Index: sdk/lib/_internal/lib/native_typed_data.dart |
diff --git a/sdk/lib/_internal/lib/native_typed_data.dart b/sdk/lib/_internal/lib/native_typed_data.dart |
new file mode 100644 |
index 0000000000000000000000000000000000000000..9b6e56879cbf497d86b5bcd14373c39a2fff493e |
--- /dev/null |
+++ b/sdk/lib/_internal/lib/native_typed_data.dart |
@@ -0,0 +1,1992 @@ |
+// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file |
+// for details. All rights reserved. Use of this source code is governed by a |
+// BSD-style license that can be found in the LICENSE file. |
+ |
+/** |
+ * Specialized integers and floating point numbers, |
+ * with SIMD support and efficient lists. |
+ */ |
+library dart.typed_data.implementation; |
+ |
+import 'dart:collection'; |
+import 'dart:_internal'; |
+import 'dart:_interceptors' show JSIndexable, JSUInt32, JSUInt31; |
+import 'dart:_js_helper' |
+ show Creates, JavaScriptIndexingBehavior, JSName, Null, Returns; |
+import 'dart:_foreign_helper' show JS; |
+import 'dart:math' as Math; |
+ |
+import 'dart:typed_data'; |
+ |
+class NativeByteBuffer implements ByteBuffer native "ArrayBuffer" { |
+ @JSName('byteLength') |
+ final int lengthInBytes; |
+ |
+ Type get runtimeType => ByteBuffer; |
+ |
+ Uint8List asUint8List([int offsetInBytes = 0, int length]) { |
+ return new NativeUint8List.view(this, offsetInBytes, length); |
+ } |
+ |
+ Int8List asInt8List([int offsetInBytes = 0, int length]) { |
+ return new NativeInt8List.view(this, offsetInBytes, length); |
+ } |
+ |
+ Uint8ClampedList asUint8ClampedList([int offsetInBytes = 0, int length]) { |
+ return new NativeUint8ClampedList.view(this, offsetInBytes, length); |
+ } |
+ |
+ Uint16List asUint16List([int offsetInBytes = 0, int length]) { |
+ return new NativeUint16List.view(this, offsetInBytes, length); |
+ } |
+ Int16List asInt16List([int offsetInBytes = 0, int length]) { |
+ return new NativeInt16List.view(this, offsetInBytes, length); |
+ } |
+ |
+ Uint32List asUint32List([int offsetInBytes = 0, int length]) { |
+ return new NativeUint32List.view(this, offsetInBytes, length); |
+ } |
+ |
+ Int32List asInt32List([int offsetInBytes = 0, int length]) { |
+ return new NativeInt32List.view(this, offsetInBytes, length); |
+ } |
+ |
+ Uint64List asUint64List([int offsetInBytes = 0, int length]) { |
+ throw new UnsupportedError("Uint64List not supported by dart2js."); |
+ } |
+ |
+ Int64List asInt64List([int offsetInBytes = 0, int length]) { |
+ throw new UnsupportedError("Int64List not supported by dart2js."); |
+ } |
+ |
+ Int32x4List asInt32x4List([int offsetInBytes = 0, int length]) { |
+ NativeUint32List storage = |
+ this.asUint32List(offsetInBytes, length != null ? length * 4 : null); |
+ return new NativeInt32x4List._externalStorage(storage); |
+ } |
+ |
+ Float32List asFloat32List([int offsetInBytes = 0, int length]) { |
+ return new NativeFloat32List.view(this, offsetInBytes, length); |
+ } |
+ |
+ Float64List asFloat64List([int offsetInBytes = 0, int length]) { |
+ return new NativeFloat64List.view(this, offsetInBytes, length); |
+ } |
+ |
+ Float32x4List asFloat32x4List([int offsetInBytes = 0, int length]) { |
+ NativeFloat32List storage = |
+ this.asFloat32List(offsetInBytes, length != null ? length * 4 : null); |
+ return new NativeFloat32x4List._externalStorage(storage); |
+ } |
+ |
+ Float64x2List asFloat64x2List([int offsetInBytes = 0, int length]) { |
+ NativeFloat64List storage = |
+ this.asFloat64List(offsetInBytes, length != null ? length * 2 : null); |
+ return new NativeFloat64x2List._externalStorage(storage); |
+ } |
+ |
+ ByteData asByteData([int offsetInBytes = 0, int length]) { |
+ return new NativeByteData.view(this, offsetInBytes, length); |
+ } |
+} |
+ |
+ |
+ |
+/** |
+ * A fixed-length list of Float32x4 numbers that is viewable as a |
+ * [TypedData]. For long lists, this implementation will be considerably more |
