same as
|
| +the bitsize of the type it is casted to.</p>
|
| +<p><strong>Sytax</strong></p>
|
| +<pre class="prettyprint">
|
| +%vN = bitcast T1 V to T2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <3, VV, TT2, 11>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The bitcast instruction converts the type of value <em>V</em> to type <em>T2</em>. <em>T1</em> and
|
| +<em>T2</em> must be primitive types or vectors, and define the same number of bits.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +TypeOf(V) == T1
|
| +VV = RelativeIndex(V)
|
| +%tTT2 = TypeID(T2)
|
| +BitSizeOf(T1) == BitSizeOf(T2)
|
| +N == NumValuedInsts
|
| +NumBasicBlocks < ExpectedBasicBlocks
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T2;
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 6> | count 6;
|
| + 50:4| 3: <3> | @t0 = float;
|
| + 52:2| 3: <7, 64> | @t1 = i64;
|
| + 55:4| 3: <2> | @t2 = void;
|
| + 57:2| 3: <21, 0, 2, 0, 1> | @t3 = void (float, i64);
|
| + 62:0| 3: <7, 32> | @t4 = i32;
|
| + 65:2| 3: <4> | @t5 = double;
|
| + 67:0| 0: <65534> | }
|
| + ...
|
| +100:0| 1: <65535, 12, 2> | function void @f0(float %p0, i64 %p1)
|
| + | | { // BlockID = 12
|
| +108:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +110:4| 3: <3, 2, 4, 11> | %v0 = bitcast float %p0 to i32;
|
| +114:4| 3: <3, 2, 5, 11> | %v1 = bitcast i64 %p1 to double;
|
| +118:4| 3: <10> | ret void;
|
| +120:2| 0: <65534> | }
|
| +</pre>
|
| +</section></section><section id="integer-comparison-instructions">
|
| +<h3 id="integer-comparison-instructions">Integer Comparison Instructions</h3>
|
| +<p>The integer comparison instruction compares integral values and returns a
|
| +boolean (i1) result for each pair of compared values.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +%vN = icmp C T V1, V2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <9, VV1, VV2, CC>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The integer comparison instruction compares integral values and returns a
|
| +boolean (i1) result for each pair of compared values in <em>V1</em> and <em>V2</em>. <em>V1</em> and
|
| +<em>V2</em> must be of type <em>T</em>. <em>T</em> must be an integral type, or an integral vector
|
| +type. Condition code <em>C</em> is the condition applied to all elements in <em>V1</em> and
|
| +<em>V2</em>. Each comparison always yields an i1. If <em>T</em> is a primitive type, the
|
| +resulting type is i1. If <em>T</em> is a vector, then the resulting type is a vector of
|
| +i1 with the same size as <em>T</em>.</p>
|
| +<p>Legal test conditions are:</p>
|
| +<table border="1" class="docutils">
|
| +<colgroup>
|
| +</colgroup>
|
| +<thead valign="bottom">
|
| +<tr class="row-odd"><th class="head">C</th>
|
| +<th class="head">CC</th>
|
| +<th class="head">Operator</th>
|
| +</tr>
|
| +</thead>
|
| +<tbody valign="top">
|
| +<tr class="row-even"><td>eq</td>
|
| +<td>32</td>
|
| +<td>equal</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>ne</td>
|
| +<td>33</td>
|
| +<td>not equal</td>
|
| +</tr>
|
| +<tr class="row-even"><td>ugt</td>
|
| +<td>34</td>
|
| +<td>unsigned greater than</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>uge</td>
|
| +<td>35</td>
|
| +<td>unsigned greater than or equal</td>
|
| +</tr>
|
| +<tr class="row-even"><td>ult</td>
|
| +<td>36</td>
|
| +<td>unsigned less then</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>ule</td>
|
| +<td>37</td>
|
| +<td>unsigned less than or equal</td>
|
| +</tr>
|
| +<tr class="row-even"><td>sgt</td>
|
| +<td>38</td>
|
| +<td>signed greater than</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>sge</td>
|
| +<td>39</td>
|
| +<td>signed greater than or equal</td>
|
| +</tr>
|
| +<tr class="row-even"><td>slt</td>
|
| +<td>40</td>
|
| +<td>signed less than</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>sle</td>
|
| +<td>41</td>
|
| +<td>signed less than or equal</td>
|
| +</tr>
|
| +</tbody>
|
| +</table>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +IsInteger(UnderlyingType(T)
|
| +T == TypeOf(V1) == TypeOf(V2)
|
| +N == NumValuedInsts
|
| +NumBasicBlocks < ExpectedBasicBlocks
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +if IsVector(T) then
|
| + TypeOf(%vN) = <UnderlyingCount(T), i1>
|
| +else
|
| + TypeOf(%vN) = i1
|
| +endif
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 4> | count 4;
|
| + 50:4| 3: <7, 32> | @t0 = i32;
|
| + 53:6| 3: <7, 1> | @t1 = i1;
|
| + 56:2| 3: <2> | @t2 = void;
|
| + 58:0| 3: <21, 0, 2> | @t3 = void ();
|
| + 61:2| 0: <65534> | }
|
| + ...
