Chromium Code Reviews| Index: sdk/lib/_internal/lib/native_typed_data.dart | 
| diff --git a/sdk/lib/_internal/lib/native_typed_data.dart b/sdk/lib/_internal/lib/native_typed_data.dart | 
| new file mode 100644 | 
| index 0000000000000000000000000000000000000000..9b6e56879cbf497d86b5bcd14373c39a2fff493e | 
| --- /dev/null | 
| +++ b/sdk/lib/_internal/lib/native_typed_data.dart | 
| @@ -0,0 +1,1992 @@ | 
| +// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file | 
| +// for details. All rights reserved. Use of this source code is governed by a | 
| +// BSD-style license that can be found in the LICENSE file. | 
| + | 
| +/** | 
| + * Specialized integers and floating point numbers, | 
| + * with SIMD support and efficient lists. | 
| + */ | 
| +library dart.typed_data.implementation; | 
| + | 
| +import 'dart:collection'; | 
| +import 'dart:_internal'; | 
| +import 'dart:_interceptors' show JSIndexable, JSUInt32, JSUInt31; | 
| +import 'dart:_js_helper' | 
| + show Creates, JavaScriptIndexingBehavior, JSName, Null, Returns; | 
| +import 'dart:_foreign_helper' show JS; | 
| +import 'dart:math' as Math; | 
| + | 
| +import 'dart:typed_data'; | 
| + | 
| +class NativeByteBuffer implements ByteBuffer native "ArrayBuffer" { | 
| + @JSName('byteLength') | 
| + final int lengthInBytes; | 
| + | 
| + Type get runtimeType => ByteBuffer; | 
| + | 
| + Uint8List asUint8List([int offsetInBytes = 0, int length]) { | 
| + return new NativeUint8List.view(this, offsetInBytes, length); | 
| + } | 
| + | 
| + Int8List asInt8List([int offsetInBytes = 0, int length]) { | 
| + return new NativeInt8List.view(this, offsetInBytes, length); | 
| + } | 
| + | 
| + Uint8ClampedList asUint8ClampedList([int offsetInBytes = 0, int length]) { | 
| + return new NativeUint8ClampedList.view(this, offsetInBytes, length); | 
| + } | 
| + | 
| + Uint16List asUint16List([int offsetInBytes = 0, int length]) { | 
| + return new NativeUint16List.view(this, offsetInBytes, length); | 
| + } | 
| + Int16List asInt16List([int offsetInBytes = 0, int length]) { | 
| + return new NativeInt16List.view(this, offsetInBytes, length); | 
| + } | 
| + | 
| + Uint32List asUint32List([int offsetInBytes = 0, int length]) { | 
| + return new NativeUint32List.view(this, offsetInBytes, length); | 
| + } | 
| + | 
| + Int32List asInt32List([int offsetInBytes = 0, int length]) { | 
| + return new NativeInt32List.view(this, offsetInBytes, length); | 
| + } | 
| + | 
| + Uint64List asUint64List([int offsetInBytes = 0, int length]) { | 
| + throw new UnsupportedError("Uint64List not supported by dart2js."); | 
| + } | 
| + | 
| + Int64List asInt64List([int offsetInBytes = 0, int length]) { | 
| + throw new UnsupportedError("Int64List not supported by dart2js."); | 
| + } | 
| + | 
| + Int32x4List asInt32x4List([int offsetInBytes = 0, int length]) { | 
| + NativeUint32List storage = | 
| + this.asUint32List(offsetInBytes, length != null ? length * 4 : null); | 
| + return new NativeInt32x4List._externalStorage(storage); | 
| + } | 
| + | 
| + Float32List asFloat32List([int offsetInBytes = 0, int length]) { | 
| + return new NativeFloat32List.view(this, offsetInBytes, length); | 
| + } | 
| + | 
| + Float64List asFloat64List([int offsetInBytes = 0, int length]) { | 
| + return new NativeFloat64List.view(this, offsetInBytes, length); | 
| + } | 
| + | 
| + Float32x4List asFloat32x4List([int offsetInBytes = 0, int length]) { | 
| + NativeFloat32List storage = | 
| + this.asFloat32List(offsetInBytes, length != null ? length * 4 : null); | 
| + return new NativeFloat32x4List._externalStorage(storage); | 
| + } | 
| + | 
| + Float64x2List asFloat64x2List([int offsetInBytes = 0, int length]) { | 
| + NativeFloat64List storage = | 
| + this.asFloat64List(offsetInBytes, length != null ? length * 2 : null); | 
| + return new NativeFloat64x2List._externalStorage(storage); | 
| + } | 
| + | 
| + ByteData asByteData([int offsetInBytes = 0, int length]) { | 
| + return new NativeByteData.view(this, offsetInBytes, length); | 
| + } | 
| +} | 
| + | 
| + | 
| + | 
| +/** | 
| + * A fixed-length list of Float32x4 numbers that is viewable as a | 
| + * [TypedData]. For long lists, this implementation will be considerably more | 
| + * space- and time-efficient than the default [List] implementation. | 
| + */ | 
| +class NativeFloat32x4List | 
| + extends Object with ListMixin<Float32x4>, FixedLengthListMixin<Float32x4> | 
| + implements Float32x4List { | 
| + | 
| + final NativeFloat32List _storage; | 
| + | 
| + /** | 
| + * Creates a [Float32x4List] of the specified length (in elements), | 
| + * all of whose elements are initially zero. | 
| + */ | 
| + NativeFloat32x4List(int length) | 
| + : _storage = new NativeFloat32List(length * 4); | 
| + | 
| + NativeFloat32x4List._externalStorage(this._storage); | 
| + | 
| + NativeFloat32x4List._slowFromList(List<Float32x4> list) | 
| + : _storage = new NativeFloat32List(list.length * 4) { | 
| + for (int i = 0; i < list.length; i++) { | 
| + var e = list[i]; | 
| + _storage[(i * 4) + 0] = e.x; | 
| + _storage[(i * 4) + 1] = e.y; | 
| + _storage[(i * 4) + 2] = e.z; | 
| + _storage[(i * 4) + 3] = e.w; | 
| + } | 
| + } | 
| + | 
| + Type get runtimeType => Float32x4List; | 
| + | 
| + /** | 
| + * Creates a [Float32x4List] with the same size as the [elements] list | 
| + * and copies over the elements. | 
| + */ | 
| + factory NativeFloat32x4List.fromList(List<Float32x4> list) { | 
| + if (list is NativeFloat32x4List) { | 
| + return new NativeFloat32x4List._externalStorage( | 
| + new NativeFloat32List.fromList(list._storage)); | 
| + } else { | 
| + return new NativeFloat32x4List._slowFromList(list); | 
| + } | 
| + } | 
| + | 
| + ByteBuffer get buffer => _storage.buffer; | 
| + | 
| + int get lengthInBytes => _storage.lengthInBytes; | 
| + | 
| + int get offsetInBytes => _storage.offsetInBytes; | 
| + | 
| + int get elementSizeInBytes => Float32x4List.BYTES_PER_ELEMENT; | 
| + | 
| + void _invalidIndex(int index, int length) { | 
| + if (index < 0 || index >= length) { | 
| + throw new RangeError.range(index, 0, length); | 
| + } else { | 
| + throw new ArgumentError('Invalid list index $index'); | 
| + } | 
| + } | 
| + | 
| + void _checkIndex(int index, int length) { | 
| + if (JS('bool', '(# >>> 0 != #)', index, index) || index >= length) { | 
| + _invalidIndex(index, length); | 
| + } | 
| + } | 
| + | 
| + int _checkSublistArguments(int start, int end, int length) { | 
| + // For `sublist` the [start] and [end] indices are allowed to be equal to | 
| + // [length]. However, [_checkIndex] only allows indices in the range | 
| + // 0 .. length - 1. We therefore increment the [length] argument by one | 
| + // for the [_checkIndex] checks. | 
| + _checkIndex(start, length + 1); | 
| + if (end == null) return length; | 
| + _checkIndex(end, length + 1); | 
| + if (start > end) throw new RangeError.range(start, 0, end); | 
| + return end; | 
| + } | 
| + | 
| + int get length => _storage.length ~/ 4; | 
| + | 
| + Float32x4 operator[](int index) { | 
| + _checkIndex(index, length); | 
| + double _x = _storage[(index * 4) + 0]; | 
| + double _y = _storage[(index * 4) + 1]; | 
| + double _z = _storage[(index * 4) + 2]; | 
| + double _w = _storage[(index * 4) + 3]; | 
| + return new Float32x4(_x, _y, _z, _w); | 
| + } | 
| + | 
| + void operator[]=(int index, NativeFloat32x4 value) { | 
| + _checkIndex(index, length); | 
| + _storage[(index * 4) + 0] = value._storage[0]; | 
| + _storage[(index * 4) + 1] = value._storage[1]; | 
| + _storage[(index * 4) + 2] = value._storage[2]; | 
| + _storage[(index * 4) + 3] = value._storage[3]; | 
| + } | 
| + | 
| + List<Float32x4> sublist(int start, [int end]) { | 
| + end = _checkSublistArguments(start, end, length); | 
| + return new NativeFloat32x4List._externalStorage( | 
| + _storage.sublist(start * 4, end * 4)); | 
| + } | 
| +} | 
| + | 
| + | 
| +/** | 
| + * A fixed-length list of Int32x4 numbers that is viewable as a | 
| + * [TypedData]. For long lists, this implementation will be considerably more | 
| + * space- and time-efficient than the default [List] implementation. | 
| + */ | 
| +class NativeInt32x4List | 
| + extends Object with ListMixin<Int32x4>, FixedLengthListMixin<Int32x4> | 
| + implements Int32x4List { | 
| + | 
| + final Uint32List _storage; | 
| + | 
| + /** | 
| + * Creates a [Int32x4List] of the specified length (in elements), | 
| + * all of whose elements are initially zero. | 
| + */ | 
| + NativeInt32x4List(int length) : _storage = new NativeUint32List(length * 4); | 
| + | 
| + NativeInt32x4List._externalStorage(Uint32List storage) : _storage = storage; | 
| + | 
| + NativeInt32x4List._slowFromList(List<Int32x4> list) | 
| + : _storage = new NativeUint32List(list.length * 4) { | 
| + for (int i = 0; i < list.length; i++) { | 
| + var e = list[i]; | 
| + _storage[(i * 4) + 0] = e.x; | 
| + _storage[(i * 4) + 1] = e.y; | 
| + _storage[(i * 4) + 2] = e.z; | 
| + _storage[(i * 4) + 3] = e.w; | 
| + } | 
| + } | 
| + | 
| + Type get runtimeType => Int32x4List; | 
| + | 
| + /** | 
| + * Creates a [Int32x4List] with the same size as the [elements] list | 
| + * and copies over the elements. | 
| + */ | 
| + factory NativeInt32x4List.fromList(List<Int32x4> list) { | 
| + if (list is NativeInt32x4List) { | 
| + return new NativeInt32x4List._externalStorage( | 