+ * space- and time-efficient than the default [List] implementation. |
+ */ |
+class NativeFloat32x4List |
+ extends Object with ListMixin<Float32x4>, FixedLengthListMixin<Float32x4> |
+ implements Float32x4List { |
+ |
+ final NativeFloat32List _storage; |
+ |
+ /** |
+ * Creates a [Float32x4List] of the specified length (in elements), |
+ * all of whose elements are initially zero. |
+ */ |
+ NativeFloat32x4List(int length) |
+ : _storage = new NativeFloat32List(length * 4); |
+ |
+ NativeFloat32x4List._externalStorage(this._storage); |
+ |
+ NativeFloat32x4List._slowFromList(List<Float32x4> list) |
+ : _storage = new NativeFloat32List(list.length * 4) { |
+ for (int i = 0; i < list.length; i++) { |
+ var e = list[i]; |
+ _storage[(i * 4) + 0] = e.x; |
+ _storage[(i * 4) + 1] = e.y; |
+ _storage[(i * 4) + 2] = e.z; |
+ _storage[(i * 4) + 3] = e.w; |
+ } |
+ } |
+ |
+ Type get runtimeType => Float32x4List; |
+ |
+ /** |
+ * Creates a [Float32x4List] with the same size as the [elements] list |
+ * and copies over the elements. |
+ */ |
+ factory NativeFloat32x4List.fromList(List<Float32x4> list) { |
+ if (list is NativeFloat32x4List) { |
+ return new NativeFloat32x4List._externalStorage( |
+ new NativeFloat32List.fromList(list._storage)); |
+ } else { |
+ return new NativeFloat32x4List._slowFromList(list); |
+ } |
+ } |
+ |
+ ByteBuffer get buffer => _storage.buffer; |
+ |
+ int get lengthInBytes => _storage.lengthInBytes; |
+ |
+ int get offsetInBytes => _storage.offsetInBytes; |
+ |
+ int get elementSizeInBytes => Float32x4List.BYTES_PER_ELEMENT; |
+ |
+ void _invalidIndex(int index, int length) { |
+ if (index < 0 || index >= length) { |
+ throw new RangeError.range(index, 0, length); |
+ } else { |
+ throw new ArgumentError('Invalid list index $index'); |
+ } |
+ } |
+ |
+ void _checkIndex(int index, int length) { |
+ if (JS('bool', '(# >>> 0 != #)', index, index) || index >= length) { |
+ _invalidIndex(index, length); |
+ } |
+ } |
+ |
+ int _checkSublistArguments(int start, int end, int length) { |
+ // For `sublist` the [start] and [end] indices are allowed to be equal to |
+ // [length]. However, [_checkIndex] only allows indices in the range |
+ // 0 .. length - 1. We therefore increment the [length] argument by one |
+ // for the [_checkIndex] checks. |
+ _checkIndex(start, length + 1); |
+ if (end == null) return length; |
+ _checkIndex(end, length + 1); |
+ if (start > end) throw new RangeError.range(start, 0, end); |
+ return end; |
+ } |
+ |
+ int get length => _storage.length ~/ 4; |
+ |
+ Float32x4 operator[](int index) { |
+ _checkIndex(index, length); |
+ double _x = _storage[(index * 4) + 0]; |
+ double _y = _storage[(index * 4) + 1]; |
+ double _z = _storage[(index * 4) + 2]; |
+ double _w = _storage[(index * 4) + 3]; |
+ return new Float32x4(_x, _y, _z, _w); |
+ } |
+ |
+ void operator[]=(int index, NativeFloat32x4 value) { |
+ _checkIndex(index, length); |
+ _storage[(index * 4) + 0] = value._storage[0]; |
+ _storage[(index * 4) + 1] = value._storage[1]; |
+ _storage[(index * 4) + 2] = value._storage[2]; |
+ _storage[(index * 4) + 3] = value._storage[3]; |
+ } |
+ |
+ List<Float32x4> sublist(int start, [int end]) { |
+ end = _checkSublistArguments(start, end, length); |
+ return new NativeFloat32x4List._externalStorage( |
+ _storage.sublist(start * 4, end * 4)); |
+ } |
+} |
+ |
+ |
+/** |
+ * A fixed-length list of Int32x4 numbers that is viewable as a |
+ * [TypedData]. For long lists, this implementation will be considerably more |
+ * space- and time-efficient than the default [List] implementation. |
+ */ |
+class NativeInt32x4List |
+ extends Object with ListMixin<Int32x4>, FixedLengthListMixin<Int32x4> |
+ implements Int32x4List { |
+ |
+ final Uint32List _storage; |
+ |
+ /** |
+ * Creates a [Int32x4List] of the specified length (in elements), |