|
| +108:0| 1: <65535, 12, 2> | function void @f0() {
|
| + | | // BlockID = 12
|
| +116:0| 3: <1, 1> | blocks 1;
|
| +118:4| 1: <65535, 11, 2> | constants { // BlockID = 11
|
| +128:0| 3: <1, 0> | i32:
|
| +130:4| 3: <4, 0> | %c0 = i32 0;
|
| +133:0| 3: <4, 2> | %c1 = i32 1;
|
| +135:4| 0: <65534> | }
|
| + | | %b0:
|
| +136:0| 3: <28, 2, 1, 32> | %v0 = icmp eq i32 %c0, %c1;
|
| +140:6| 3: <28, 3, 2, 33> | %v1 = icmp ne i32 %c0, %c1;
|
| +145:4| 3: <28, 4, 3, 34> | %v2 = icmp ugt i32 %c0, %c1;
|
| +150:2| 3: <28, 5, 4, 36> | %v3 = icmp ult i32 %c0, %c1;
|
| +155:0| 3: <28, 6, 5, 37> | %v4 = icmp ule i32 %c0, %c1;
|
| +159:6| 3: <28, 7, 6, 38> | %v5 = icmp sgt i32 %c0, %c1;
|
| +164:4| 3: <28, 8, 7, 38> | %v6 = icmp sgt i32 %c0, %c1;
|
| +169:2| 3: <28, 9, 8, 39> | %v7 = icmp sge i32 %c0, %c1;
|
| +174:0| 3: <28, 10, 9, 40> | %v8 = icmp slt i32 %c0, %c1;
|
| +178:6| 3: <28, 11, 10, 41> | %v9 = icmp sle i32 %c0, %c1;
|
| +183:4| 3: <10> | ret void;
|
| +185:2| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="floating-point-comparison-instructions">
|
| +<h3 id="floating-point-comparison-instructions">Floating Point Comparison Instructions</h3>
|
| +<p>The floating point comparison instruction compares floating point values and
|
| +returns a boolean (i1) result for each pair of compared values.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +%vN = fcmp C T V1, V2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <9, VV1, VV2, CC>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The floating point comparison instruciton compares floating point values and
|
| +returns a boolean (i1) result for each pair of compared values in <em>V1</em> and
|
| +<em>V2</em>. <em>V1</em> and <em>V2</em> must be of type <em>T</em>. <em>T</em> must be a floating point type, or a
|
| +floating point vector type. Condition code <em>C</em> is the condition applied to all
|
| +elements in <em>V1</em> and <em>V2</em>. Each comparison always yeilds an i1. If <em>T</em> is a
|
| +primitive type, the resulting type is i1. If <em>T</em> is a vector, then the resulting
|
| +type is a vector of i1 with the same size as <em>T</em>.</p>
|
| +<p>Legal test conditions are:</p>
|
| +<table border="1" class="docutils">
|
| +<colgroup>
|
| +</colgroup>
|
| +<thead valign="bottom">
|
| +<tr class="row-odd"><th class="head">C</th>
|
| +<th class="head">CC</th>
|
| +<th class="head">Operator</th>
|
| +</tr>
|
| +</thead>
|
| +<tbody valign="top">
|
| +<tr class="row-even"><td>false</td>
|
| +<td>0</td>
|
| +<td>Always false</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>oeq</td>
|
| +<td>1</td>
|
| +<td>Ordered and equal</td>
|
| +</tr>
|
| +<tr class="row-even"><td>ogt</td>
|
| +<td>2</td>
|
| +<td>Ordered and greater than</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>oge</td>
|
| +<td>3</td>
|
| +<td>Ordered and greater than or equal</td>
|
| +</tr>
|
| +<tr class="row-even"><td>olt</td>
|
| +<td>4</td>
|
| +<td>Ordered and less than</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>ole</td>
|
| +<td>5</td>
|
| +<td>Ordered and less than or equal</td>
|
| +</tr>
|
| +<tr class="row-even"><td>one</td>
|
| +<td>6</td>
|
| +<td>Ordered and not equal</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>ord</td>
|
| +<td>7</td>
|
| +<td>Ordered (no nans)</td>
|
| +</tr>
|
| +<tr class="row-even"><td>uno</td>
|
| +<td>8</td>
|
| +<td>Unordered (either nans)</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>ueq</td>
|
| +<td>9</td>
|
| +<td>Unordered or equal</td>
|
| +</tr>
|
| +<tr class="row-even"><td>ugt</td>
|
| +<td>10</td>
|
| +<td>Unordered or greater than</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>uge</td>
|
| +<td>11</td>
|
| +<td>Unordered or greater than or equal</td>
|
| +</tr>
|
| +<tr class="row-even"><td>ult</td>
|
| +<td>12</td>
|
| +<td>Unordered or less than</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>ule</td>
|
| +<td>13</td>
|
| +<td>Unordered or less than or equal</td>
|
| +</tr>
|
| +<tr class="row-even"><td>une</td>
|
| +<td>14</td>
|
| +<td>Unordered or not equal</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>true</td>
|
| +<td>15</td>
|
| +<td>Alwyas true</td>
|
| +</tr>
|
| +</tbody>
|
| +</table>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +IsFloat(UnderlyingType(T)
|
| +T == TypeOf(V1) == TypeOf(V2)
|
| +N == NumValuedInsts
|
| +NumBasicBlocks < ExpectedBasicBlocks
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +if IsVector(T) then
|
| + TypeOf(%vN) = <UnderlyingCount(T), i1>
|
| +else
|
| + TypeOf(%vN) = i1
|
| +endif
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 4> | count 4;
|
| + 50:4| 3: <3> | @t0 = float;
|
| + 52:2| 3: <7, 1> | @t1 = i1;
|
| + 54:6| 3: <2> | @t2 = void;
|
| + 56:4| 3: <21, 0, 2> | @t3 = void ();
|
| + 59:6| 0: <65534> | }
|
| + ...
|
| +108:0| 1: <65535, 12, 2> | function void @f0() {
|
| + | | // BlockID = 12
|
| +116:0| 3: <1, 1> | blocks 1;
|
| +118:4| 1: <65535, 11, 2> | constants { // BlockID = 11
|
| +128:0| 3: <1, 0> | float:
|
| +130:4| 3: <6, 0> | %c0 = float 0;
|
| +133:0| 3: <6, 1065353216> | %c1 = float 1;
|
| +139:2| 0: <65534> | }
|
| + | | %b0:
|
| +140:0| 3: <28, 2, 1, 0> | %v0 = fcmp false float %c0, %c1;
|
| +144:0| 3: <28, 3, 2, 1> | %v1 = fcmp oeq float %c0, %c1;
|
| +148:0| 3: <28, 4, 3, 2> | %v2 = fcmp ogt float %c0, %c1;
|
| +152:0| 3: <28, 5, 4, 3> | %v3 = fcmp oge float %c0, %c1;
|
| +156:0| 3: <28, 6, 5, 4> | %v4 = fcmp olt float %c0, %c1;
|
| +160:0| 3: <28, 7, 6, 5> | %v5 = fcmp ole float %c0, %c1;
|
| +164:0| 3: <28, 8, 7, 6> | %v6 = fcmp one float %c0, %c1;
|
| +168:0| 3: <28, 9, 8, 7> | %v7 = fcmp ord float %c0, %c1;
|
| +172:0| 3: <28, 10, 9, 9> | %v8 = fcmp ueq float %c0, %c1;
|
| +176:0| 3: <28, 11, 10, 10> | %v9 = fcmp ugt float %c0, %c1;
|
| +180:0| 3: <28, 12, 11, 11> | %v10 = fcmp uge float %c0, %c1;
|
| +184:0| 3: <28, 13, 12, 12> | %v11 = fcmp ult float %c0, %c1;
|
| +188:0| 3: <28, 14, 13, 13> | %v12 = fcmp ule float %c0, %c1;
|
| +192:0| 3: <28, 15, 14, 14> | %v13 = fcmp une float %c0, %c1;
|
| +196:0| 3: <28, 16, 15, 8> | %v14 = fcmp uno float %c0, %c1;
|
| +200:0| 3: <28, 17, 16, 15> | %v15 = fcmp true float %c0, %c1;
|
| +204:0| 3: <10> | ret void;
|
| +205:6| 0: <65534> | }
|
| +208:0|0: <65534> |}
|
| +</pre>
|
| +</section><section id="vector-instructions">
|
| +<h3 id="vector-instructions">Vector Instructions</h3>
|
| +<p>PNaClAsm supports several instructions that process vectors. This includes
|
| +binary instructions and compare instructions. These instructions work with
|
| +existing vectors and generate resulting (new) vectors. This section instroduces
|
| +the instructions to construct vectors and extract results.</p>
|
| +<section id="insert-element-instruction">
|
| +<span id="link-for-insert-element-instruction-section"></span><h4 id="insert-element-instruction"><span id="link-for-insert-element-instruction-section"></span>Insert Element Instruction</h4>
|
| +<p>The <em>insert element</em> instruction inserts a scalar value into a vector at a
|
| +specified index. The <em>insert element</em> instruction takes an existing vector and
|