| + new NativeUint32List.fromList(list._storage)); | 
| + } else { | 
| + return new NativeInt32x4List._slowFromList(list); | 
| + } | 
| + } | 
| + | 
| + ByteBuffer get buffer => _storage.buffer; | 
| + | 
| + int get lengthInBytes => _storage.lengthInBytes; | 
| + | 
| + int get offsetInBytes => _storage.offsetInBytes; | 
| + | 
| + int get elementSizeInBytes => Int32x4List.BYTES_PER_ELEMENT; | 
| + | 
| + void _invalidIndex(int index, int length) { | 
| + if (index < 0 || index >= length) { | 
| + throw new RangeError.range(index, 0, length); | 
| + } else { | 
| + throw new ArgumentError('Invalid list index $index'); | 
| + } | 
| + } | 
| + | 
| + void _checkIndex(int index, int length) { | 
| + if (JS('bool', '(# >>> 0 != #)', index, index) | 
| + || JS('bool', '# >= #', index, length)) { | 
| + _invalidIndex(index, length); | 
| + } | 
| + } | 
| + | 
| + int _checkSublistArguments(int start, int end, int length) { | 
| + // For `sublist` the [start] and [end] indices are allowed to be equal to | 
| + // [length]. However, [_checkIndex] only allows indices in the range | 
| + // 0 .. length - 1. We therefore increment the [length] argument by one | 
| + // for the [_checkIndex] checks. | 
| + _checkIndex(start, length + 1); | 
| + if (end == null) return length; | 
| + _checkIndex(end, length + 1); | 
| + if (start > end) throw new RangeError.range(start, 0, end); | 
| + return end; | 
| + } | 
| + | 
| + int get length => _storage.length ~/ 4; | 
| + | 
| + Int32x4 operator[](int index) { | 
| + _checkIndex(index, length); | 
| + int _x = _storage[(index * 4) + 0]; | 
| + int _y = _storage[(index * 4) + 1]; | 
| + int _z = _storage[(index * 4) + 2]; | 
| + int _w = _storage[(index * 4) + 3]; | 
| + return new NativeInt32x4(_x, _y, _z, _w); | 
| + } | 
| + | 
| + void operator[]=(int index, NativeInt32x4 value) { | 
| + _checkIndex(index, length); | 
| + _storage[(index * 4) + 0] = value._storage[0]; | 
| + _storage[(index * 4) + 1] = value._storage[1]; | 
| + _storage[(index * 4) + 2] = value._storage[2]; | 
| + _storage[(index * 4) + 3] = value._storage[3]; | 
| + } | 
| + | 
| + List<Int32x4> sublist(int start, [int end]) { | 
| + end = _checkSublistArguments(start, end, length); | 
| + return new NativeInt32x4List._externalStorage( | 
| + _storage.sublist(start * 4, end * 4)); | 
| + } | 
| +} | 
| + | 
| + | 
| +/** | 
| + * A fixed-length list of Float64x2 numbers that is viewable as a | 
| + * [TypedData]. For long lists, this implementation will be considerably more | 
| + * space- and time-efficient than the default [List] implementation. | 
| + */ | 
| +class NativeFloat64x2List | 
| + extends Object with ListMixin<Float64x2>, FixedLengthListMixin<Float64x2> | 
| + implements Float64x2List { | 
| + | 
| + final NativeFloat64List _storage; | 
| + | 
| + /** | 
| + * Creates a [Float64x2List] of the specified length (in elements), | 
| + * all of whose elements are initially zero. | 
| + */ | 
| + NativeFloat64x2List(int length) | 
| + : _storage = new NativeFloat64List(length * 2); | 
| + | 
| + NativeFloat64x2List._externalStorage(this._storage); | 
| + | 
| + NativeFloat64x2List._slowFromList(List<Float64x2> list) | 
| + : _storage = new NativeFloat64List(list.length * 2) { | 
| + for (int i = 0; i < list.length; i++) { | 
| + var e = list[i]; | 
| + _storage[(i * 2) + 0] = e.x; | 
| + _storage[(i * 2) + 1] = e.y; | 
| + } | 
| + } | 
| + | 
| + /** | 
| + * Creates a [Float64x2List] with the same size as the [elements] list | 
| + * and copies over the elements. | 
| + */ | 
| + factory NativeFloat64x2List.fromList(List<Float64x2> list) { | 
| + if (list is NativeFloat64x2List) { | 
| + return new NativeFloat64x2List._externalStorage( | 
| + new NativeFloat64List.fromList(list._storage)); | 
| + } else { | 
| + return new NativeFloat64x2List._slowFromList(list); | 
| + } | 
| + } | 
| + | 
| + Type get runtimeType => Float64x2List; | 
| + | 
| + ByteBuffer get buffer => _storage.buffer; | 
| + | 
| + int get lengthInBytes => _storage.lengthInBytes; | 
| + | 
| + int get offsetInBytes => _storage.offsetInBytes; | 
| + | 
| + int get elementSizeInBytes => Float64x2List.BYTES_PER_ELEMENT; | 
| + | 
| + void _invalidIndex(int index, int length) { | 
| + if (index < 0 || index >= length) { | 
| + throw new RangeError.range(index, 0, length); | 
| + } else { | 
| + throw new ArgumentError('Invalid list index $index'); | 
| + } | 
| + } | 
| + | 
| + void _checkIndex(int index, int length) { | 
| + if (JS('bool', '(# >>> 0 != #)', index, index) || index >= length) { | 
| + _invalidIndex(index, length); | 
| + } | 
| + } | 
| + | 
| + int _checkSublistArguments(int start, int end, int length) { | 
| + // For `sublist` the [start] and [end] indices are allowed to be equal to | 
| + // [length]. However, [_checkIndex] only allows indices in the range | 
| + // 0 .. length - 1. We therefore increment the [length] argument by one | 
| + // for the [_checkIndex] checks. | 
| + _checkIndex(start, length + 1); | 
| + if (end == null) return length; | 
| + _checkIndex(end, length + 1); | 
| + if (start > end) throw new RangeError.range(start, 0, end); | 
| + return end; | 
| + } | 
| + | 
| + int get length => _storage.length ~/ 2; | 
| + | 
| + Float64x2 operator[](int index) { | 
| + _checkIndex(index, length); | 
| + double _x = _storage[(index * 2) + 0]; | 
| + double _y = _storage[(index * 2) + 1]; | 
| + return new Float64x2(_x, _y); | 
| + } | 
| + | 
| + void operator[]=(int index, NativeFloat64x2 value) { | 
| + _checkIndex(index, length); | 
| + _storage[(index * 2) + 0] = value._storage[0]; | 
| + _storage[(index * 2) + 1] = value._storage[1]; | 
| + } | 
| + | 
| + List<Float64x2> sublist(int start, [int end]) { | 
| + end = _checkSublistArguments(start, end, length); | 
| + return new NativeFloat64x2List._externalStorage( | 
| + _storage.sublist(start * 2, end * 2)); | 
| + } | 
| +} | 
| + | 
| +class NativeTypedData implements TypedData native "ArrayBufferView" { | 
| + /** | 
| + * Returns the byte buffer associated with this object. | 
| + */ | 
| + @Creates('NativeByteBuffer') | 
| + // May be Null for IE's CanvasPixelArray. | 
| + @Returns('NativeByteBuffer|Null') | 
| + final ByteBuffer buffer; | 
| + | 
| + /** | 
| + * Returns the length of this view, in bytes. | 
| + */ | 
| + @JSName('byteLength') | 
| + final int lengthInBytes; | 
| + | 
| + /** | 
| + * Returns the offset in bytes into the underlying byte buffer of this view. | 
| + */ | 
| + @JSName('byteOffset') | 
| + final int offsetInBytes; | 
| + | 
| + /** | 
| + * Returns the number of bytes in the representation of each element in this | 
| + * list. | 
| + */ | 
| + @JSName('BYTES_PER_ELEMENT') | 
| + final int elementSizeInBytes; | 
| + | 
| + void _invalidIndex(int index, int length) { | 
| + if (index < 0 || index >= length) { | 
| + throw new RangeError.range(index, 0, length); | 
| + } else { | 
| + throw new ArgumentError('Invalid list index $index'); | 
| + } | 
| + } | 
| + | 
| + void _checkIndex(int index, int length) { | 
| + if (JS('bool', '(# >>> 0) !== #', index, index) || | 
| + JS('int', '#', index) >= length) { // 'int' guaranteed by above test. | 
| + _invalidIndex(index, length); | 
| + } | 
| + } | 
| + | 
| + int _checkSublistArguments(int start, int end, int length) { | 
| + // For `sublist` the [start] and [end] indices are allowed to be equal to | 
| + // [length]. However, [_checkIndex] only allows indices in the range | 
| + // 0 .. length - 1. We therefore increment the [length] argument by one | 
| + // for the [_checkIndex] checks. | 
| + _checkIndex(start, length + 1); | 
| + if (end == null) return length; | 
| + _checkIndex(end, length + 1); | 
| + if (start > end) throw new RangeError.range(start, 0, end); | 
| + return end; | 
| + } | 
| +} | 
| + | 
| + | 
| +// Validates the unnamed constructor length argument. Checking is necessary | 
| +// because passing unvalidated values to the native constructors can cause | 
| +// conversions or create views. | 
| +int _checkLength(length) { | 
| + if (length is! int) throw new ArgumentError('Invalid length $length'); | 
| + return length; | 
| +} | 
| + | 
| +// Validates `.view` constructor arguments. Checking is necessary because | 
| +// passing unvalidated values to the native constructors can cause conversions | 
| +// (e.g. String arguments) or create typed data objects that are not actually | 
| +// views of the input. | 
| +void _checkViewArguments(buffer, offsetInBytes, length) { | 
| + if (buffer is! NativeByteBuffer) { | 
| + throw new ArgumentError('Invalid view buffer'); | 
| + } | 
| + if (offsetInBytes is! int) { | 
| + throw new ArgumentError('Invalid view offsetInBytes $offsetInBytes'); | 
| + } | 
| + if (length != null && length is! int) { | 
| + throw new ArgumentError('Invalid view length $length'); | 
| + } | 
| +} | 
| + | 
| +// Ensures that [list] is a JavaScript Array or a typed array. If necessary, | 
| +// returns a copy of the list. | 
| +List _ensureNativeList(List list) { | 
| + if (list is JSIndexable) return list; | 
| + List result = new List(list.length); | 
| + for (int i = 0; i < list.length; i++) { | 
| + result[i] = list[i]; | 
| + } | 
| + return result; | 
| +} | 
| + | 
| + | 
| +class NativeByteData extends NativeTypedData implements ByteData | 
| + native "DataView" { | 
| + /** | 