+ * all of whose elements are initially zero. |
+ */ |
+ NativeInt32x4List(int length) : _storage = new NativeUint32List(length * 4); |
+ |
+ NativeInt32x4List._externalStorage(Uint32List storage) : _storage = storage; |
+ |
+ NativeInt32x4List._slowFromList(List<Int32x4> list) |
+ : _storage = new NativeUint32List(list.length * 4) { |
+ for (int i = 0; i < list.length; i++) { |
+ var e = list[i]; |
+ _storage[(i * 4) + 0] = e.x; |
+ _storage[(i * 4) + 1] = e.y; |
+ _storage[(i * 4) + 2] = e.z; |
+ _storage[(i * 4) + 3] = e.w; |
+ } |
+ } |
+ |
+ Type get runtimeType => Int32x4List; |
+ |
+ /** |
+ * Creates a [Int32x4List] with the same size as the [elements] list |
+ * and copies over the elements. |
+ */ |
+ factory NativeInt32x4List.fromList(List<Int32x4> list) { |
+ if (list is NativeInt32x4List) { |
+ return new NativeInt32x4List._externalStorage( |
+ new NativeUint32List.fromList(list._storage)); |
+ } else { |
+ return new NativeInt32x4List._slowFromList(list); |
+ } |
+ } |
+ |
+ ByteBuffer get buffer => _storage.buffer; |
+ |
+ int get lengthInBytes => _storage.lengthInBytes; |
+ |
+ int get offsetInBytes => _storage.offsetInBytes; |
+ |
+ int get elementSizeInBytes => Int32x4List.BYTES_PER_ELEMENT; |
+ |
+ void _invalidIndex(int index, int length) { |
+ if (index < 0 || index >= length) { |
+ throw new RangeError.range(index, 0, length); |
+ } else { |
+ throw new ArgumentError('Invalid list index $index'); |
+ } |
+ } |
+ |
+ void _checkIndex(int index, int length) { |
+ if (JS('bool', '(# >>> 0 != #)', index, index) |
+ || JS('bool', '# >= #', index, length)) { |
+ _invalidIndex(index, length); |
+ } |
+ } |
+ |
+ int _checkSublistArguments(int start, int end, int length) { |
+ // For `sublist` the [start] and [end] indices are allowed to be equal to |
+ // [length]. However, [_checkIndex] only allows indices in the range |
+ // 0 .. length - 1. We therefore increment the [length] argument by one |
+ // for the [_checkIndex] checks. |
+ _checkIndex(start, length + 1); |
+ if (end == null) return length; |
+ _checkIndex(end, length + 1); |
+ if (start > end) throw new RangeError.range(start, 0, end); |
+ return end; |
+ } |
+ |
+ int get length => _storage.length ~/ 4; |
+ |
+ Int32x4 operator[](int index) { |
+ _checkIndex(index, length); |
+ int _x = _storage[(index * 4) + 0]; |
+ int _y = _storage[(index * 4) + 1]; |
+ int _z = _storage[(index * 4) + 2]; |
+ int _w = _storage[(index * 4) + 3]; |
+ return new NativeInt32x4(_x, _y, _z, _w); |
+ } |
+ |
+ void operator[]=(int index, NativeInt32x4 value) { |
+ _checkIndex(index, length); |
+ _storage[(index * 4) + 0] = value._storage[0]; |
+ _storage[(index * 4) + 1] = value._storage[1]; |
+ _storage[(index * 4) + 2] = value._storage[2]; |
+ _storage[(index * 4) + 3] = value._storage[3]; |
+ } |
+ |
+ List<Int32x4> sublist(int start, [int end]) { |
+ end = _checkSublistArguments(start, end, length); |
+ return new NativeInt32x4List._externalStorage( |
+ _storage.sublist(start * 4, end * 4)); |
+ } |
+} |
+ |
+ |
+/** |
+ * A fixed-length list of Float64x2 numbers that is viewable as a |
+ * [TypedData]. For long lists, this implementation will be considerably more |
+ * space- and time-efficient than the default [List] implementation. |
+ */ |
+class NativeFloat64x2List |
+ extends Object with ListMixin<Float64x2>, FixedLengthListMixin<Float64x2> |
+ implements Float64x2List { |
+ |
+ final NativeFloat64List _storage; |
+ |
+ /** |
+ * Creates a [Float64x2List] of the specified length (in elements), |
+ * all of whose elements are initially zero. |
+ */ |
+ NativeFloat64x2List(int length) |
+ : _storage = new NativeFloat64List(length * 2); |
+ |
+ NativeFloat64x2List._externalStorage(this._storage); |
+ |
+ NativeFloat64x2List._slowFromList(List<Float64x2> list) |
+ : _storage = new NativeFloat64List(list.length * 2) { |