| +puts a scalar value in one of the elements of the vector.</p>
|
| +<p>The <em>insert element</em> instruction can be used to construct a vector, one element
|
| +at a time. At first glance, it may appear that one can’t construct a vector,
|
| +since the <em>insert element</em> instruction needs a vector to insert elements into.</p>
|
| +<p>The key to understanding vector construction is understand that one can create
|
| +an undefined vector literal. Using that constant as a starting point, one can
|
| +built up the wanted vector by a sequence of <em>insert element</em> instructions.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +%vN = insertelement TV V, TE E, i32 I; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <7, VV, EE, II>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The <em>insert element</em> instruction inserts scalar value <em>E</em> into index <em>I</em> of
|
| +vector <em>V</em>. <em>%vN</em> holds the updated vector. Type <em>TV</em> is the type of vector. It
|
| +is also the type of updated vector <em>%vN</em>. Type <em>TE</em> is the type of scalar value
|
| +<em>E</em> and must be the element type of vector <em>V</em>. <em>I</em> must be an i32 value.</p>
|
| +<p>If <em>I</em> exceeds the length of <em>V</em>, the results is undefined.</p>
|
| +<p><strong>Constrants</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +IsVector(TV)
|
| +TypeOf(V) == TV
|
| +UnderlyingType(TV) == TE
|
| +TypeOf(I) == i32
|
| +N == NumValuedInsts
|
| +NumBasicBlocks < ExpectedBasicBlocks
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = TV;
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 5> | count 5;
|
| + 50:4| 3: <7, 1> | @t0 = i1;
|
| + 53:0| 3: <12, 4, 0> | @t1 = <4 x i1>;
|
| + 56:2| 3: <7, 32> | @t2 = i32;
|
| + 59:4| 3: <2> | @t3 = void;
|
| + 61:2| 3: <21, 0, 3> | @t4 = void ();
|
| + 64:4| 0: <65534> | }
|
| + ...
|
| +116:0| 1: <65535, 12, 2> | function void @f0() {
|
| + | | // BlockID = 12
|
| +124:0| 3: <1, 1> | blocks 1;
|
| +126:4| 1: <65535, 11, 2> | constants { // BlockID = 11
|
| +136:0| 3: <1, 0> | i1:
|
| +138:4| 3: <4, 0> | %c0 = i1 0;
|
| +141:0| 3: <4, 3> | %c1 = i1 1;
|
| +143:4| 3: <1, 1> | <4 x i1>:
|
| +146:0| 3: <3> | %c2 = <4 x i1> undef;
|
| +147:6| 3: <1, 2> | i32:
|
| +150:2| 3: <4, 0> | %c3 = i32 0;
|
| +152:6| 3: <4, 2> | %c4 = i32 1;
|
| +155:2| 3: <4, 4> | %c5 = i32 2;
|
| +157:6| 3: <4, 6> | %c6 = i32 3;
|
| +160:2| 0: <65534> | }
|
| + | | %b0:
|
| +164:0| 3: <7, 5, 7, 4> | %v0 = insertelement <4 x i1> %c2,
|
| + | | i1 %c0, i32 %c3;
|
| +168:0| 3: <7, 1, 7, 4> | %v1 = insertelement <4 x i1> %v0,
|
| + | | i1 %c1, i32 %c4;
|
| +172:0| 3: <7, 1, 9, 4> | %v2 = insertelement <4 x i1> %v1,
|
| + | | i1 %c0, i32 %c5;
|
| +176:0| 3: <7, 1, 9, 4> | %v3 = insertelement <4 x i1> %v2,
|
| + | | i1 %c1, i32 %c6;
|
| +180:0| 3: <10> | ret void;
|
| +181:6| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="extract-element-instruction">
|
| +<h4 id="extract-element-instruction">Extract Element Instruction</h4>
|
| +<p>The <em>extract element</em> instruction extracts a single scalar value from a vector
|
| +at a specified index.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +%vN = extractelement TV V, i32 I; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <6, VV, II>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The <em>extract element</em> instruction extracts the scalar value at index <em>I</em> from
|
| +vector <em>V</em>. The extracted value is assigned to <em>%vN</em>. Type <em>TV</em> is the type of
|
| +vector <em>V</em>. <em>I</em> must be an i32 value. The type of <em>vN</em> must be the element type
|
| +of vector <em>V</em>.</p>
|
| +<p>If <em>I</em> exceeds the length of <em>V</em>, the results is undefined.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +IsVector(TV)
|
| +TypeOf(V) == TV
|
| +TypeOf(I) == i32
|
| +N == NumValuedInsts
|
| +NumBasicBlocks < ExpectedBasicBlocks
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = UnderlyingType(TV);
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 96:0| 1: <65535, 12, 2> | function void @f0(<4 x i32> %p0) {
|
| + | | // BlockID = 12
|
| +104:0| 3: <1, 1> | blocks 1;
|
| +106:4| 1: <65535, 11, 2> | constants { // BlockID = 11
|
| +116:0| 3: <1, 0> | i32:
|
| +118:4| 3: <4, 0> | %c0 = i32 0;
|
| +121:0| 0: <65534> | }
|
| + | | %b0:
|
| +124:0| 3: <6, 2, 1> | %v0 =
|
| + | | extractelement <4 x i32> %p0,
|
| + | | i32 %c0;
|
| +127:2| 3: <10> | ret void;
|
| +129:0| 0: <65534> | }
|
| +</pre>
|
| +</section></section><section id="other-instructions">
|
| +<h3 id="other-instructions">Other Instructions</h3>
|
| +<p>This section defines miscellaneous instructions which defy better
|
| +classification.</p>
|
| +<section id="forward-type-declaration">
|
| +<span id="link-for-forward-type-declaration-section"></span><h4 id="forward-type-declaration"><span id="link-for-forward-type-declaration-section"></span>Forward type declaration</h4>
|
| +<p>The forward type declaration exists to deal with the fact that all instruction
|
| +values must have a type associated with them before they are used. For some
|
| +simple functions one can easily topologically sort instructions so that
|
| +instruction values are defined before they are used. However, if the
|
| +implementation contains loops, the loop induced values can’t be defined before
|
| +they are used.</p>
|
| +<p>The solution is to forward declare the type of an instruction value. One could
|
| +forward declare the types of all instructions at the beginning of the function
|
| +block. However, this would make the corresponding file size considerably
|
| +larger. Rather, one should only generate these forward type declarations
|
| +sparingly and only when needed.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +declare T %vN; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <43, N, TT>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The forward declare type declaration defines the type to be associated with a
|
| +(not yet defined) instruction value <em>%vN</em>. <em>T</em> is the type of the value
|
| +generated by the <em>Nth</em> value generating instruction in the function block.</p>
|
| +<p>Note: It is an error to define the type of <em>%vN</em> with a different type than will
|
| +be generated by the <em>Nth</em> value generating instruction in the function block.</p>
|
| +<p>Also note that this construct is a declaration and not considered an
|
| +instruction, even though it appears in the list of instruction records. Hence,
|
| +they may appear before and between <a class="reference internal" href="#link-for-phi-instruction-section"><em>phi</em></a>
|
| +instructions in a basic block.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA = AbbrevIndex(A)
|
| +TT = TypeID(T)
|
| +NumBasicBlocks < ExpectedBasicBlocks
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +TypeOf(%vN) = T;
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 4> | count 4;
|
| + 50:4| 3: <7, 32> | @t0 = i32;
|
| + 53:6| 3: <2> | @t1 = void;
|
| + 55:4| 3: <7, 1> | @t2 = i1;
|
| + 58:0| 3: <21, 0, 1, 0> | @t3 = void (i32);
|
| + 62:0| 0: <65534> | }
|
| + ...