| + * Creates a [ByteData] of the specified length (in elements), all of | 
| + * whose elements are initially zero. | 
| + */ | 
| + factory NativeByteData(int length) => _create1(_checkLength(length)); | 
| + | 
| + /** | 
| + * Creates an [ByteData] _view_ of the specified region in the specified | 
| + * byte buffer. Changes in the [ByteData] will be visible in the byte | 
| + * buffer and vice versa. If the [offsetInBytes] index of the region is not | 
| + * specified, it defaults to zero (the first byte in the byte buffer). | 
| + * If the length is not specified, it defaults to null, which indicates | 
| + * that the view extends to the end of the byte buffer. | 
| + * | 
| + * Throws [RangeError] if [offsetInBytes] or [length] are negative, or | 
| + * if [offsetInBytes] + ([length] * elementSizeInBytes) is greater than | 
| + * the length of [buffer]. | 
| + */ | 
| + factory NativeByteData.view(ByteBuffer buffer, | 
| + int offsetInBytes, int length) { | 
| + _checkViewArguments(buffer, offsetInBytes, length); | 
| + return length == null | 
| + ? _create2(buffer, offsetInBytes) | 
| + : _create3(buffer, offsetInBytes, length); | 
| + } | 
| + | 
| + Type get runtimeType => ByteData; | 
| + | 
| + int get elementSizeInBytes => 1; | 
| + | 
| + /** | 
| + * Returns the floating point number represented by the four bytes at | 
| + * the specified [byteOffset] in this object, in IEEE 754 | 
| + * single-precision binary floating-point format (binary32). | 
| + * | 
| + * Throws [RangeError] if [byteOffset] is negative, or | 
| + * `byteOffset + 4` is greater than the length of this object. | 
| + */ | 
| + num getFloat32(int byteOffset, [Endianness endian=Endianness.BIG_ENDIAN]) => | 
| + _getFloat32(byteOffset, Endianness.LITTLE_ENDIAN == endian); | 
| + | 
| + @JSName('getFloat32') | 
| + @Returns('num') | 
| + num _getFloat32(int byteOffset, [bool littleEndian]) native; | 
| + | 
| + /** | 
| + * Returns the floating point number represented by the eight bytes at | 
| + * the specified [byteOffset] in this object, in IEEE 754 | 
| + * double-precision binary floating-point format (binary64). | 
| + * | 
| + * Throws [RangeError] if [byteOffset] is negative, or | 
| + * `byteOffset + 8` is greater than the length of this object. | 
| + */ | 
| + num getFloat64(int byteOffset, [Endianness endian=Endianness.BIG_ENDIAN]) => | 
| + _getFloat64(byteOffset, Endianness.LITTLE_ENDIAN == endian); | 
| + | 
| + @JSName('getFloat64') | 
| + @Returns('num') | 
| + num _getFloat64(int byteOffset, [bool littleEndian]) native; | 
| + | 
| + /** | 
| + * Returns the (possibly negative) integer represented by the two bytes at | 
| + * the specified [byteOffset] in this object, in two's complement binary | 
| + * form. | 
| + * The return value will be between 2<sup>15</sup> and 2<sup>15</sup> - 1, | 
| + * inclusive. | 
| + * | 
| + * Throws [RangeError] if [byteOffset] is negative, or | 
| + * `byteOffset + 2` is greater than the length of this object. | 
| + */ | 
| + int getInt16(int byteOffset, [Endianness endian=Endianness.BIG_ENDIAN]) => | 
| + _getInt16(byteOffset, Endianness.LITTLE_ENDIAN == endian); | 
| + | 
| + @JSName('getInt16') | 
| + @Returns('int') | 
| + int _getInt16(int byteOffset, [bool littleEndian]) native; | 
| + | 
| + /** | 
| + * Returns the (possibly negative) integer represented by the four bytes at | 
| + * the specified [byteOffset] in this object, in two's complement binary | 
| + * form. | 
| + * The return value will be between 2<sup>31</sup> and 2<sup>31</sup> - 1, | 
| + * inclusive. | 
| + * | 
| + * Throws [RangeError] if [byteOffset] is negative, or | 
| + * `byteOffset + 4` is greater than the length of this object. | 
| + */ | 
| + int getInt32(int byteOffset, [Endianness endian=Endianness.BIG_ENDIAN]) => | 
| + _getInt32(byteOffset, Endianness.LITTLE_ENDIAN == endian); | 
| + | 
| + @JSName('getInt32') | 
| + @Returns('int') | 
| + int _getInt32(int byteOffset, [bool littleEndian]) native; | 
| + | 
| + /** | 
| + * Returns the (possibly negative) integer represented by the eight bytes at | 
| + * the specified [byteOffset] in this object, in two's complement binary | 
| + * form. | 
| + * The return value will be between 2<sup>63</sup> and 2<sup>63</sup> - 1, | 
| + * inclusive. | 
| + * | 
| + * Throws [RangeError] if [byteOffset] is negative, or | 
| + * `byteOffset + 8` is greater than the length of this object. | 
| + */ | 
| + int getInt64(int byteOffset, [Endianness endian=Endianness.BIG_ENDIAN]) { | 
| + throw new UnsupportedError('Int64 accessor not supported by dart2js.'); | 
| + } | 
| + | 
| + /** | 
| + * Returns the (possibly negative) integer represented by the byte at the | 
| + * specified [byteOffset] in this object, in two's complement binary | 
| + * representation. The return value will be between -128 and 127, inclusive. | 
| + * | 
| + * Throws [RangeError] if [byteOffset] is negative, or | 
| + * greater than or equal to the length of this object. | 
| + */ | 
| + int getInt8(int byteOffset) native; | 
| + | 
| + /** | 
| + * Returns the positive integer represented by the two bytes starting | 
| + * at the specified [byteOffset] in this object, in unsigned binary | 
| + * form. | 
| + * The return value will be between 0 and 2<sup>16</sup> - 1, inclusive. | 
| + * | 
| + * Throws [RangeError] if [byteOffset] is negative, or | 
| + * `byteOffset + 2` is greater than the length of this object. | 
| + */ | 
| + int getUint16(int byteOffset, [Endianness endian=Endianness.BIG_ENDIAN]) => | 
| + _getUint16(byteOffset, Endianness.LITTLE_ENDIAN == endian); | 
| + | 
| + @JSName('getUint16') | 
| + @Returns('JSUInt31') | 
| + int _getUint16(int byteOffset, [bool littleEndian]) native; | 
| + | 
| + /** | 
| + * Returns the positive integer represented by the four bytes starting | 
| + * at the specified [byteOffset] in this object, in unsigned binary | 
| + * form. | 
| + * The return value will be between 0 and 2<sup>32</sup> - 1, inclusive. | 
| + * | 
| + * Throws [RangeError] if [byteOffset] is negative, or | 
| + * `byteOffset + 4` is greater than the length of this object. | 
| + */ | 
| + int getUint32(int byteOffset, [Endianness endian=Endianness.BIG_ENDIAN]) => | 
| + _getUint32(byteOffset, Endianness.LITTLE_ENDIAN == endian); | 
| + | 
| + @JSName('getUint32') | 
| + @Returns('JSUInt32') | 
| + int _getUint32(int byteOffset, [bool littleEndian]) native; | 
| + | 
| + /** | 
| + * Returns the positive integer represented by the eight bytes starting | 
| + * at the specified [byteOffset] in this object, in unsigned binary | 
| + * form. | 
| + * The return value will be between 0 and 2<sup>64</sup> - 1, inclusive. | 
| + * | 
| + * Throws [RangeError] if [byteOffset] is negative, or | 
| + * `byteOffset + 8` is greater than the length of this object. | 
| + */ | 
| + int getUint64(int byteOffset, [Endianness endian=Endianness.BIG_ENDIAN]) { | 
| + throw new UnsupportedError('Uint64 accessor not supported by dart2js.'); | 
| + } | 
| + | 
| + /** | 
| + * Returns the positive integer represented by the byte at the specified | 
| + * [byteOffset] in this object, in unsigned binary form. The | 
| + * return value will be between 0 and 255, inclusive. | 
| + * | 
| + * Throws [RangeError] if [byteOffset] is negative, or | 
| + * greater than or equal to the length of this object. | 
| + */ | 
| + int getUint8(int byteOffset) native; | 
| + | 
| + /** | 
| + * Sets the four bytes starting at the specified [byteOffset] in this | 
| + * object to the IEEE 754 single-precision binary floating-point | 
| + * (binary32) representation of the specified [value]. | 
| + * | 
| + * **Note that this method can lose precision.** The input [value] is | 
| + * a 64-bit floating point value, which will be converted to 32-bit | 
| + * floating point value by IEEE 754 rounding rules before it is stored. | 
| + * If [value] cannot be represented exactly as a binary32, it will be | 
| + * converted to the nearest binary32 value. If two binary32 values are | 
| + * equally close, the one whose least significant bit is zero will be used. | 
| + * Note that finite (but large) values can be converted to infinity, and | 
| + * small non-zero values can be converted to zero. | 
| + * | 
| + * Throws [RangeError] if [byteOffset] is negative, or | 
| + * `byteOffset + 4` is greater than the length of this object. | 
| + */ | 
| + void setFloat32(int byteOffset, num value, | 
| + [Endianness endian=Endianness.BIG_ENDIAN]) => | 
| + _setFloat32(byteOffset, value, Endianness.LITTLE_ENDIAN == endian); | 
| + | 
| + @JSName('setFloat32') | 
| + void _setFloat32(int byteOffset, num value, [bool littleEndian]) native; | 
| + | 
| + /** | 
| + * Sets the eight bytes starting at the specified [byteOffset] in this | 
| + * object to the IEEE 754 double-precision binary floating-point | 
| + * (binary64) representation of the specified [value]. | 
| + * | 
| + * Throws [RangeError] if [byteOffset] is negative, or | 
| + * `byteOffset + 8` is greater than the length of this object. | 
| + */ | 
| + void setFloat64(int byteOffset, num value, | 
| + [Endianness endian=Endianness.BIG_ENDIAN]) => | 
| + _setFloat64(byteOffset, value, Endianness.LITTLE_ENDIAN == endian); | 
| + | 
| + @JSName('setFloat64') | 
| + void _setFloat64(int byteOffset, num value, [bool littleEndian]) native; | 
| + | 
| + /** | 