+ for (int i = 0; i < list.length; i++) { |
+ var e = list[i]; |
+ _storage[(i * 2) + 0] = e.x; |
+ _storage[(i * 2) + 1] = e.y; |
+ } |
+ } |
+ |
+ /** |
+ * Creates a [Float64x2List] with the same size as the [elements] list |
+ * and copies over the elements. |
+ */ |
+ factory NativeFloat64x2List.fromList(List<Float64x2> list) { |
+ if (list is NativeFloat64x2List) { |
+ return new NativeFloat64x2List._externalStorage( |
+ new NativeFloat64List.fromList(list._storage)); |
+ } else { |
+ return new NativeFloat64x2List._slowFromList(list); |
+ } |
+ } |
+ |
+ Type get runtimeType => Float64x2List; |
+ |
+ ByteBuffer get buffer => _storage.buffer; |
+ |
+ int get lengthInBytes => _storage.lengthInBytes; |
+ |
+ int get offsetInBytes => _storage.offsetInBytes; |
+ |
+ int get elementSizeInBytes => Float64x2List.BYTES_PER_ELEMENT; |
+ |
+ void _invalidIndex(int index, int length) { |
+ if (index < 0 || index >= length) { |
+ throw new RangeError.range(index, 0, length); |
+ } else { |
+ throw new ArgumentError('Invalid list index $index'); |
+ } |
+ } |
+ |
+ void _checkIndex(int index, int length) { |
+ if (JS('bool', '(# >>> 0 != #)', index, index) || index >= length) { |
+ _invalidIndex(index, length); |
+ } |
+ } |
+ |
+ int _checkSublistArguments(int start, int end, int length) { |
+ // For `sublist` the [start] and [end] indices are allowed to be equal to |
+ // [length]. However, [_checkIndex] only allows indices in the range |
+ // 0 .. length - 1. We therefore increment the [length] argument by one |
+ // for the [_checkIndex] checks. |
+ _checkIndex(start, length + 1); |
+ if (end == null) return length; |
+ _checkIndex(end, length + 1); |
+ if (start > end) throw new RangeError.range(start, 0, end); |
+ return end; |
+ } |
+ |
+ int get length => _storage.length ~/ 2; |
+ |
+ Float64x2 operator[](int index) { |
+ _checkIndex(index, length); |
+ double _x = _storage[(index * 2) + 0]; |
+ double _y = _storage[(index * 2) + 1]; |
+ return new Float64x2(_x, _y); |
+ } |
+ |
+ void operator[]=(int index, NativeFloat64x2 value) { |
+ _checkIndex(index, length); |
+ _storage[(index * 2) + 0] = value._storage[0]; |
+ _storage[(index * 2) + 1] = value._storage[1]; |
+ } |
+ |
+ List<Float64x2> sublist(int start, [int end]) { |
+ end = _checkSublistArguments(start, end, length); |
+ return new NativeFloat64x2List._externalStorage( |
+ _storage.sublist(start * 2, end * 2)); |
+ } |
+} |
+ |
+class NativeTypedData implements TypedData native "ArrayBufferView" { |
+ /** |
+ * Returns the byte buffer associated with this object. |
+ */ |
+ @Creates('NativeByteBuffer') |
+ // May be Null for IE's CanvasPixelArray. |
+ @Returns('NativeByteBuffer|Null') |
+ final ByteBuffer buffer; |
+ |
+ /** |
+ * Returns the length of this view, in bytes. |
+ */ |
+ @JSName('byteLength') |
+ final int lengthInBytes; |
+ |
+ /** |
+ * Returns the offset in bytes into the underlying byte buffer of this view. |
+ */ |
+ @JSName('byteOffset') |
+ final int offsetInBytes; |
+ |
+ /** |
+ * Returns the number of bytes in the representation of each element in this |
+ * list. |
+ */ |
+ @JSName('BYTES_PER_ELEMENT') |
+ final int elementSizeInBytes; |
+ |
+ void _invalidIndex(int index, int length) { |
+ if (index < 0 || index >= length) { |
+ throw new RangeError.range(index, 0, length); |
+ } else { |
+ throw new ArgumentError('Invalid list index $index'); |
+ } |
+ } |
+ |
+ void _checkIndex(int index, int length) { |
+ if (JS('bool', '(# >>> 0) !== #', index, index) || |
+ JS('int', '#', index) >= length) { // 'int' guaranteed by above test. |
+ _invalidIndex(index, length); |
+ } |
+ } |
+ |
+ int _checkSublistArguments(int start, int end, int length) { |
+ // For `sublist` the [start] and [end] indices are allowed to be equal to |
+ // [length]. However, [_checkIndex] only allows indices in the range |