|
| +108:0| 1: <65535, 12, 2> | function void @f0(i32 %p0) {
|
| + | | // BlockID = 12
|
| +116:0| 3: <1, 7> | blocks 7;
|
| +118:4| 1: <65535, 11, 2> | constants { // BlockID = 11
|
| +128:0| 3: <1, 2> | i1:
|
| +130:4| 3: <4, 3> | %c0 = i1 1;
|
| +133:0| 0: <65534> | }
|
| + | | %b0:
|
| +136:0| 3: <11, 4> | br label %b4;
|
| + | | %b1:
|
| +138:4| 3: <43, 6, 0> | declare i32 %v3;
|
| +142:4| 3: <2, 2, 4294967293, 0> | %v0 = add i32 %p0, %v3;
|
| +151:0| 3: <11, 6> | br label %b6;
|
| + | | %b2:
|
| +153:4| 3: <43, 7, 0> | declare i32 %v4;
|
| +157:4| 3: <2, 3, 4294967293, 0> | %v1 = add i32 %p0, %v4;
|
| +166:0| 3: <11, 6> | br label %b6;
|
| + | | %b3:
|
| +168:4| 3: <2, 4, 4294967295, 0> | %v2 = add i32 %p0, %v3;
|
| +177:0| 3: <11, 6> | br label %b6;
|
| + | | %b4:
|
| +179:4| 3: <2, 5, 5, 0> | %v3 = add i32 %p0, %p0;
|
| +183:4| 3: <11, 1, 5, 5> | br i1 %c0, label %b1, label %b5;
|
| + | | %b5:
|
| +187:4| 3: <2, 1, 6, 0> | %v4 = add i32 %v3, %p0;
|
| +191:4| 3: <11, 2, 3, 6> | br i1 %c0, label %b2, label %b3;
|
| + | | %b6:
|
| +195:4| 3: <10> | ret void;
|
| +197:2| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="phi-instruction">
|
| +<span id="link-for-phi-instruction-section"></span><h4 id="phi-instruction"><span id="link-for-phi-instruction-section"></span>Phi Instruction</h4>
|
| +<p>The <em>phi</em> instruction is used to implement phi nodes in the SSA graph
|
| +representing the function. Phi instructions can only appear at the beginning of
|
| +a basic block. There must be no non-phi instructions (other than forward type
|
| +declarations) between the start of the basic block and the <em>phi</em> instruction.</p>
|
| +<p>To clarify the origin of each incoming value, the incoming value is associated
|
| +with the incoming edge from the corresponding predicessor block for which the
|
| +incoming value comes from.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +%vN = phi T [V1, %bB1], ... , [VM, %bBM]; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <16, TT, VV1, B1, ..., VVM, BM>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The phi instruction is used to implement phi nodes in the SSA graph representing
|
| +the function. <em>%vN</em> is the resulting value of the corresponding phi node. <em>T</em> is
|
| +the type of the phi node. Values <em>V1</em> through <em>VM</em> are the reaching definitions
|
| +for the phi node while <em>%bB1</em> through <em>%bBM</em> are the corresponding predicessor
|
| +blocks. Each <em>VI</em> reaches via the incoming predicessor edge from block <em>%bBI</em>
|
| +(for 1 <= I <= M). Type <em>T</em> must be the type associated with each <em>VI</em>.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +M > 1
|
| +TT == TypeID(T)
|
| +T = TypeOf(VI) for all I, 1 <= I <= M
|
| +BI < ExpectedBasicBlocks for all I, 1 <= I <= M
|
| +VVI = SignRotate(RelativeIndex(VI)) for all I, 1 <= I <= M
|
| +N == NumValuedInsts
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T;
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 4> | count 4;
|
| + 50:4| 3: <7, 32> | @t0 = i32;
|
| + 53:6| 3: <2> | @t1 = void;
|
| + 55:4| 3: <21, 0, 1> | @t2 = void ();
|
| + 58:6| 3: <7, 1> | @t3 = i1;
|
| + 61:2| 0: <65534> | }
|
| + ...