| + * Sets the two bytes starting at the specified [byteOffset] in this | 
| + * object to the two's complement binary representation of the specified | 
| + * [value], which must fit in two bytes. In other words, [value] must lie | 
| + * between 2<sup>15</sup> and 2<sup>15</sup> - 1, inclusive. | 
| + * | 
| + * Throws [RangeError] if [byteOffset] is negative, or | 
| + * `byteOffset + 2` is greater than the length of this object. | 
| + */ | 
| + void setInt16(int byteOffset, int value, | 
| + [Endianness endian=Endianness.BIG_ENDIAN]) => | 
| + _setInt16(byteOffset, value, Endianness.LITTLE_ENDIAN == endian); | 
| + | 
| + @JSName('setInt16') | 
| + void _setInt16(int byteOffset, int value, [bool littleEndian]) native; | 
| + | 
| + /** | 
| + * Sets the four bytes starting at the specified [byteOffset] in this | 
| + * object to the two's complement binary representation of the specified | 
| + * [value], which must fit in four bytes. In other words, [value] must lie | 
| + * between 2<sup>31</sup> and 2<sup>31</sup> - 1, inclusive. | 
| + * | 
| + * Throws [RangeError] if [byteOffset] is negative, or | 
| + * `byteOffset + 4` is greater than the length of this object. | 
| + */ | 
| + void setInt32(int byteOffset, int value, | 
| + [Endianness endian=Endianness.BIG_ENDIAN]) => | 
| + _setInt32(byteOffset, value, Endianness.LITTLE_ENDIAN == endian); | 
| + | 
| + @JSName('setInt32') | 
| + void _setInt32(int byteOffset, int value, [bool littleEndian]) native; | 
| + | 
| + /** | 
| + * Sets the eight bytes starting at the specified [byteOffset] in this | 
| + * object to the two's complement binary representation of the specified | 
| + * [value], which must fit in eight bytes. In other words, [value] must lie | 
| + * between 2<sup>63</sup> and 2<sup>63</sup> - 1, inclusive. | 
| + * | 
| + * Throws [RangeError] if [byteOffset] is negative, or | 
| + * `byteOffset + 8` is greater than the length of this object. | 
| + */ | 
| + void setInt64(int byteOffset, int value, | 
| + [Endianness endian=Endianness.BIG_ENDIAN]) { | 
| + throw new UnsupportedError('Int64 accessor not supported by dart2js.'); | 
| + } | 
| + | 
| + /** | 
| + * Sets the byte at the specified [byteOffset] in this object to the | 
| + * two's complement binary representation of the specified [value], which | 
| + * must fit in a single byte. In other words, [value] must be between | 
| + * -128 and 127, inclusive. | 
| + * | 
| + * Throws [RangeError] if [byteOffset] is negative, or | 
| + * greater than or equal to the length of this object. | 
| + */ | 
| + void setInt8(int byteOffset, int value) native; | 
| + | 
| + /** | 
| + * Sets the two bytes starting at the specified [byteOffset] in this object | 
| + * to the unsigned binary representation of the specified [value], | 
| + * which must fit in two bytes. in other words, [value] must be between | 
| + * 0 and 2<sup>16</sup> - 1, inclusive. | 
| + * | 
| + * Throws [RangeError] if [byteOffset] is negative, or | 
| + * `byteOffset + 2` is greater than the length of this object. | 
| + */ | 
| + void setUint16(int byteOffset, int value, | 
| + [Endianness endian=Endianness.BIG_ENDIAN]) => | 
| + _setUint16(byteOffset, value, Endianness.LITTLE_ENDIAN == endian); | 
| + | 
| + @JSName('setUint16') | 
| + void _setUint16(int byteOffset, int value, [bool littleEndian]) native; | 
| + | 
| + /** | 
| + * Sets the four bytes starting at the specified [byteOffset] in this object | 
| + * to the unsigned binary representation of the specified [value], | 
| + * which must fit in four bytes. in other words, [value] must be between | 
| + * 0 and 2<sup>32</sup> - 1, inclusive. | 
| + * | 
| + * Throws [RangeError] if [byteOffset] is negative, or | 
| + * `byteOffset + 4` is greater than the length of this object. | 
| + */ | 
| + void setUint32(int byteOffset, int value, | 
| + [Endianness endian=Endianness.BIG_ENDIAN]) => | 
| + _setUint32(byteOffset, value, Endianness.LITTLE_ENDIAN == endian); | 
| + | 
| + @JSName('setUint32') | 
| + void _setUint32(int byteOffset, int value, [bool littleEndian]) native; | 
| + | 
| + /** | 
| + * Sets the eight bytes starting at the specified [byteOffset] in this object | 
| + * to the unsigned binary representation of the specified [value], | 
| + * which must fit in eight bytes. in other words, [value] must be between | 
| + * 0 and 2<sup>64</sup> - 1, inclusive. | 
| + * | 
| + * Throws [RangeError] if [byteOffset] is negative, or | 
| + * `byteOffset + 8` is greater than the length of this object. | 
| + */ | 
| + void setUint64(int byteOffset, int value, | 
| + [Endianness endian=Endianness.BIG_ENDIAN]) { | 
| + throw new UnsupportedError('Uint64 accessor not supported by dart2js.'); | 
| + } | 
| + | 
| + /** | 
| + * Sets the byte at the specified [byteOffset] in this object to the | 
| + * unsigned binary representation of the specified [value], which must fit | 
| + * in a single byte. in other words, [value] must be between 0 and 255, | 
| + * inclusive. | 
| + * | 
| + * Throws [RangeError] if [byteOffset] is negative, | 
| + * or greater than or equal to the length of this object. | 
| + */ | 
| + void setUint8(int byteOffset, int value) native; | 
| + | 
| + static NativeByteData _create1(arg) => | 
| + JS('NativeByteData', 'new DataView(new ArrayBuffer(#))', arg); | 
| + | 
| + static NativeByteData _create2(arg1, arg2) => | 
| + JS('NativeByteData', 'new DataView(#, #)', arg1, arg2); | 
| + | 
| + static NativeByteData _create3(arg1, arg2, arg3) => | 
| + JS('NativeByteData', 'new DataView(#, #, #)', arg1, arg2, arg3); | 
| +} | 
| + | 
| + | 
| +abstract class NativeTypedArray extends NativeTypedData | 
| + implements JavaScriptIndexingBehavior { | 
| + int get length => JS('JSUInt32', '#.length', this); | 
| + | 
| + bool _setRangeFast(int start, int end, | 
| + NativeTypedArray source, int skipCount) { | 
| + int targetLength = this.length; | 
| + _checkIndex(start, targetLength + 1); | 
| + _checkIndex(end, targetLength + 1); | 
| + if (start > end) throw new RangeError.range(start, 0, end); | 
| + int count = end - start; | 
| + | 
| + if (skipCount < 0) throw new ArgumentError(skipCount); | 
| + | 
| + int sourceLength = source.length; | 
| + if (sourceLength - skipCount < count) { | 
| + throw new StateError('Not enough elements'); | 
| + } | 
| + | 
| + if (skipCount != 0 || sourceLength != count) { | 
| + // Create a view of the exact subrange that is copied from the source. | 
| + source = JS('', '#.subarray(#, #)', | 
| + source, skipCount, skipCount + count); | 
| + } | 
| + JS('void', '#.set(#, #)', this, source, start); | 
| + } | 
| +} | 
| + | 
| +abstract class NativeTypedArrayOfDouble | 
| + extends NativeTypedArray | 
| + with ListMixin<double>, FixedLengthListMixin<double> { | 
| + | 
| + num operator[](int index) { | 
| + _checkIndex(index, length); | 
| + return JS('num', '#[#]', this, index); | 
| + } | 
| + | 
| + void operator[]=(int index, num value) { | 
| + _checkIndex(index, length); | 
| + JS('void', '#[#] = #', this, index, value); | 
| + } | 
| + | 
| + void setRange(int start, int end, Iterable<double> iterable, | 
| + [int skipCount = 0]) { | 
| + if (iterable is NativeTypedArrayOfDouble) { | 
| + _setRangeFast(start, end, iterable, skipCount); | 
| + return; | 
| + } | 
| + super.setRange(start, end, iterable, skipCount); | 
| + } | 
| +} | 
| + | 
| +abstract class NativeTypedArrayOfInt | 
| + extends NativeTypedArray | 
| + with ListMixin<int>, FixedLengthListMixin<int> | 
| + implements List<int> { | 
| + | 
| + // operator[]() is not here since different versions have different return | 
| + // types | 
| + | 
| + void operator[]=(int index, int value) { | 
| + _checkIndex(index, length); | 
| + JS('void', '#[#] = #', this, index, value); | 
| + } | 
| + | 
| + void setRange(int start, int end, Iterable<int> iterable, | 
| + [int skipCount = 0]) { | 
| + if (iterable is NativeTypedArrayOfInt) { | 
| + _setRangeFast(start, end, iterable, skipCount); | 
| + return; | 
| + } | 
| + super.setRange(start, end, iterable, skipCount); | 
| + } | 
| +} | 
| + | 
| + | 
| +class NativeFloat32List | 
| + extends NativeTypedArrayOfDouble | 
| + implements Float32List | 
| + native "Float32Array" { | 
| + | 
| + factory NativeFloat32List(int length) => _create1(_checkLength(length)); | 
| + | 
| + factory NativeFloat32List.fromList(List<double> elements) => | 
| + _create1(_ensureNativeList(elements)); | 
| + | 
| + factory NativeFloat32List.view(ByteBuffer buffer, | 
| + int offsetInBytes, int length) { | 
| + _checkViewArguments(buffer, offsetInBytes, length); | 
| + return length == null | 
| + ? _create2(buffer, offsetInBytes) | 
| + : _create3(buffer, offsetInBytes, length); | 
| + } | 
| + | 
| + Type get runtimeType => Float32List; | 
| + | 
| + List<double> sublist(int start, [int end]) { | 
| + end = _checkSublistArguments(start, end, length); | 
| + var source = JS('NativeFloat32List', '#.subarray(#, #)', this, start, end); | 
| + return _create1(source); | 
| + } | 
| + | 
| + static NativeFloat32List _create1(arg) => | 
| + JS('NativeFloat32List', 'new Float32Array(#)', arg); | 
| + | 
| + static NativeFloat32List _create2(arg1, arg2) => | 
| + JS('NativeFloat32List', 'new Float32Array(#, #)', arg1, arg2); | 
| + | 
| + static NativeFloat32List _create3(arg1, arg2, arg3) => | 