+ // 0 .. length - 1. We therefore increment the [length] argument by one |
+ // for the [_checkIndex] checks. |
+ _checkIndex(start, length + 1); |
+ if (end == null) return length; |
+ _checkIndex(end, length + 1); |
+ if (start > end) throw new RangeError.range(start, 0, end); |
+ return end; |
+ } |
+} |
+ |
+ |
+// Validates the unnamed constructor length argument. Checking is necessary |
+// because passing unvalidated values to the native constructors can cause |
+// conversions or create views. |
+int _checkLength(length) { |
+ if (length is! int) throw new ArgumentError('Invalid length $length'); |
+ return length; |
+} |
+ |
+// Validates `.view` constructor arguments. Checking is necessary because |
+// passing unvalidated values to the native constructors can cause conversions |
+// (e.g. String arguments) or create typed data objects that are not actually |
+// views of the input. |
+void _checkViewArguments(buffer, offsetInBytes, length) { |
+ if (buffer is! NativeByteBuffer) { |
+ throw new ArgumentError('Invalid view buffer'); |
+ } |
+ if (offsetInBytes is! int) { |
+ throw new ArgumentError('Invalid view offsetInBytes $offsetInBytes'); |
+ } |
+ if (length != null && length is! int) { |
+ throw new ArgumentError('Invalid view length $length'); |
+ } |
+} |
+ |
+// Ensures that [list] is a JavaScript Array or a typed array. If necessary, |
+// returns a copy of the list. |
+List _ensureNativeList(List list) { |
+ if (list is JSIndexable) return list; |
+ List result = new List(list.length); |
+ for (int i = 0; i < list.length; i++) { |
+ result[i] = list[i]; |
+ } |
+ return result; |
+} |
+ |
+ |
+class NativeByteData extends NativeTypedData implements ByteData |
+ native "DataView" { |
+ /** |
+ * Creates a [ByteData] of the specified length (in elements), all of |
+ * whose elements are initially zero. |
+ */ |
+ factory NativeByteData(int length) => _create1(_checkLength(length)); |
+ |
+ /** |
+ * Creates an [ByteData] _view_ of the specified region in the specified |
+ * byte buffer. Changes in the [ByteData] will be visible in the byte |
+ * buffer and vice versa. If the [offsetInBytes] index of the region is not |
+ * specified, it defaults to zero (the first byte in the byte buffer). |
+ * If the length is not specified, it defaults to null, which indicates |
+ * that the view extends to the end of the byte buffer. |
+ * |
+ * Throws [RangeError] if [offsetInBytes] or [length] are negative, or |
+ * if [offsetInBytes] + ([length] * elementSizeInBytes) is greater than |
+ * the length of [buffer]. |
+ */ |
+ factory NativeByteData.view(ByteBuffer buffer, |
+ int offsetInBytes, int length) { |
+ _checkViewArguments(buffer, offsetInBytes, length); |
+ return length == null |
+ ? _create2(buffer, offsetInBytes) |
+ : _create3(buffer, offsetInBytes, length); |
+ } |
+ |
+ Type get runtimeType => ByteData; |
+ |
+ int get elementSizeInBytes => 1; |
+ |
+ /** |
+ * Returns the floating point number represented by the four bytes at |
+ * the specified [byteOffset] in this object, in IEEE 754 |
+ * single-precision binary floating-point format (binary32). |
+ * |
+ * Throws [RangeError] if [byteOffset] is negative, or |
+ * `byteOffset + 4` is greater than the length of this object. |
+ */ |
+ num getFloat32(int byteOffset, [Endianness endian=Endianness.BIG_ENDIAN]) => |
+ _getFloat32(byteOffset, Endianness.LITTLE_ENDIAN == endian); |
+ |
+ @JSName('getFloat32') |
+ @Returns('num') |
+ num _getFloat32(int byteOffset, [bool littleEndian]) native; |
+ |
+ /** |
+ * Returns the floating point number represented by the eight bytes at |
+ * the specified [byteOffset] in this object, in IEEE 754 |
+ * double-precision binary floating-point format (binary64). |
+ * |
+ * Throws [RangeError] if [byteOffset] is negative, or |
+ * `byteOffset + 8` is greater than the length of this object. |