|
| +112:0| 1: <65535, 12, 2> | function void @f0() {
|
| + | | // BlockID = 12
|
| +120:0| 3: <1, 4> | blocks 4;
|
| +122:4| 1: <65535, 11, 2> | constants { // BlockID = 11
|
| +132:0| 3: <1, 0> | i32:
|
| +134:4| 3: <4, 2> | %c0 = i32 1;
|
| +137:0| 3: <1, 3> | i1:
|
| +139:4| 3: <4, 0> | %c1 = i1 0;
|
| +142:0| 0: <65534> | }
|
| + | | %b0:
|
| +144:0| 3: <11, 1, 2, 1> | br i1 %c1, label %b1, label %b2;
|
| + | | %b1:
|
| +148:0| 3: <2, 2, 2, 0> | %v0 = add i32 %c0, %c0;
|
| +152:0| 3: <2, 3, 3, 1> | %v1 = sub i32 %c0, %c0;
|
| +156:0| 3: <11, 3> | br label %b3;
|
| + | | %b2:
|
| +158:4| 3: <2, 4, 4, 2> | %v2 = mul i32 %c0, %c0;
|
| +162:4| 3: <2, 5, 5, 3> | %v3 = udiv i32 %c0, %c0;
|
| +166:4| 3: <11, 3> | br label %b3;
|
| + | | %b3:
|
| +169:0| 3: <16, 0, 8, 1, 4, 2> | %v4 = phi i32 [%v0, %b1],
|
| + | | [%v2, %b2];
|
| +174:4| 3: <16, 0, 8, 1, 4, 2> | %v5 = phi i32 [%v1, %b1],
|
| + | | [%v3, %b2];
|
| +180:0| 3: <10> | ret void;
|
| +181:6| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="select-instruction">
|
| +<h4 id="select-instruction">Select Instruction</h4>
|
| +<p>The <em>select</em> instruction is used to choose between pairs of values, based on a
|
| +condition, without PNaClAsm-level branching.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +%vN = select CT C, T V1, T V2; <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <29, VV1, VV2, CC>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The <em>select</em> instruction choses pairs of values <em>V1</em> and <em>V2</em>, based on
|
| +condition values <em>C</em>. The type <em>CT</em> of value <em>C</em> must either be an i1, or a
|
| +vector of type i1. The type of values <em>V1</em> and <em>V2</em> must be of type <em>T</em>. Type
|
| +<em>T</em> must either be a primitive type, or a vector of a primitive type.</p>
|
| +<p>Both <em>CT</em> and <em>T</em> must be primitive types, or both must be vector types of the
|
| +same size. When the contents of <em>C</em> is 1, the corresponding value from <em>V1</em> will
|
| +be chosen. Otherwise the conrresponding value from <em>V2</em> will be chosen.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +CC == RelativeIndex(C)
|
| +VV1 == RelativeIndex(V1)
|
| +VV2 == RelativeIndex(V2)
|
| +T == TypeOf(V1) == TypeOf(V2)
|
| +UnderlyingType(CT) == i1
|
| +IsInteger(UnderlyingType(T)) or IsFloat(UnderlyingType(T))
|
| +UnderlyingCount(C) == UnderlyingCount(T)
|
| +N == NumValuedInsts
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = T;
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 96:0| 1: <65535, 12, 2> | function i32 @f0(i32 %p0, i32 %p1) {
|
| + | | // BlockID = 12
|
| +104:0| 3: <1, 1> | blocks 1;
|
| +106:4| 1: <65535, 11, 2> | constants { // BlockID = 11
|
| +116:0| 3: <1, 2> | i1:
|
| +118:4| 3: <4, 3> | %c0 = i1 1;
|
| +121:0| 0: <65534> | }
|
| + | | %b0:
|
| +124:0| 3: <29, 3, 2, 1> | %v0 = select i1 %c0, i32 %p0,
|
| + | | i32 %p1;
|
| +128:0| 3: <10, 1> | ret i32 %v0;
|
| +130:4| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="call-instructions">
|
| +<h4 id="call-instructions">Call Instructions</h4>
|
| +<p>The <em>call</em> instruction does a function call. The call instruction is used to
|
| +cause control flow to transfer to a specified routine, with its incoming
|
| +arguments bound to the specified values. When a <em>ret</em> instruction, in the called
|
| +function, is reached control flow continues with instruction after the function
|
| +call. If the call is to a function, the returned value is the value generated by
|
| +the call instruction. Otherwise no result is defined by the call.</p>
|
| +<p>If the <em>tail</em> flag is associated with the call instruction, then optimizers in
|
| +the PNaCl translator is free to perform tail call optimiziation. That is, the
|
| +<em>tail</em> flag is a hint that may be ignored by the PNaCl translator.</p>
|
| +<p>There are two kinds of calls: <em>direct</em> and <em>indirect</em>. A <em>direct</em> call calls a
|
| +defined function address (i.e. a reference to a bitcode ID of the form
|
| +<em>%fF</em>). All other calls are <em>indirect</em>.</p>
|
| +</section></section><section id="direct-procedure-call">
|
| +<h3 id="direct-procedure-call">Direct Procedure Call</h3>
|
| +<p>The direct procedure call calls a defined function address whose type signature
|
| +returns type void.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +TAIL call void @fF (T1 A1, ... , TN AN); <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <34, CC, F, AA1, ... , AAN>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The direct procedure call calls a define function address <em>%fF</em> whose type
|
| +signature return type is void. The arguments <em>A1</em> through <em>AN</em> are passed
|
| +in the order specified. The type of arugment <em>AI</em> must be type <em>TI</em> (for all I,
|
| +1 <=I <= N). Flag <em>TAIL</em> is optional. If it is included, it must the the
|
| +literal <em>tail</em>.</p>
|
| +<p>The types of the arugments must match the corresponding types of the function
|
| +signature associated with <em>%fF</em>. The return type of <em>%f</em> must be void.</p>
|
| +<p>TAIL is encoded into calling convention value <em>CC</em> as follows:</p>
|
| +<table border="1" class="docutils">
|
| +<colgroup>
|
| +</colgroup>
|
| +<thead valign="bottom">
|
| +<tr class="row-odd"><th class="head">TAIL</th>
|
| +<th class="head">CC</th>
|
| +</tr>
|
| +</thead>
|
| +<tbody valign="top">
|
| +<tr class="row-even"><td>‘’</td>
|
| +<td>0</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>‘tail’</td>
|
| +<td>1</td>
|
| +</tr>
|
| +</tbody>
|
| +</table>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +N >= 0
|
| +TypeOfFcn(%fF) == void (T1, ... , TN)
|
| +TypeOf(AI) == TI for all I, 1 <= I <= N
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 72:0| 3: <8, 3, 0, 1, 0> | declare external
|
| + | | void @f0(i32, i64, i32);
|
| + ...
|
| +116:0| 1: <65535, 12, 2> | function void @f1(i32 %p0) {
|
| + | | // BlockID = 12
|
| +124:0| 3: <1, 1> | blocks 1;
|
| +126:4| 1: <65535, 11, 2> | constants { // BlockID = 11
|
| +136:0| 3: <1, 2> | i64:
|
| +138:4| 3: <4, 2> | %c0 = i64 1;
|
| +141:0| 0: <65534> | }
|
| + | | %b0:
|
| +144:0| 3: <34, 0, 4, 2, 1, 2> | call void
|
| + | | @f0(i32 %p0, i64 %c0, i32 %p0);
|
| +150:2| 3: <10> | ret void;
|
| +152:0| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="direct-function-call">
|
| +<h3 id="direct-function-call">Direct Function Call</h3>
|
| +<p>The direct function call calls a defined function address whose type signature
|
| +returns a value.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +%vN = TAIL call RT %fF (T1 A1, ... , TM AM); <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <34, CC, F, AA1, ... , AAM>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The direct function call calls a defined function address <em>%fF</em> whose type
|
| +signature returns is not type void. The arguments <em>A1</em> through <em>AM</em> are passed
|
| +in the order specified. The type of arugment <em>AI</em> must be type <em>TI</em> (for all I,
|
| +1 <= I <= N). Flag <em>TAIL</em> is optional. If it is included, it must the the
|
| +literal <em>tail</em>.</p>
|
| +<p>The types of the arugments must match the corresponding types of the function
|
| +signature associated with <em>%fF</em>. The return type must match <em>RT</em>.</p>
|
| +<p>Each parameter type <em>TI</em>, and return type <em>RT</em>, must either be a primitive type,
|
| +or a vector type. If the parameter type is an integral type, it must either be
|
| +i32 or i64.</p>
|
| +<p>TAIL is encoded into calling convention value <em>CC</em> as follows:</p>
|
| +<table border="1" class="docutils">
|
| +<colgroup>
|
| +</colgroup>
|
| +<thead valign="bottom">
|
| +<tr class="row-odd"><th class="head">TAIL</th>
|
| +<th class="head">CC</th>
|
| +</tr>
|
| +</thead>
|
| +<tbody valign="top">
|
| +<tr class="row-even"><td>‘’</td>
|
| +<td>0</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>‘tail’</td>
|
| +<td>1</td>
|
| +</tr>
|
| +</tbody>
|
| +</table>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +N >= 0
|
| +TypeOfFcn(%fF) == RT (T1, ... , TN)
|
| +TypeOf(AI) == TI for all I, 1 <= I <= M
|
| +IsFcnArgType(TI) for all I, 1 <= I <= M
|
| +IsFcnArgType(RT)
|
| +N == NumValuedInsts
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = RT;
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 72:0| 3: <8, 2, 0, 1, 0> | declare external
|
| + | | i32 @f0(i32, i64, i32);
|
| + ...