| + JS('NativeFloat32List', 'new Float32Array(#, #, #)', arg1, arg2, arg3); | 
| +} | 
| + | 
| + | 
| +class NativeFloat64List | 
| + extends NativeTypedArrayOfDouble | 
| + implements Float64List | 
| + native "Float64Array" { | 
| + | 
| + factory NativeFloat64List(int length) => _create1(_checkLength(length)); | 
| + | 
| + factory NativeFloat64List.fromList(List<double> elements) => | 
| + _create1(_ensureNativeList(elements)); | 
| + | 
| + factory NativeFloat64List.view(ByteBuffer buffer, | 
| + int offsetInBytes, int length) { | 
| + _checkViewArguments(buffer, offsetInBytes, length); | 
| + return length == null | 
| + ? _create2(buffer, offsetInBytes) | 
| + : _create3(buffer, offsetInBytes, length); | 
| + } | 
| + | 
| + Type get runtimeType => Float64List; | 
| + | 
| + List<double> sublist(int start, [int end]) { | 
| + end = _checkSublistArguments(start, end, length); | 
| + var source = JS('NativeFloat64List', '#.subarray(#, #)', this, start, end); | 
| + return _create1(source); | 
| + } | 
| + | 
| + static NativeFloat64List _create1(arg) => | 
| + JS('NativeFloat64List', 'new Float64Array(#)', arg); | 
| + | 
| + static NativeFloat64List _create2(arg1, arg2) => | 
| + JS('NativeFloat64List', 'new Float64Array(#, #)', arg1, arg2); | 
| + | 
| + static NativeFloat64List _create3(arg1, arg2, arg3) => | 
| + JS('NativeFloat64List', 'new Float64Array(#, #, #)', arg1, arg2, arg3); | 
| +} | 
| + | 
| + | 
| +class NativeInt16List | 
| + extends NativeTypedArrayOfInt | 
| + implements Int16List | 
| + native "Int16Array" { | 
| + | 
| + factory NativeInt16List(int length) => _create1(_checkLength(length)); | 
| + | 
| + factory NativeInt16List.fromList(List<int> elements) => | 
| + _create1(_ensureNativeList(elements)); | 
| + | 
| + factory NativeInt16List.view(NativeByteBuffer buffer, | 
| + int offsetInBytes, int length) { | 
| + _checkViewArguments(buffer, offsetInBytes, length); | 
| + return length == null | 
| + ? _create2(buffer, offsetInBytes) | 
| + : _create3(buffer, offsetInBytes, length); | 
| + } | 
| + | 
| + Type get runtimeType => Int16List; | 
| + | 
| + int operator[](int index) { | 
| + _checkIndex(index, length); | 
| + return JS('int', '#[#]', this, index); | 
| + } | 
| + | 
| + List<int> sublist(int start, [int end]) { | 
| + end = _checkSublistArguments(start, end, length); | 
| + var source = JS('NativeInt16List', '#.subarray(#, #)', this, start, end); | 
| + return _create1(source); | 
| + } | 
| + | 
| + static NativeInt16List _create1(arg) => | 
| + JS('NativeInt16List', 'new Int16Array(#)', arg); | 
| + | 
| + static NativeInt16List _create2(arg1, arg2) => | 
| + JS('NativeInt16List', 'new Int16Array(#, #)', arg1, arg2); | 
| + | 
| + static NativeInt16List _create3(arg1, arg2, arg3) => | 
| + JS('NativeInt16List', 'new Int16Array(#, #, #)', arg1, arg2, arg3); | 
| +} | 
| + | 
| + | 
| +class NativeInt32List | 
| + extends NativeTypedArrayOfInt | 
| + implements Int32List | 
| + native "Int32Array" { | 
| + | 
| + factory NativeInt32List(int length) => _create1(_checkLength(length)); | 
| + | 
| + factory NativeInt32List.fromList(List<int> elements) => | 
| + _create1(_ensureNativeList(elements)); | 
| + | 
| + factory NativeInt32List.view(ByteBuffer buffer, | 
| + int offsetInBytes, int length) { | 
| + _checkViewArguments(buffer, offsetInBytes, length); | 
| + return length == null | 
| + ? _create2(buffer, offsetInBytes) | 
| + : _create3(buffer, offsetInBytes, length); | 
| + } | 
| + | 
| + Type get runtimeType => Int32List; | 
| + | 
| + int operator[](int index) { | 
| + _checkIndex(index, length); | 
| + return JS('int', '#[#]', this, index); | 
| + } | 
| + | 
| + List<int> sublist(int start, [int end]) { | 
| + end = _checkSublistArguments(start, end, length); | 
| + var source = JS('NativeInt32List', '#.subarray(#, #)', this, start, end); | 
| + return _create1(source); | 
| + } | 
| + | 
| + static NativeInt32List _create1(arg) => | 
| + JS('NativeInt32List', 'new Int32Array(#)', arg); | 
| + | 
| + static NativeInt32List _create2(arg1, arg2) => | 
| + JS('NativeInt32List', 'new Int32Array(#, #)', arg1, arg2); | 
| + | 
| + static NativeInt32List _create3(arg1, arg2, arg3) => | 
| + JS('NativeInt32List', 'new Int32Array(#, #, #)', arg1, arg2, arg3); | 
| +} | 
| + | 
| + | 
| +class NativeInt8List | 
| + extends NativeTypedArrayOfInt | 
| + implements Int8List | 
| + native "Int8Array" { | 
| + | 
| + factory NativeInt8List(int length) => _create1(_checkLength(length)); | 
| + | 
| + factory NativeInt8List.fromList(List<int> elements) => | 
| + _create1(_ensureNativeList(elements)); | 
| + | 
| + factory NativeInt8List.view(ByteBuffer buffer, | 
| + int offsetInBytes, int length) { | 
| + _checkViewArguments(buffer, offsetInBytes, length); | 
| + return length == null | 
| + ? _create2(buffer, offsetInBytes) | 
| + : _create3(buffer, offsetInBytes, length); | 
| + } | 
| + | 
| + Type get runtimeType => Int8List; | 
| + | 
| + int operator[](int index) { | 
| + _checkIndex(index, length); | 
| + return JS('int', '#[#]', this, index); | 
| + } | 
| + | 
| + List<int> sublist(int start, [int end]) { | 
| + end = _checkSublistArguments(start, end, length); | 
| + var source = JS('NativeInt8List', '#.subarray(#, #)', this, start, end); | 
| + return _create1(source); | 
| + } | 
| + | 
| + static NativeInt8List _create1(arg) => | 
| + JS('NativeInt8List', 'new Int8Array(#)', arg); | 
| + | 
| + static NativeInt8List _create2(arg1, arg2) => | 
| + JS('NativeInt8List', 'new Int8Array(#, #)', arg1, arg2); | 
| + | 
| + static Int8List _create3(arg1, arg2, arg3) => | 
| + JS('NativeInt8List', 'new Int8Array(#, #, #)', arg1, arg2, arg3); | 
| +} | 
| + | 
| + | 
| +class NativeUint16List | 
| + extends NativeTypedArrayOfInt | 
| + implements Uint16List | 
| + native "Uint16Array" { | 
| + | 
| + factory NativeUint16List(int length) => _create1(_checkLength(length)); | 
| + | 
| + factory NativeUint16List.fromList(List<int> list) => | 
| + _create1(_ensureNativeList(list)); | 
| + | 
| + factory NativeUint16List.view(ByteBuffer buffer, | 
| + int offsetInBytes, int length) { | 
| + _checkViewArguments(buffer, offsetInBytes, length); | 
| + return length == null | 
| + ? _create2(buffer, offsetInBytes) | 
| + : _create3(buffer, offsetInBytes, length); | 
| + } | 
| + | 
| + Type get runtimeType => Uint16List; | 
| + | 
| + int operator[](int index) { | 
| + _checkIndex(index, length); | 
| + return JS('JSUInt31', '#[#]', this, index); | 
| + } | 
| + | 
| + List<int> sublist(int start, [int end]) { | 
| + end = _checkSublistArguments(start, end, length); | 
| + var source = JS('NativeUint16List', '#.subarray(#, #)', this, start, end); | 
| + return _create1(source); | 
| + } | 
| + | 
| + static NativeUint16List _create1(arg) => | 
| + JS('NativeUint16List', 'new Uint16Array(#)', arg); | 
| + | 
| + static NativeUint16List _create2(arg1, arg2) => | 
| + JS('NativeUint16List', 'new Uint16Array(#, #)', arg1, arg2); | 
| + | 
| + static NativeUint16List _create3(arg1, arg2, arg3) => | 
| + JS('NativeUint16List', 'new Uint16Array(#, #, #)', arg1, arg2, arg3); | 
| +} | 
| + | 
| + | 
| +class NativeUint32List | 
| + extends NativeTypedArrayOfInt | 
| + implements Uint32List | 
| + native "Uint32Array" { | 
| + | 
| + factory NativeUint32List(int length) => _create1(_checkLength(length)); | 
| + | 
| + factory NativeUint32List.fromList(List<int> elements) => | 
| + _create1(_ensureNativeList(elements)); | 
| + | 
| + factory NativeUint32List.view(ByteBuffer buffer, | 
| + int offsetInBytes, int length) { | 
| + _checkViewArguments(buffer, offsetInBytes, length); | 
| + return length == null | 
| + ? _create2(buffer, offsetInBytes) | 
| + : _create3(buffer, offsetInBytes, length); | 
| + } | 
| + | 
| + Type get runtimeType => Uint32List; | 
| + | 
| + int operator[](int index) { | 
| + _checkIndex(index, length); | 
| + return JS('JSUInt32', '#[#]', this, index); | 
| + } | 
| + | 
| + List<int> sublist(int start, [int end]) { | 
| + end = _checkSublistArguments(start, end, length); | 
| + var source = JS('NativeUint32List', '#.subarray(#, #)', this, start, end); | 
| + return _create1(source); | 
| + } | 
| + | 
| + static NativeUint32List _create1(arg) => | 
| + JS('NativeUint32List', 'new Uint32Array(#)', arg); | 
| + | 
| + static NativeUint32List _create2(arg1, arg2) => | 
| + JS('NativeUint32List', 'new Uint32Array(#, #)', arg1, arg2); | 
| + | 
| + static NativeUint32List _create3(arg1, arg2, arg3) => | 
| + JS('NativeUint32List', 'new Uint32Array(#, #, #)', arg1, arg2, arg3); | 
| +} | 
| + | 
| + | 
| +class NativeUint8ClampedList | 
| + extends NativeTypedArrayOfInt | 
| + implements Uint8ClampedList | 
| + native "Uint8ClampedArray,CanvasPixelArray" { | 
| + | 
| + factory NativeUint8ClampedList(int length) => _create1(_checkLength(length)); | 
| + | 
| + factory NativeUint8ClampedList.fromList(List<int> elements) => | 
| + _create1(_ensureNativeList(elements)); | 
| + | 
| + factory NativeUint8ClampedList.view(ByteBuffer buffer, | 
| + int offsetInBytes, int length) { | 
| + _checkViewArguments(buffer, offsetInBytes, length); | 
| + return length == null | 
| + ? _create2(buffer, offsetInBytes) | 
| + : _create3(buffer, offsetInBytes, length); | 
| + } | 
| + | 
| + Type get runtimeType => Uint8ClampedList; | 
| + | 
| + int get length => JS('JSUInt32', '#.length', this); | 
| + | 