+ */ |
+ num getFloat64(int byteOffset, [Endianness endian=Endianness.BIG_ENDIAN]) => |
+ _getFloat64(byteOffset, Endianness.LITTLE_ENDIAN == endian); |
+ |
+ @JSName('getFloat64') |
+ @Returns('num') |
+ num _getFloat64(int byteOffset, [bool littleEndian]) native; |
+ |
+ /** |
+ * Returns the (possibly negative) integer represented by the two bytes at |
+ * the specified [byteOffset] in this object, in two's complement binary |
+ * form. |
+ * The return value will be between 2<sup>15</sup> and 2<sup>15</sup> - 1, |
+ * inclusive. |
+ * |
+ * Throws [RangeError] if [byteOffset] is negative, or |
+ * `byteOffset + 2` is greater than the length of this object. |
+ */ |
+ int getInt16(int byteOffset, [Endianness endian=Endianness.BIG_ENDIAN]) => |
+ _getInt16(byteOffset, Endianness.LITTLE_ENDIAN == endian); |
+ |
+ @JSName('getInt16') |
+ @Returns('int') |
+ int _getInt16(int byteOffset, [bool littleEndian]) native; |
+ |
+ /** |
+ * Returns the (possibly negative) integer represented by the four bytes at |
+ * the specified [byteOffset] in this object, in two's complement binary |
+ * form. |
+ * The return value will be between 2<sup>31</sup> and 2<sup>31</sup> - 1, |
+ * inclusive. |
+ * |
+ * Throws [RangeError] if [byteOffset] is negative, or |
+ * `byteOffset + 4` is greater than the length of this object. |
+ */ |
+ int getInt32(int byteOffset, [Endianness endian=Endianness.BIG_ENDIAN]) => |
+ _getInt32(byteOffset, Endianness.LITTLE_ENDIAN == endian); |
+ |
+ @JSName('getInt32') |
+ @Returns('int') |
+ int _getInt32(int byteOffset, [bool littleEndian]) native; |
+ |
+ /** |
+ * Returns the (possibly negative) integer represented by the eight bytes at |
+ * the specified [byteOffset] in this object, in two's complement binary |
+ * form. |
+ * The return value will be between 2<sup>63</sup> and 2<sup>63</sup> - 1, |
+ * inclusive. |
+ * |
+ * Throws [RangeError] if [byteOffset] is negative, or |
+ * `byteOffset + 8` is greater than the length of this object. |
+ */ |
+ int getInt64(int byteOffset, [Endianness endian=Endianness.BIG_ENDIAN]) { |
+ throw new UnsupportedError('Int64 accessor not supported by dart2js.'); |
+ } |
+ |
+ /** |
+ * Returns the (possibly negative) integer represented by the byte at the |
+ * specified [byteOffset] in this object, in two's complement binary |
+ * representation. The return value will be between -128 and 127, inclusive. |
+ * |
+ * Throws [RangeError] if [byteOffset] is negative, or |
+ * greater than or equal to the length of this object. |
+ */ |
+ int getInt8(int byteOffset) native; |
+ |
+ /** |
+ * Returns the positive integer represented by the two bytes starting |
+ * at the specified [byteOffset] in this object, in unsigned binary |
+ * form. |
+ * The return value will be between 0 and 2<sup>16</sup> - 1, inclusive. |
+ * |
+ * Throws [RangeError] if [byteOffset] is negative, or |
+ * `byteOffset + 2` is greater than the length of this object. |
+ */ |
+ int getUint16(int byteOffset, [Endianness endian=Endianness.BIG_ENDIAN]) => |
+ _getUint16(byteOffset, Endianness.LITTLE_ENDIAN == endian); |
+ |
+ @JSName('getUint16') |
+ @Returns('JSUInt31') |
+ int _getUint16(int byteOffset, [bool littleEndian]) native; |
+ |
+ /** |
+ * Returns the positive integer represented by the four bytes starting |
+ * at the specified [byteOffset] in this object, in unsigned binary |
+ * form. |
+ * The return value will be between 0 and 2<sup>32</sup> - 1, inclusive. |
+ * |
+ * Throws [RangeError] if [byteOffset] is negative, or |
+ * `byteOffset + 4` is greater than the length of this object. |
+ */ |
+ int getUint32(int byteOffset, [Endianness endian=Endianness.BIG_ENDIAN]) => |
+ _getUint32(byteOffset, Endianness.LITTLE_ENDIAN == endian); |
+ |
+ @JSName('getUint32') |
+ @Returns('JSUInt32') |