|
| +116:0| 1: <65535, 12, 2> | function i32 @f1(i32 %p0) {
|
| + | | // BlockID = 12
|
| +124:0| 3: <1, 1> | blocks 1;
|
| +126:4| 1: <65535, 11, 2> | constants { // BlockID = 11
|
| +136:0| 3: <1, 1> | i64:
|
| +138:4| 3: <4, 2> | %c0 = i64 1;
|
| +141:0| 0: <65534> | }
|
| + | | %b0:
|
| +144:0| 3: <34, 0, 4, 2, 1, 2> | %v0 = call i32
|
| + | | @f0(i32 %p0, i64 %c0, i32 %p0);
|
| +150:2| 3: <34, 1, 4, 1> | %v1 = tail call i32 @f1(i32 %v0);
|
| +155:0| 3: <10, 2> | ret i32 %v0;
|
| +157:4| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="indirect-procedure-call">
|
| +<h3 id="indirect-procedure-call">Indirect Procedure Call</h3>
|
| +<p>The indirect procedure call calls a function using an indirect function address,
|
| +and whose type signature is assumed to return type void. It is different from
|
| +the direct procedure call because we can’t use the type signature of the
|
| +corresponding direct function address to type check the construct.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +TAIL call void V (T1 A1, ... , TN AN); <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <44, CC, TV, VV, AA1, ... , AAN>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The indirect call procedure calls a function using value <em>V</em> that is an indirect
|
| +function address, and whose type signature is assumed to return type void. The
|
| +arguments <em>A1</em> through <em>AN</em> are passed in the order specified. The type of
|
| +arugment <em>AI</em> must be type <em>TI</em> (for all I, 1 <= I <= N). Flag <em>TAIL</em> is
|
| +optional. If it is included, it must the the literal <em>tail</em>.</p>
|
| +<p>Each parameter type <em>TI</em> (1 <= I <= N) must either be a primitive type, or a
|
| +vector type. If the parameter type is an integral type, it must either be i32
|
| +or i64.</p>
|
| +<p>TAIL is encoded into calling convention value <em>CC</em> as follows:</p>
|
| +<table border="1" class="docutils">
|
| +<colgroup>
|
| +</colgroup>
|
| +<thead valign="bottom">
|
| +<tr class="row-odd"><th class="head">TAIL</th>
|
| +<th class="head">CC</th>
|
| +</tr>
|
| +</thead>
|
| +<tbody valign="top">
|
| +<tr class="row-even"><td>‘’</td>
|
| +<td>0</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>‘tail’</td>
|
| +<td>1</td>
|
| +</tr>
|
| +</tbody>
|
| +</table>
|
| +<p>The type signature of the called procedure is assumed to be:</p>
|
| +<pre class="prettyprint">
|
| +void (T1, ... , TN)
|
| +</pre>
|
| +<p>It isn’t necessary to define this type in the types block, since the type is
|
| +inferred rather than used.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +N >= 0
|
| +TV = TypeID(void)
|
| +AbsoluteIndex(V) >= NumFuncAddresses
|
| +TypeOf(AI) == TI for all I, 1 <= I <= N
|
| +IsFcnArgType(TI) for all I, 1 <= I <= N
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 3> | count 3;
|
| + 50:4| 3: <2> | @t0 = void;
|
| + 52:2| 3: <7, 32> | @t1 = i32;
|
| + 55:4| 3: <21, 0, 0, 1> | @t2 = void (i32);
|
| + 59:4| 0: <65534> | }
|
| + ...
|
| + 92:0| 1: <65535, 12, 2> | function void @f0(i32 %p0) {
|
| + | | // BlockID = 12
|
| +100:0| 3: <1, 1> | blocks 1;
|
| +102:4| 1: <65535, 11, 2> | constants { // BlockID = 11
|
| +112:0| 3: <1, 1> | i32:
|
| +114:4| 3: <4, 2> | %c0 = i32 1;
|
| +117:0| 0: <65534> | }
|
| + | | %b0:
|
| +120:0| 3: <44, 0, 2, 0, 1> | call void %p0(i32 %c0);
|
| +125:4| 3: <10> | ret void;
|
| +127:2| 0: <65534> | }
|
| +</pre>
|
| +</section><section id="indirect-function-call">
|
| +<h3 id="indirect-function-call">Indirect Function Call</h3>
|
| +<p>The indirect function call calls a function using a value that is an indirect
|
| +function address. It is different from the direct function call because we can’t
|
| +use the type signature of the corresponding literal function address to type
|
| +check the construct.</p>
|
| +<p><strong>Syntax</strong></p>
|
| +<pre class="prettyprint">
|
| +%vN = TAIL call RT V (T1 A1, ... , TM AM); <A>
|
| +</pre>
|
| +<p><strong>Record</strong></p>
|
| +<pre class="prettyprint">
|
| +AA: <34, CC, RRT, VV, AA1, ... , AAM>
|
| +</pre>
|
| +<p><strong>Semantics</strong></p>
|
| +<p>The indirect function call calls a function using a value <em>V</em> that is an
|
| +indirect function address, and is assumed to return type <em>RT</em>. The arguments
|
| +<em>A1</em> through <em>AM</em> are passed in the order specified. The type of arugment <em>AI</em>
|
| +must be type <em>TI</em> (for all I, 1 <= I <= N). Flag <em>TAIL</em> is optional. If it is
|
| +included, it must the the literal <em>tail</em>.</p>
|
| +<p>Each parameter type <em>TI</em> (1 <= I <= M), and return type <em>RT</em>, must either be a
|
| +primitive type, or a vector type. If the parameter type is an integral type, it
|
| +must either be i32 or i64.</p>
|
| +<p>TAIL is encoded into calling convention value <em>CC</em> as follows:</p>
|
| +<table border="1" class="docutils">
|
| +<colgroup>
|
| +</colgroup>
|
| +<thead valign="bottom">
|
| +<tr class="row-odd"><th class="head">TAIL</th>
|
| +<th class="head">CC</th>
|