| + int operator[](int index) { | 
| + _checkIndex(index, length); | 
| + return JS('JSUInt31', '#[#]', this, index); | 
| + } | 
| + | 
| + List<int> sublist(int start, [int end]) { | 
| + end = _checkSublistArguments(start, end, length); | 
| + var source = JS('NativeUint8ClampedList', '#.subarray(#, #)', | 
| + this, start, end); | 
| + return _create1(source); | 
| + } | 
| + | 
| + static NativeUint8ClampedList _create1(arg) => | 
| + JS('NativeUint8ClampedList', 'new Uint8ClampedArray(#)', arg); | 
| + | 
| + static NativeUint8ClampedList _create2(arg1, arg2) => | 
| + JS('NativeUint8ClampedList', 'new Uint8ClampedArray(#, #)', arg1, arg2); | 
| + | 
| + static NativeUint8ClampedList _create3(arg1, arg2, arg3) => | 
| + JS('NativeUint8ClampedList', 'new Uint8ClampedArray(#, #, #)', | 
| + arg1, arg2, arg3); | 
| +} | 
| + | 
| + | 
| +class NativeUint8List | 
| + extends NativeTypedArrayOfInt | 
| + implements Uint8List | 
| + // On some browsers Uint8ClampedArray is a subtype of Uint8Array. Marking | 
| + // Uint8List as !nonleaf ensures that the native dispatch correctly handles | 
| + // the potential for Uint8ClampedArray to 'accidentally' pick up the | 
| + // dispatch record for Uint8List. | 
| + native "Uint8Array,!nonleaf" { | 
| + | 
| + factory NativeUint8List(int length) => _create1(_checkLength(length)); | 
| + | 
| + factory NativeUint8List.fromList(List<int> elements) => | 
| + _create1(_ensureNativeList(elements)); | 
| + | 
| + factory NativeUint8List.view(ByteBuffer buffer, | 
| + int offsetInBytes, int length) { | 
| + _checkViewArguments(buffer, offsetInBytes, length); | 
| + return length == null | 
| + ? _create2(buffer, offsetInBytes) | 
| + : _create3(buffer, offsetInBytes, length); | 
| + } | 
| + | 
| + Type get runtimeType => Uint8List; | 
| + | 
| + int get length => JS('JSUInt32', '#.length', this); | 
| + | 
| + int operator[](int index) { | 
| + _checkIndex(index, length); | 
| + return JS('JSUInt31', '#[#]', this, index); | 
| + } | 
| + | 
| + List<int> sublist(int start, [int end]) { | 
| + end = _checkSublistArguments(start, end, length); | 
| + var source = JS('NativeUint8List', '#.subarray(#, #)', this, start, end); | 
| + return _create1(source); | 
| + } | 
| + | 
| + static NativeUint8List _create1(arg) => | 
| + JS('NativeUint8List', 'new Uint8Array(#)', arg); | 
| + | 
| + static NativeUint8List _create2(arg1, arg2) => | 
| + JS('NativeUint8List', 'new Uint8Array(#, #)', arg1, arg2); | 
| + | 
| + static NativeUint8List _create3(arg1, arg2, arg3) => | 
| + JS('NativeUint8List', 'new Uint8Array(#, #, #)', arg1, arg2, arg3); | 
| +} | 
| + | 
| + | 
| +/** | 
| + * Implementation of Dart Float32x4 immutable value type and operations. | 
| + * Float32x4 stores 4 32-bit floating point values in "lanes". | 
| + * The lanes are "x", "y", "z", and "w" respectively. | 
| + */ | 
| +class NativeFloat32x4 implements Float32x4 { | 
| + final _storage = new Float32List(4); | 
| + | 
| + NativeFloat32x4(double x, double y, double z, double w) { | 
| + _storage[0] = x; | 
| + _storage[1] = y; | 
| + _storage[2] = z; | 
| + _storage[3] = w; | 
| + } | 
| + | 
| + NativeFloat32x4.splat(double v) { | 
| + _storage[0] = v; | 
| + _storage[1] = v; | 
| + _storage[2] = v; | 
| + _storage[3] = v; | 
| + } | 
| + | 
| + NativeFloat32x4.zero(); | 
| + /// Returns a bit-wise copy of [x] as a Float32x4. | 
| + | 
| + NativeFloat32x4.fromInt32x4Bits(NativeInt32x4 x) { | 
| 
 
Lasse Reichstein Nielsen
2014/07/03 12:32:12
It looks wrong (heck, it is wrong) to expect a Nat
 
 | 
| + var view = x._storage.buffer.asFloat32List(); | 
| + _storage[0] = view[0]; | 
| + _storage[1] = view[1]; | 
| + _storage[2] = view[2]; | 
| + _storage[3] = view[3]; | 
| + } | 
| + | 
| + NativeFloat32x4.fromFloat64x2(NativeFloat64x2 v) { | 
| + _storage[0] = v._storage[0]; | 
| + _storage[1] = v._storage[1]; | 
| + } | 
| + | 
| + String toString() { | 
| + return '[${_storage[0]}, ${_storage[1]}, ${_storage[2]}, ${_storage[3]}]'; | 
| + } | 
| + | 
| + /// Addition operator. | 
| + Float32x4 operator+(NativeFloat32x4 other) { | 
| + double _x = _storage[0] + other._storage[0]; | 
| + double _y = _storage[1] + other._storage[1]; | 
| + double _z = _storage[2] + other._storage[2]; | 
| + double _w = _storage[3] + other._storage[3]; | 
| + return new NativeFloat32x4(_x, _y, _z, _w); | 
| + } | 
| + | 
| + /// Negate operator. | 
| + Float32x4 operator-() { | 
| + double _x = -_storage[0]; | 
| + double _y = -_storage[1]; | 
| + double _z = -_storage[2]; | 
| + double _w = -_storage[3]; | 
| + return new NativeFloat32x4(_x, _y, _z, _w); | 
| + } | 
| + | 
| + /// Subtraction operator. | 
| + Float32x4 operator-(NativeFloat32x4 other) { | 
| + double _x = _storage[0] - other._storage[0]; | 
| + double _y = _storage[1] - other._storage[1]; | 
| + double _z = _storage[2] - other._storage[2]; | 
| + double _w = _storage[3] - other._storage[3]; | 
| + return new NativeFloat32x4(_x, _y, _z, _w); | 
| + } | 
| + | 
| + /// Multiplication operator. | 
| + Float32x4 operator*(NativeFloat32x4 other) { | 
| + double _x = _storage[0] * other._storage[0]; | 
| + double _y = _storage[1] * other._storage[1]; | 
| + double _z = _storage[2] * other._storage[2]; | 
| + double _w = _storage[3] * other._storage[3]; | 
| + return new NativeFloat32x4(_x, _y, _z, _w); | 
| + } | 
| + | 
| + /// Division operator. | 
| + Float32x4 operator/(NativeFloat32x4 other) { | 
| + double _x = _storage[0] / other._storage[0]; | 
| + double _y = _storage[1] / other._storage[1]; | 
| + double _z = _storage[2] / other._storage[2]; | 
| + double _w = _storage[3] / other._storage[3]; | 
| + return new NativeFloat32x4(_x, _y, _z, _w); | 
| + } | 
| + | 
| + /// Relational less than. | 
| + Int32x4 lessThan(NativeFloat32x4 other) { | 
| + bool _cx = _storage[0] < other._storage[0]; | 
| + bool _cy = _storage[1] < other._storage[1]; | 
| + bool _cz = _storage[2] < other._storage[2]; | 
| + bool _cw = _storage[3] < other._storage[3]; | 
| + return new NativeInt32x4(_cx == true ? 0xFFFFFFFF : 0x0, | 
| + _cy == true ? 0xFFFFFFFF : 0x0, | 
| + _cz == true ? 0xFFFFFFFF : 0x0, | 
| + _cw == true ? 0xFFFFFFFF : 0x0); | 
| + } | 
| + | 
| + /// Relational less than or equal. | 
| + Int32x4 lessThanOrEqual(NativeFloat32x4 other) { | 
| + bool _cx = _storage[0] <= other._storage[0]; | 
| + bool _cy = _storage[1] <= other._storage[1]; | 
| + bool _cz = _storage[2] <= other._storage[2]; | 
| + bool _cw = _storage[3] <= other._storage[3]; | 
| + return new NativeInt32x4(_cx == true ? 0xFFFFFFFF : 0x0, | 
| + _cy == true ? 0xFFFFFFFF : 0x0, | 
| + _cz == true ? 0xFFFFFFFF : 0x0, | 
| + _cw == true ? 0xFFFFFFFF : 0x0); | 
| + } | 
| + | 
| + /// Relational greater than. | 
| + Int32x4 greaterThan(NativeFloat32x4 other) { | 
| + bool _cx = _storage[0] > other._storage[0]; | 
| + bool _cy = _storage[1] > other._storage[1]; | 
| + bool _cz = _storage[2] > other._storage[2]; | 
| + bool _cw = _storage[3] > other._storage[3]; | 
| + return new NativeInt32x4(_cx == true ? 0xFFFFFFFF : 0x0, | 
| + _cy == true ? 0xFFFFFFFF : 0x0, | 
| + _cz == true ? 0xFFFFFFFF : 0x0, | 
| + _cw == true ? 0xFFFFFFFF : 0x0); | 
| + } | 
| + | 
| + /// Relational greater than or equal. | 
| + Int32x4 greaterThanOrEqual(NativeFloat32x4 other) { | 
| + bool _cx = _storage[0] >= other._storage[0]; | 
| + bool _cy = _storage[1] >= other._storage[1]; | 
| + bool _cz = _storage[2] >= other._storage[2]; | 
| + bool _cw = _storage[3] >= other._storage[3]; | 
| + return new NativeInt32x4(_cx == true ? 0xFFFFFFFF : 0x0, | 
| + _cy == true ? 0xFFFFFFFF : 0x0, | 
| + _cz == true ? 0xFFFFFFFF : 0x0, | 
| + _cw == true ? 0xFFFFFFFF : 0x0); | 
| + } | 
| + | 
| + /// Relational equal. | 
| + Int32x4 equal(NativeFloat32x4 other) { | 
| + bool _cx = _storage[0] == other._storage[0]; | 
| + bool _cy = _storage[1] == other._storage[1]; | 
| + bool _cz = _storage[2] == other._storage[2]; | 
| + bool _cw = _storage[3] == other._storage[3]; | 
| + return new NativeInt32x4(_cx == true ? 0xFFFFFFFF : 0x0, | 
| + _cy == true ? 0xFFFFFFFF : 0x0, | 
| + _cz == true ? 0xFFFFFFFF : 0x0, | 
| + _cw == true ? 0xFFFFFFFF : 0x0); | 
| + } | 
| + | 
| + /// Relational not-equal. | 
| + Int32x4 notEqual(NativeFloat32x4 other) { | 
| + bool _cx = _storage[0] != other._storage[0]; | 
| + bool _cy = _storage[1] != other._storage[1]; | 
| + bool _cz = _storage[2] != other._storage[2]; | 
| + bool _cw = _storage[3] != other._storage[3]; | 
| + return new NativeInt32x4(_cx == true ? 0xFFFFFFFF : 0x0, | 
| + _cy == true ? 0xFFFFFFFF : 0x0, | 
| + _cz == true ? 0xFFFFFFFF : 0x0, | 
| + _cw == true ? 0xFFFFFFFF : 0x0); | 
| + } | 
| + | 
| + /// Returns a copy of [this] each lane being scaled by [s]. | 
| + Float32x4 scale(double s) { | 
| + double _x = s * _storage[0]; | 
| + double _y = s * _storage[1]; | 
| + double _z = s * _storage[2]; | 
| + double _w = s * _storage[3]; | 
| + return new NativeFloat32x4(_x, _y, _z, _w); | 
| + } | 
| + | 
| + /// Returns the absolute value of this [Float32x4]. | 
| + Float32x4 abs() { | 
| + double _x = _storage[0].abs(); | 
| + double _y = _storage[1].abs(); | 
| + double _z = _storage[2].abs(); | 
| + double _w = _storage[3].abs(); | 
| + return new Float32x4(_x, _y, _z, _w); | 
| + } | 
| + | 
| + /// Clamps [this] to be in the range [lowerLimit]-[upperLimit]. | 