+ int _getUint32(int byteOffset, [bool littleEndian]) native; |
+ |
+ /** |
+ * Returns the positive integer represented by the eight bytes starting |
+ * at the specified [byteOffset] in this object, in unsigned binary |
+ * form. |
+ * The return value will be between 0 and 2<sup>64</sup> - 1, inclusive. |
+ * |
+ * Throws [RangeError] if [byteOffset] is negative, or |
+ * `byteOffset + 8` is greater than the length of this object. |
+ */ |
+ int getUint64(int byteOffset, [Endianness endian=Endianness.BIG_ENDIAN]) { |
+ throw new UnsupportedError('Uint64 accessor not supported by dart2js.'); |
+ } |
+ |
+ /** |
+ * Returns the positive integer represented by the byte at the specified |
+ * [byteOffset] in this object, in unsigned binary form. The |
+ * return value will be between 0 and 255, inclusive. |
+ * |
+ * Throws [RangeError] if [byteOffset] is negative, or |
+ * greater than or equal to the length of this object. |
+ */ |
+ int getUint8(int byteOffset) native; |
+ |
+ /** |
+ * Sets the four bytes starting at the specified [byteOffset] in this |
+ * object to the IEEE 754 single-precision binary floating-point |
+ * (binary32) representation of the specified [value]. |
+ * |
+ * **Note that this method can lose precision.** The input [value] is |
+ * a 64-bit floating point value, which will be converted to 32-bit |
+ * floating point value by IEEE 754 rounding rules before it is stored. |
+ * If [value] cannot be represented exactly as a binary32, it will be |
+ * converted to the nearest binary32 value. If two binary32 values are |
+ * equally close, the one whose least significant bit is zero will be used. |
+ * Note that finite (but large) values can be converted to infinity, and |
+ * small non-zero values can be converted to zero. |
+ * |
+ * Throws [RangeError] if [byteOffset] is negative, or |
+ * `byteOffset + 4` is greater than the length of this object. |
+ */ |
+ void setFloat32(int byteOffset, num value, |
+ [Endianness endian=Endianness.BIG_ENDIAN]) => |
+ _setFloat32(byteOffset, value, Endianness.LITTLE_ENDIAN == endian); |
+ |
+ @JSName('setFloat32') |
+ void _setFloat32(int byteOffset, num value, [bool littleEndian]) native; |
+ |
+ /** |
+ * Sets the eight bytes starting at the specified [byteOffset] in this |
+ * object to the IEEE 754 double-precision binary floating-point |
+ * (binary64) representation of the specified [value]. |
+ * |
+ * Throws [RangeError] if [byteOffset] is negative, or |
+ * `byteOffset + 8` is greater than the length of this object. |
+ */ |
+ void setFloat64(int byteOffset, num value, |
+ [Endianness endian=Endianness.BIG_ENDIAN]) => |
+ _setFloat64(byteOffset, value, Endianness.LITTLE_ENDIAN == endian); |
+ |
+ @JSName('setFloat64') |
+ void _setFloat64(int byteOffset, num value, [bool littleEndian]) native; |
+ |
+ /** |
+ * Sets the two bytes starting at the specified [byteOffset] in this |
+ * object to the two's complement binary representation of the specified |
+ * [value], which must fit in two bytes. In other words, [value] must lie |
+ * between 2<sup>15</sup> and 2<sup>15</sup> - 1, inclusive. |
+ * |
+ * Throws [RangeError] if [byteOffset] is negative, or |
+ * `byteOffset + 2` is greater than the length of this object. |
+ */ |
+ void setInt16(int byteOffset, int value, |
+ [Endianness endian=Endianness.BIG_ENDIAN]) => |
+ _setInt16(byteOffset, value, Endianness.LITTLE_ENDIAN == endian); |
+ |
+ @JSName('setInt16') |
+ void _setInt16(int byteOffset, int value, [bool littleEndian]) native; |
+ |
+ /** |
+ * Sets the four bytes starting at the specified [byteOffset] in this |
+ * object to the two's complement binary representation of the specified |
+ * [value], which must fit in four bytes. In other words, [value] must lie |
+ * between 2<sup>31</sup> and 2<sup>31</sup> - 1, inclusive. |
+ * |
+ * Throws [RangeError] if [byteOffset] is negative, or |