| +</tr>
|
| +</thead>
|
| +<tbody valign="top">
|
| +<tr class="row-even"><td>‘’</td>
|
| +<td>0</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>‘tail’</td>
|
| +<td>1</td>
|
| +</tr>
|
| +</tbody>
|
| +</table>
|
| +<p>The type signature of the called function is assumed to be:</p>
|
| +<pre class="prettyprint">
|
| +RT (T1, ... , TN)
|
| +</pre>
|
| +<p>It isn’t necessary to define this type in the types block, since the type is
|
| +inferred rather than used.</p>
|
| +<p><strong>Constraints</strong></p>
|
| +<pre class="prettyprint">
|
| +AA == AbbrevIndex(A)
|
| +RRT = TypeID(RT)
|
| +VV = RelativeIndex(V)
|
| +M >= 0
|
| +AbsoluteIndex(V) >= NumFcnAddresses
|
| +TypeOf(AI) == TI for all I, 1 <= I <= M
|
| +IsFcnArgType(TI) for all I, 1 <= I <= M
|
| +IsFcnArgType(RT)
|
| +N == NumValuedInsts
|
| +</pre>
|
| +<p><strong>Updates</strong></p>
|
| +<pre class="prettyprint">
|
| +++NumValuedInsts;
|
| +TypeOf(%vN) = RT;
|
| +</pre>
|
| +<p><strong>Examples</strong></p>
|
| +<pre class="prettyprint">
|
| + 40:0| 1: <65535, 17, 2> | types { // BlockID = 17
|
| + 48:0| 3: <1, 6> | count 6;
|
| + 50:4| 3: <7, 32> | @t0 = i32;
|
| + 53:6| 3: <3> | @t1 = float;
|
| + 55:4| 3: <4> | @t2 = double;
|
| + 57:2| 3: <21, 0, 0, 0, 1, 2> | @t3 = i32 (i32, float, double);
|
| + 62:6| 3: <21, 0, 0, 1, 2> | @t4 = i32 (float, double);
|
| + 67:4| 3: <2> | @t5 = void;
|
| + 69:2| 0: <65534> | }
|
| + ...
|
| +104:0| 1: <65535, 12, 2> | function
|
| + | | i32
|
| + | | @f0(i32 %p0, float %p1,
|
| + | | double %p2) {
|
| + | | // BlockID = 12
|
| +112:0| 3: <1, 1> | blocks 1;
|
| + | | %b0:
|
| +114:4| 3: <44, 0, 3, 0, 2, 1> | %v0 = call i32
|
| + | | %p0(float %p1, double %p2);
|
| +120:6| 3: <10, 1> | ret i32 %v0;
|
| +123:2| 0: <65534> | }
|
| +</pre>
|
| +</section></section><section id="support-functions">
|
| +<span id="link-for-support-functions-section"></span><h2 id="support-functions"><span id="link-for-support-functions-section"></span>Support Functions</h2>
|
| +<p>Defines functions used to convert syntactic representation to values in the
|
| +corresponding record.</p>
|
| +<section id="signrotate">
|
| +<h3 id="signrotate">SignRotate</h3>
|
| +<p>The SignRotate function encodes a signed integer in an easily compressible
|
| +form. This is done by rotating the sign bit to the rightmost bit, rather than
|
| +the leftmost bit. By doing this rotation, both small positive and negative
|
| +integers are small (unsigned) integers. Therefore, all small integers can be
|
| +encoded as a small (unsigned) integers.</p>
|
| +<p>The definition of SignRotate(N) is:</p>
|
| +<table border="1" class="docutils">
|
| +<colgroup>
|
| +</colgroup>
|
| +<thead valign="bottom">
|
| +<tr class="row-odd"><th class="head">Argument</th>
|
| +<th class="head">Value</th>
|
| +<th class="head">Condition</th>
|
| +</tr>
|
| +</thead>
|
| +<tbody valign="top">
|
| +<tr class="row-even"><td>N</td>
|
| +<td>abs(N)<<1</td>
|
| +<td>N >= 0</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>N</td>
|
| +<td>abs(N)<<1 + 1</td>
|
| +<td>N < 0</td>
|
| +</tr>
|
| +</tbody>
|
| +</table>
|
| +</section><section id="absoluteindex">
|
| +<span id="link-for-absolute-index-section"></span><h3 id="absoluteindex"><span id="link-for-absolute-index-section"></span>AbsoluteIndex</h3>
|
| +<p>Bitcode ID’s of the forms <em>@fN</em>, <em>@gN</em>, <em>%pN</em>, <em>%cN</em>, and <em>%vN</em>, are combined
|
| +into a single index space. This can be done because of the ordering imposed by
|
| +PNaClAsm. All function address bitcode IDs must be defined before any of the
|
| +other forms of bitcode IDs. All global address bitcode IDs must be defined
|
| +before any local bitcode IDs. Within a function block, the parameter bitcode IDs
|
| +must be defined before constant IDs, and constant IDs must be defined before
|
| +instruction value IDs.</p>
|
| +<p>Hence, within a function block, it is safe to refer to all of these
|
| +bitcode IDs using a single <em>absolute</em> index. The absolute index for
|
| +each kind of bitcode ID is computed as follows:</p>
|
| +<table border="1" class="docutils">
|
| +<colgroup>
|
| +</colgroup>
|
| +<thead valign="bottom">
|
| +<tr class="row-odd"><th class="head">Bitcode ID</th>
|
| +<th class="head">AbsoluteIndex</th>
|
| +</tr>
|
| +</thead>
|
| +<tbody valign="top">
|
| +<tr class="row-even"><td>@fN</td>
|
| +<td>N</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>@gN</td>
|
| +<td>N + NumFcnAddresses</td>
|
| +</tr>
|
| +<tr class="row-even"><td>@pN</td>
|
| +<td>N + NumFcnAddresses + NumGlobalAddresses</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>@cN</td>
|
| +<td>N + NumFcnAddresses + NumGlobalAddresses + NumParams</td>
|
| +</tr>
|
| +<tr class="row-even"><td>@vN</td>
|
| +<td>N + NumFcnAddresses + NumGlobalAddresses + NumParams + NumFcnConsts</td>
|
| +</tr>
|
| +</tbody>
|
| +</table>
|
| +</section><section id="relativeindex">
|
| +<h3 id="relativeindex">RelativeIndex</h3>
|
| +<p>Relative indices are used to refer to values within instructions of a function.