| + NativeFloat32x4 clamp(NativeFloat32x4 lowerLimit, | 
| + NativeFloat32x4 upperLimit) { | 
| + double _lx = lowerLimit._storage[0]; | 
| + double _ly = lowerLimit._storage[1]; | 
| + double _lz = lowerLimit._storage[2]; | 
| + double _lw = lowerLimit._storage[3]; | 
| + double _ux = upperLimit._storage[0]; | 
| + double _uy = upperLimit._storage[1]; | 
| + double _uz = upperLimit._storage[2]; | 
| + double _uw = upperLimit._storage[3]; | 
| + double _x = _storage[0]; | 
| + double _y = _storage[1]; | 
| + double _z = _storage[2]; | 
| + double _w = _storage[3]; | 
| + // MAX(MIN(self, upper), lower). | 
| + _x = _x > _ux ? _ux : _x; | 
| + _y = _y > _uy ? _uy : _y; | 
| + _z = _z > _uz ? _uz : _z; | 
| + _w = _w > _uw ? _uw : _w; | 
| + _x = _x < _lx ? _lx : _x; | 
| + _y = _y < _ly ? _ly : _y; | 
| + _z = _z < _lz ? _lz : _z; | 
| + _w = _w < _lw ? _lw : _w; | 
| + return new Float32x4(_x, _y, _z, _w); | 
| + } | 
| + | 
| + /// Extracted x value. | 
| + double get x => _storage[0]; | 
| + /// Extracted y value. | 
| + double get y => _storage[1]; | 
| + /// Extracted z value. | 
| + double get z => _storage[2]; | 
| + /// Extracted w value. | 
| + double get w => _storage[3]; | 
| + | 
| + /// Extract the sign bit from each lane return them in the first 4 bits. | 
| + int get signMask { | 
| + var view = new NativeUint32List.view(_storage.buffer, 0, null); | 
| + var mx = (view[0] & 0x80000000) >> 31; | 
| + var my = (view[1] & 0x80000000) >> 31; | 
| + var mz = (view[2] & 0x80000000) >> 31; | 
| + var mw = (view[3] & 0x80000000) >> 31; | 
| + return mx | my << 1 | mz << 2 | mw << 3; | 
| + } | 
| + | 
| + /// Shuffle the lane values. [mask] must be one of the 256 shuffle constants. | 
| + Float32x4 shuffle(int m) { | 
| + if ((m < 0) || (m > 255)) { | 
| + throw new RangeError('mask $m must be in the range [0..256)'); | 
| + } | 
| + double _x = _storage[m & 0x3]; | 
| + double _y = _storage[(m >> 2) & 0x3]; | 
| + double _z = _storage[(m >> 4) & 0x3]; | 
| + double _w = _storage[(m >> 6) & 0x3]; | 
| + return new NativeFloat32x4(_x, _y, _z, _w); | 
| + } | 
| + | 
| + /// Shuffle the lane values in [this] and [other]. The returned | 
| + /// Float32x4 will have XY lanes from [this] and ZW lanes from [other]. | 
| + /// Uses the same [mask] as [shuffle]. | 
| + Float32x4 shuffleMix(NativeFloat32x4 other, int m) { | 
| + if ((m < 0) || (m > 255)) { | 
| + throw new RangeError('mask $m must be in the range [0..256)'); | 
| + } | 
| + double _x = _storage[m & 0x3]; | 
| + double _y = _storage[(m >> 2) & 0x3]; | 
| + double _z = other._storage[(m >> 4) & 0x3]; | 
| + double _w = other._storage[(m >> 6) & 0x3]; | 
| + return new NativeFloat32x4(_x, _y, _z, _w); | 
| + } | 
| + | 
| + /// Copy [this] and replace the [x] lane. | 
| + Float32x4 withX(double x) { | 
| + double _x = x; | 
| + double _y = _storage[1]; | 
| + double _z = _storage[2]; | 
| + double _w = _storage[3]; | 
| + return new NativeFloat32x4(_x, _y, _z, _w); | 
| + } | 
| + | 
| + /// Copy [this] and replace the [y] lane. | 
| + Float32x4 withY(double y) { | 
| + double _x = _storage[0]; | 
| + double _y = y; | 
| + double _z = _storage[2]; | 
| + double _w = _storage[3]; | 
| + return new NativeFloat32x4(_x, _y, _z, _w); | 
| + } | 
| + | 
| + /// Copy [this] and replace the [z] lane. | 
| + Float32x4 withZ(double z) { | 
| + double _x = _storage[0]; | 
| + double _y = _storage[1]; | 
| + double _z = z; | 
| + double _w = _storage[3]; | 
| + return new NativeFloat32x4(_x, _y, _z, _w); | 
| + } | 
| + | 
| + /// Copy [this] and replace the [w] lane. | 
| + Float32x4 withW(double w) { | 
| + double _x = _storage[0]; | 
| + double _y = _storage[1]; | 
| + double _z = _storage[2]; | 
| + double _w = w; | 
| + return new NativeFloat32x4(_x, _y, _z, _w); | 
| + } | 
| + | 
| + /// Returns the lane-wise minimum value in [this] or [other]. | 
| + Float32x4 min(NativeFloat32x4 other) { | 
| + double _x = _storage[0] < other._storage[0] ? | 
| + _storage[0] : other._storage[0]; | 
| + double _y = _storage[1] < other._storage[1] ? | 
| + _storage[1] : other._storage[1]; | 
| + double _z = _storage[2] < other._storage[2] ? | 
| + _storage[2] : other._storage[2]; | 
| + double _w = _storage[3] < other._storage[3] ? | 
| + _storage[3] : other._storage[3]; | 
| + return new NativeFloat32x4(_x, _y, _z, _w); | 
| + } | 
| + | 
| + /// Returns the lane-wise maximum value in [this] or [other]. | 
| + Float32x4 max(NativeFloat32x4 other) { | 
| + double _x = _storage[0] > other._storage[0] ? | 
| + _storage[0] : other._storage[0]; | 
| + double _y = _storage[1] > other._storage[1] ? | 
| + _storage[1] : other._storage[1]; | 
| + double _z = _storage[2] > other._storage[2] ? | 
| + _storage[2] : other._storage[2]; | 
| + double _w = _storage[3] > other._storage[3] ? | 
| + _storage[3] : other._storage[3]; | 
| + return new NativeFloat32x4(_x, _y, _z, _w); | 
| + } | 
| + | 
| + /// Returns the square root of [this]. | 
| + Float32x4 sqrt() { | 
| + double _x = Math.sqrt(_storage[0]); | 
| + double _y = Math.sqrt(_storage[1]); | 
| + double _z = Math.sqrt(_storage[2]); | 
| + double _w = Math.sqrt(_storage[3]); | 
| + return new NativeFloat32x4(_x, _y, _z, _w); | 
| + } | 
| + | 
| + /// Returns the reciprocal of [this]. | 
| + Float32x4 reciprocal() { | 
| + double _x = 1.0 / _storage[0]; | 
| + double _y = 1.0 / _storage[1]; | 
| + double _z = 1.0 / _storage[2]; | 
| + double _w = 1.0 / _storage[3]; | 
| + return new NativeFloat32x4(_x, _y, _z, _w); | 
| + } | 
| + | 
| + /// Returns the square root of the reciprocal of [this]. | 
| + Float32x4 reciprocalSqrt() { | 
| + double _x = Math.sqrt(1.0 / _storage[0]); | 
| + double _y = Math.sqrt(1.0 / _storage[1]); | 
| + double _z = Math.sqrt(1.0 / _storage[2]); | 
| + double _w = Math.sqrt(1.0 / _storage[3]); | 
| + return new NativeFloat32x4(_x, _y, _z, _w); | 
| + } | 
| +} | 
| + | 
| + | 
| +/** | 
| + * Interface of Dart Int32x4 and operations. | 
| + * Int32x4 stores 4 32-bit bit-masks in "lanes". | 
| + * The lanes are "x", "y", "z", and "w" respectively. | 
| + */ | 
| +class NativeInt32x4 implements Int32x4 { | 
| + final _storage = new NativeInt32List(4); | 
| + | 
| + NativeInt32x4(int x, int y, int z, int w) { | 
| + _storage[0] = x; | 
| + _storage[1] = y; | 
| + _storage[2] = z; | 
| + _storage[3] = w; | 
| + } | 
| + | 
| + NativeInt32x4.bool(bool x, bool y, bool z, bool w) { | 
| + _storage[0] = x == true ? 0xFFFFFFFF : 0x0; | 
| + _storage[1] = y == true ? 0xFFFFFFFF : 0x0; | 
| + _storage[2] = z == true ? 0xFFFFFFFF : 0x0; | 
| + _storage[3] = w == true ? 0xFFFFFFFF : 0x0; | 
| + } | 
| + | 
| + /// Returns a bit-wise copy of [x] as a Int32x4. | 
| + NativeInt32x4.fromFloat32x4Bits(NativeFloat32x4 x) { | 
| + var view = new NativeUint32List.view(x._storage.buffer, 0, null); | 
| + _storage[0] = view[0]; | 
| + _storage[1] = view[1]; | 
| + _storage[2] = view[2]; | 
| + _storage[3] = view[3]; | 
| + } | 
| + | 
| + String toString() { | 
| + return '[${_storage[0]}, ${_storage[1]}, ${_storage[2]}, ${_storage[3]}]'; | 
| + } | 
| + | 
| + /// The bit-wise or operator. | 
| + Int32x4 operator|(NativeInt32x4 other) { | 
| + int _x = _storage[0] | other._storage[0]; | 
| + int _y = _storage[1] | other._storage[1]; | 
| + int _z = _storage[2] | other._storage[2]; | 
| + int _w = _storage[3] | other._storage[3]; | 
| + return new NativeInt32x4(_x, _y, _z, _w); | 
| + } | 
| + | 
| + /// The bit-wise and operator. | 
| + Int32x4 operator&(NativeInt32x4 other) { | 
| + int _x = _storage[0] & other._storage[0]; | 
| + int _y = _storage[1] & other._storage[1]; | 
| + int _z = _storage[2] & other._storage[2]; | 
| + int _w = _storage[3] & other._storage[3]; | 
| + return new NativeInt32x4(_x, _y, _z, _w); | 
| + } | 
| + | 
| + /// The bit-wise xor operator. | 
| + Int32x4 operator^(NativeInt32x4 other) { | 
| + int _x = _storage[0] ^ other._storage[0]; | 
| + int _y = _storage[1] ^ other._storage[1]; | 
| + int _z = _storage[2] ^ other._storage[2]; | 
| + int _w = _storage[3] ^ other._storage[3]; | 
| + return new NativeInt32x4(_x, _y, _z, _w); | 
| + } | 
| + | 
| + Int32x4 operator+(NativeInt32x4 other) { | 
| + var r = new NativeInt32x4(0, 0, 0, 0); | 
| + r._storage[0] = (_storage[0] + other._storage[0]); | 
| + r._storage[1] = (_storage[1] + other._storage[1]); | 
| + r._storage[2] = (_storage[2] + other._storage[2]); | 
| + r._storage[3] = (_storage[3] + other._storage[3]); | 
| + return r; | 
| + } | 
| + | 
| + Int32x4 operator-(NativeInt32x4 other) { | 
| + var r = new NativeInt32x4(0, 0, 0, 0); | 
| + r._storage[0] = (_storage[0] - other._storage[0]); | 
| + r._storage[1] = (_storage[1] - other._storage[1]); | 
| + r._storage[2] = (_storage[2] - other._storage[2]); | 
| + r._storage[3] = (_storage[3] - other._storage[3]); | 
| + return r; | 
| + } | 
| + | 
| + /// Extract 32-bit mask from x lane. | 
| + int get x => _storage[0]; | 
| + /// Extract 32-bit mask from y lane. | 
| + int get y => _storage[1]; | 
| + /// Extract 32-bit mask from z lane. | 
| + int get z => _storage[2]; | 
| + /// Extract 32-bit mask from w lane. | 
| + int get w => _storage[3]; | 
| + | 
| + /// Extract the top bit from each lane return them in the first 4 bits. | 
| + int get signMask { | 
| + int mx = (_storage[0] & 0x80000000) >> 31; | 
| + int my = (_storage[1] & 0x80000000) >> 31; | 
| + int mz = (_storage[2] & 0x80000000) >> 31; | 