|
| +The relative index of an ID is always defined in terms of the index associated
|
| +with the next value generating instruction. It is defined as follows:</p>
|
| +<pre class="prettyprint">
|
| +RelativeIndex(J) = AbsoluteIndex(%vN) - AbsoluteIndex(J)
|
| +</pre>
|
| +<p>where</p>
|
| +<pre class="prettyprint">
|
| +N = NumValuedInsts
|
| +</pre>
|
| +</section><section id="abbrevindex">
|
| +<h3 id="abbrevindex">AbbrevIndex</h3>
|
| +<p>This function converts user-defined abbreviation indices to the corresponding
|
| +internal abbreviation index saved in the bitcode file. It adds 4 to its
|
| +argument, since there are 4 predefined internal abbreviation indices (0, 1, 2,
|
| +and 3).</p>
|
| +<table border="1" class="docutils">
|
| +<colgroup>
|
| +</colgroup>
|
| +<thead valign="bottom">
|
| +<tr class="row-odd"><th class="head">N</th>
|
| +<th class="head">AbbrevIndex(N)</th>
|
| +</tr>
|
| +</thead>
|
| +<tbody valign="top">
|
| +<tr class="row-even"><td>undefined</td>
|
| +<td>3</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>%aA</td>
|
| +<td>A + 4</td>
|
| +</tr>
|
| +<tr class="row-even"><td>@aA</td>
|
| +<td>A + 4</td>
|
| +</tr>
|
| +</tbody>
|
| +</table>
|
| +</section><section id="log2">
|
| +<h3 id="log2">Log2</h3>
|
| +<p>This is the 32-bit log2 value of its argument.</p>
|
| +</section><section id="exp">
|
| +<h3 id="exp">exp</h3>
|
| +<pre class="prettyprint">
|
| +exp(n, m)
|
| +</pre>
|
| +<p>Denotes the <em>m</em> power of <em>n</em>.</p>
|
| +</section><section id="bitsizeof">
|
| +<h3 id="bitsizeof">BitSizeOf</h3>
|
| +<p>Returns the number of bits needed to represent its argument (a type).</p>
|
| +<table border="1" class="docutils">
|
| +<colgroup>
|
| +</colgroup>
|
| +<thead valign="bottom">
|
| +<tr class="row-odd"><th class="head">T</th>
|
| +<th class="head">BitSizeOf</th>
|
| +</tr>
|
| +</thead>
|
| +<tbody valign="top">
|
| +<tr class="row-even"><td>i1</td>
|
| +<td>1</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>i8</td>
|
| +<td>8</td>
|
| +</tr>
|
| +<tr class="row-even"><td>i16</td>
|
| +<td>16</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>i32</td>
|
| +<td>32</td>
|
| +</tr>
|
| +<tr class="row-even"><td>i64</td>
|
| +<td>64</td>
|
| +</tr>
|
| +<tr class="row-odd"><td>float</td>
|
| +<td>32</td>
|
| +</tr>
|
| +<tr class="row-even"><td>double</td>
|
| +<td>64</td>
|
| +</tr>
|
| +<tr class="row-odd"><td><N X T></td>
|
| +<td>N * BitSizeOf(T)</td>
|
| +</tr>
|
| +</tbody>
|
| +</table>
|
| +</section><section id="underlyingtype">
|
| +<h3 id="underlyingtype">UnderlyingType</h3>
|
| +<p>Returns the primitive type of the type construct. For primitive types, the
|
| +<em>UnderlyingType</em> is itself. For vector types, the base type of the vector is the
|
| +underlying type.</p>
|
| +</section><section id="underlyingcount">
|
| +<h3 id="underlyingcount">UnderlyingCount</h3>
|
| +<p>Returns the size of the vector if given a vector, and 0 for primitive types.
|
| +Note that this function is used to check if two vectors are of the same size.
|
| +It is also used to test if two types are either primitive (i.e. UnderlyingCount returns
|
| +0 for both types) or are vectors of the same size (i.e. UnderlyingCount returns
|
| +the same non-zero value).</p>
|
| +</section><section id="isinteger">
|
| +<h3 id="isinteger">IsInteger</h3>
|
| +<p>Returns true if the argument is in {i1, i8, i16, i32, i64}.</p>
|
| +</section><section id="isfloat">
|
| +<h3 id="isfloat">IsFloat</h3>
|
| +<p>Returns true if the argument is in {float, double}.</p>
|
| +</section><section id="isvector">
|
| +<h3 id="isvector">IsVector</h3>
|
| +<p>Returns true if the argument is a vector type.</p>
|
| +</section><section id="isprimitive">
|
| +<h3 id="isprimitive">IsPrimitive</h3>
|
| +<p>Returns true if the argument is a primitive type. That is,</p>
|
| +<pre class="prettyprint">
|
| +IsPrimitive(T) == IsInteger(T) or IsFloat(T)
|
| +</pre>
|
| +</section><section id="isfcnargtype">
|
| +<h3 id="isfcnargtype">IsFcnArgType</h3>
|
| +<p>Returns true if the argument is a primitive type or a vector type. Further,
|
| +if it is an integral type, it must be i32 or i64. That is,</p>
|
| +<pre class="prettyprint">
|
| +IsFcnArgType(T) = (IsInteger(T) and (i32 = BitSizeOf(T)
|
| + or i64 == BitSizeOf(T)))
|
| + or IsFloat(T) or IsVector(T)
|
| +</pre>
|
| +</section><section id="abbreviations">
|
| +<span id="link-for-abbreviations-section"></span><h3 id="abbreviations"><span id="link-for-abbreviations-section"></span>Abbreviations</h3>
|
| +<p>TODO(kschimpf) Discuss the following:</p>
|
| +<ul class="small-gap">
|
| +<li>Blocks.</li>
|
| +<li>Data Records.</li>
|
| +<li>Abbreviations.</li>
|
| +<li>Abbreviation Ids.</li>
|
| +</ul>
|
| +<section id="bitstream-format">
|
| +<h4 id="bitstream-format">Bitstream Format</h4>
|
| +<p>TODO(kschimpf)</p>
|
| +<ul class="small-gap">
|
| +<li>Header</li>
|
| +<li>Block Structure</li>
|
| +<li>Primitives</li>
|
| +<li>Abbreviations</li>
|
| +<li>Abbreviations block</li>
|
| +</ul>
|
| +</section><section id="abbreviations-block">
|
| +<h4 id="abbreviations-block">Abbreviations Block</h4>
|
| +<p>The abbreviations block is the first block in the module build. The
|
| +block is divided into sections. Each section is a sequence of records. Each
|
| +record in the sequence defines a user-defined abbreviation. Each section
|
| +defines abbreviations that can be applied to all (succeeding) blocks of a
|
| +particular kind. These abbreviations are denoted by the (global) ID of the form
|
| +<em>@aN</em>.</p>
|
| +<p>TODO(kschimpf) Fill this in more.</p>
|
| +</section><section id="reference-implementation">
|
| +<h4 id="reference-implementation">Reference Implementation</h4>
|
| +<p>TODO(kschimpf)</p>
|
| +</section></section></section></section>
|
| +
|
| +{{/partials.standard_nacl_article}}
|
|
|