| + int mw = (_storage[3] & 0x80000000) >> 31; | 
| + return mx | my << 1 | mz << 2 | mw << 3; | 
| + } | 
| + | 
| + /// Shuffle the lane values. [mask] must be one of the 256 shuffle constants. | 
| + Int32x4 shuffle(int mask) { | 
| + if ((mask < 0) || (mask > 255)) { | 
| + throw new RangeError('mask $mask must be in the range [0..256)'); | 
| + } | 
| + int _x = _storage[mask & 0x3]; | 
| + int _y = _storage[(mask >> 2) & 0x3]; | 
| + int _z = _storage[(mask >> 4) & 0x3]; | 
| + int _w = _storage[(mask >> 6) & 0x3]; | 
| + return new NativeInt32x4(_x, _y, _z, _w); | 
| + } | 
| + | 
| + /// Shuffle the lane values in [this] and [other]. The returned | 
| + /// Int32x4 will have XY lanes from [this] and ZW lanes from [other]. | 
| + /// Uses the same [mask] as [shuffle]. | 
| + Int32x4 shuffleMix(NativeInt32x4 other, int mask) { | 
| + if ((mask < 0) || (mask > 255)) { | 
| + throw new RangeError('mask $mask must be in the range [0..256)'); | 
| + } | 
| + int _x = _storage[mask & 0x3]; | 
| + int _y = _storage[(mask >> 2) & 0x3]; | 
| + int _z = other._storage[(mask >> 4) & 0x3]; | 
| + int _w = other._storage[(mask >> 6) & 0x3]; | 
| + return new NativeInt32x4(_x, _y, _z, _w); | 
| + } | 
| + | 
| + /// Returns a new [Int32x4] copied from [this] with a new x value. | 
| + Int32x4 withX(int x) { | 
| + int _x = x; | 
| + int _y = _storage[1]; | 
| + int _z = _storage[2]; | 
| + int _w = _storage[3]; | 
| + return new NativeInt32x4(_x, _y, _z, _w); | 
| + } | 
| + | 
| + /// Returns a new [Int32x4] copied from [this] with a new y value. | 
| + Int32x4 withY(int y) { | 
| + int _x = _storage[0]; | 
| + int _y = y; | 
| + int _z = _storage[2]; | 
| + int _w = _storage[3]; | 
| + return new NativeInt32x4(_x, _y, _z, _w); | 
| + } | 
| + | 
| + /// Returns a new [Int32x4] copied from [this] with a new z value. | 
| + Int32x4 withZ(int z) { | 
| + int _x = _storage[0]; | 
| + int _y = _storage[1]; | 
| + int _z = z; | 
| + int _w = _storage[3]; | 
| + return new NativeInt32x4(_x, _y, _z, _w); | 
| + } | 
| + | 
| + /// Returns a new [Int32x4] copied from [this] with a new w value. | 
| + Int32x4 withW(int w) { | 
| + int _x = _storage[0]; | 
| + int _y = _storage[1]; | 
| + int _z = _storage[2]; | 
| + int _w = w; | 
| + return new NativeInt32x4(_x, _y, _z, _w); | 
| + } | 
| + | 
| + /// Extracted x value. Returns false for 0, true for any other value. | 
| + bool get flagX => _storage[0] != 0x0; | 
| + /// Extracted y value. Returns false for 0, true for any other value. | 
| + bool get flagY => _storage[1] != 0x0; | 
| + /// Extracted z value. Returns false for 0, true for any other value. | 
| + bool get flagZ => _storage[2] != 0x0; | 
| + /// Extracted w value. Returns false for 0, true for any other value. | 
| + bool get flagW => _storage[3] != 0x0; | 
| + | 
| + /// Returns a new [Int32x4] copied from [this] with a new x value. | 
| + Int32x4 withFlagX(bool x) { | 
| + int _x = x == true ? 0xFFFFFFFF : 0x0; | 
| + int _y = _storage[1]; | 
| + int _z = _storage[2]; | 
| + int _w = _storage[3]; | 
| + return new NativeInt32x4(_x, _y, _z, _w); | 
| + } | 
| + | 
| + /// Returns a new [Int32x4] copied from [this] with a new y value. | 
| + Int32x4 withFlagY(bool y) { | 
| + int _x = _storage[0]; | 
| + int _y = y == true ? 0xFFFFFFFF : 0x0; | 
| + int _z = _storage[2]; | 
| + int _w = _storage[3]; | 
| + return new NativeInt32x4(_x, _y, _z, _w); | 
| + } | 
| + | 
| + /// Returns a new [Int32x4] copied from [this] with a new z value. | 
| + Int32x4 withFlagZ(bool z) { | 
| + int _x = _storage[0]; | 
| + int _y = _storage[1]; | 
| + int _z = z == true ? 0xFFFFFFFF : 0x0; | 
| + int _w = _storage[3]; | 
| + return new NativeInt32x4(_x, _y, _z, _w); | 
| + } | 
| + | 
| + /// Returns a new [Int32x4] copied from [this] with a new w value. | 
| + Int32x4 withFlagW(bool w) { | 
| + int _x = _storage[0]; | 
| + int _y = _storage[1]; | 
| + int _z = _storage[2]; | 
| + int _w = w == true ? 0xFFFFFFFF : 0x0; | 
| + return new NativeInt32x4(_x, _y, _z, _w); | 
| + } | 
| + | 
| + /// Merge [trueValue] and [falseValue] based on [this]' bit mask: | 
| + /// Select bit from [trueValue] when bit in [this] is on. | 
| + /// Select bit from [falseValue] when bit in [this] is off. | 
| + Float32x4 select(NativeFloat32x4 trueValue, NativeFloat32x4 falseValue) { | 
| + var trueView = trueValue._storage.buffer.asInt32List(); | 
| + var falseView = falseValue._storage.buffer.asInt32List(); | 
| + int cmx = _storage[0]; | 
| + int cmy = _storage[1]; | 
| + int cmz = _storage[2]; | 
| + int cmw = _storage[3]; | 
| + int stx = trueView[0]; | 
| + int sty = trueView[1]; | 
| + int stz = trueView[2]; | 
| + int stw = trueView[3]; | 
| + int sfx = falseView[0]; | 
| + int sfy = falseView[1]; | 
| + int sfz = falseView[2]; | 
| + int sfw = falseView[3]; | 
| + int _x = (cmx & stx) | (~cmx & sfx); | 
| + int _y = (cmy & sty) | (~cmy & sfy); | 
| + int _z = (cmz & stz) | (~cmz & sfz); | 
| + int _w = (cmw & stw) | (~cmw & sfw); | 
| + var r = new NativeFloat32x4(0.0, 0.0, 0.0, 0.0); | 
| + var rView = r._storage.buffer.asInt32List(); | 
| + rView[0] = _x; | 
| + rView[1] = _y; | 
| + rView[2] = _z; | 
| + rView[3] = _w; | 
| + return r; | 
| + } | 
| +} | 
| + | 
| +class NativeFloat64x2 implements Float64x2 { | 
| + final _storage = new Float64List(2); | 
| + | 
| + NativeFloat64x2(double x, double y) { | 
| + _storage[0] = x; | 
| + _storage[1] = y; | 
| + } | 
| + | 
| + NativeFloat64x2.splat(double v) { | 
| + _storage[0] = v; | 
| + _storage[1] = v; | 
| + } | 
| + | 
| + NativeFloat64x2.zero(); | 
| + | 
| + NativeFloat64x2.fromFloat32x4(NativeFloat32x4 v) { | 
| + _storage[0] = v._storage[0]; | 
| + _storage[1] = v._storage[1]; | 
| + } | 
| + | 
| + String toString() { | 
| + return '[${_storage[0]}, ${_storage[1]}]'; | 
| + } | 
| + | 
| + /// Addition operator. | 
| + Float64x2 operator+(NativeFloat64x2 other) { | 
| + return new NativeFloat64x2(_storage[0] + other._storage[0], | 
| + _storage[1] + other._storage[1]); | 
| + } | 
| + | 
| + /// Negate operator. | 
| + Float64x2 operator-() { | 
| + return new NativeFloat64x2(-_storage[0], -_storage[1]); | 
| + } | 
| + | 
| + /// Subtraction operator. | 
| + Float64x2 operator-(NativeFloat64x2 other) { | 
| + return new NativeFloat64x2(_storage[0] - other._storage[0], | 
| + _storage[1] - other._storage[1]); | 
| + } | 
| + /// Multiplication operator. | 
| + Float64x2 operator*(NativeFloat64x2 other) { | 
| + return new NativeFloat64x2(_storage[0] * other._storage[0], | 
| + _storage[1] * other._storage[1]); | 
| + } | 
| + /// Division operator. | 
| + Float64x2 operator/(NativeFloat64x2 other) { | 
| + return new NativeFloat64x2(_storage[0] / other._storage[0], | 
| + _storage[1] / other._storage[1]); | 
| + } | 
| + | 
| + /// Returns a copy of [this] each lane being scaled by [s]. | 
| + Float64x2 scale(double s) { | 
| + return new NativeFloat64x2(_storage[0] * s, _storage[1] * s); | 
| + } | 
| + | 
| + /// Returns the absolute value of this [Float64x2]. | 
| + Float64x2 abs() { | 
| + return new NativeFloat64x2(_storage[0].abs(), _storage[1].abs()); | 
| + } | 
| + | 
| + /// Clamps [this] to be in the range [lowerLimit]-[upperLimit]. | 
| + Float64x2 clamp(NativeFloat64x2 lowerLimit, | 
| + NativeFloat64x2 upperLimit) { | 
| + double _lx = lowerLimit._storage[0]; | 
| + double _ly = lowerLimit._storage[1]; | 
| + double _ux = upperLimit._storage[0]; | 
| + double _uy = upperLimit._storage[1]; | 
| + double _x = _storage[0]; | 
| + double _y = _storage[1]; | 
| + // MAX(MIN(self, upper), lower). | 
| + _x = _x > _ux ? _ux : _x; | 
| + _y = _y > _uy ? _uy : _y; | 
| + _x = _x < _lx ? _lx : _x; | 
| + _y = _y < _ly ? _ly : _y; | 
| + return new NativeFloat64x2(_x, _y); | 
| + } | 
| + | 
| + /// Extracted x value. | 
| + double get x => _storage[0]; | 
| + /// Extracted y value. | 
| + double get y => _storage[1]; | 
| + | 
| + /// Extract the sign bits from each lane return them in the first 2 bits. | 
| + int get signMask { | 
| + var view = _storage.buffer.asUint32List(); | 
| + var mx = (view[1] & 0x80000000) >> 31; | 
| + var my = (view[3] & 0x80000000) >> 31; | 
| + return mx | my << 1; | 
| + } | 
| + | 
| + /// Returns a new [Float64x2] copied from [this] with a new x value. | 
| + Float64x2 withX(double x) { | 
| + return new NativeFloat64x2(x, _storage[1]); | 
| + } | 
| + | 
| + /// Returns a new [Float64x2] copied from [this] with a new y value. | 
| + Float64x2 withY(double y) { | 
| + return new NativeFloat64x2(_storage[0], y); | 
| + } | 
| + | 
| + /// Returns the lane-wise minimum value in [this] or [other]. | 
| + Float64x2 min(NativeFloat64x2 other) { | 
| + return new NativeFloat64x2( | 
| + _storage[0] < other._storage[0] ? _storage[0] : other._storage[0], | 
| + _storage[1] < other._storage[1] ? _storage[1] : other._storage[1]); | 
| + | 
| + } | 
| + | 
| + /// Returns the lane-wise maximum value in [this] or [other]. | 
| + Float64x2 max(NativeFloat64x2 other) { | 
| + return new NativeFloat64x2( | 
| + _storage[0] > other._storage[0] ? _storage[0] : other._storage[0], | 
| + _storage[1] > other._storage[1] ? _storage[1] : other._storage[1]); | 
| + } | 
| + | 
| + /// Returns the lane-wise square root of [this]. | 
| + Float64x2 sqrt() { | 
| + return new NativeFloat64x2(Math.sqrt(_storage[0]), Math.sqrt(_storage[1])); | 
| + } | 
| +} |