+ * `byteOffset + 4` is greater than the length of this object. |
+ */ |
+ void setInt32(int byteOffset, int value, |
+ [Endianness endian=Endianness.BIG_ENDIAN]) => |
+ _setInt32(byteOffset, value, Endianness.LITTLE_ENDIAN == endian); |
+ |
+ @JSName('setInt32') |
+ void _setInt32(int byteOffset, int value, [bool littleEndian]) native; |
+ |
+ /** |
+ * Sets the eight bytes starting at the specified [byteOffset] in this |
+ * object to the two's complement binary representation of the specified |
+ * [value], which must fit in eight bytes. In other words, [value] must lie |
+ * between 2<sup>63</sup> and 2<sup>63</sup> - 1, inclusive. |
+ * |
+ * Throws [RangeError] if [byteOffset] is negative, or |
+ * `byteOffset + 8` is greater than the length of this object. |
+ */ |
+ void setInt64(int byteOffset, int value, |
+ [Endianness endian=Endianness.BIG_ENDIAN]) { |
+ throw new UnsupportedError('Int64 accessor not supported by dart2js.'); |
+ } |
+ |
+ /** |
+ * Sets the byte at the specified [byteOffset] in this object to the |
+ * two's complement binary representation of the specified [value], which |
+ * must fit in a single byte. In other words, [value] must be between |
+ * -128 and 127, inclusive. |
+ * |
+ * Throws [RangeError] if [byteOffset] is negative, or |
+ * greater than or equal to the length of this object. |
+ */ |
+ void setInt8(int byteOffset, int value) native; |
+ |
+ /** |
+ * Sets the two bytes starting at the specified [byteOffset] in this object |
+ * to the unsigned binary representation of the specified [value], |
+ * which must fit in two bytes. in other words, [value] must be between |
+ * 0 and 2<sup>16</sup> - 1, inclusive. |
+ * |
+ * Throws [RangeError] if [byteOffset] is negative, or |
+ * `byteOffset + 2` is greater than the length of this object. |
+ */ |
+ void setUint16(int byteOffset, int value, |
+ [Endianness endian=Endianness.BIG_ENDIAN]) => |
+ _setUint16(byteOffset, value, Endianness.LITTLE_ENDIAN == endian); |
+ |
+ @JSName('setUint16') |
+ void _setUint16(int byteOffset, int value, [bool littleEndian]) native; |
+ |
+ /** |
+ * Sets the four bytes starting at the specified [byteOffset] in this object |
+ * to the unsigned binary representation of the specified [value], |
+ * which must fit in four bytes. in other words, [value] must be between |
+ * 0 and 2<sup>32</sup> - 1, inclusive. |
+ * |
+ * Throws [RangeError] if [byteOffset] is negative, or |
+ * `byteOffset + 4` is greater than the length of this object. |
+ */ |
+ void setUint32(int byteOffset, int value, |
+ [Endianness endian=Endianness.BIG_ENDIAN]) => |
+ _setUint32(byteOffset, value, Endianness.LITTLE_ENDIAN == endian); |
+ |
+ @JSName('setUint32') |
+ void _setUint32(int byteOffset, int value, [bool littleEndian]) native; |
+ |
+ /** |
+ * Sets the eight bytes starting at the specified [byteOffset] in this object |
+ * to the unsigned binary representation of the specified [value], |
+ * which must fit in eight bytes. in other words, [value] must be between |
+ * 0 and 2<sup>64</sup> - 1, inclusive. |
+ * |
+ * Throws [RangeError] if [byteOffset] is negative, or |
+ * `byteOffset + 8` is greater than the length of this object. |
+ */ |
+ void setUint64(int byteOffset, int value, |
+ [Endianness endian=Endianness.BIG_ENDIAN]) { |
+ throw new UnsupportedError('Uint64 accessor not supported by dart2js.'); |
+ } |
+ |
+ /** |
+ * Sets the byte at the specified [byteOffset] in this object to the |
+ * unsigned binary representation of the specified [value], which must fit |
+ * in a single byte. in other words, [value] must be between 0 and 255, |
+ * inclusive. |
+ * |
+ * Throws [RangeError] if [byteOffset] is negative, |
+ * or greater than or equal to the length of this object. |
+ */ |
+ void setUint8(int byteOffset, int value) native; |
+ |
+ static NativeByteData _create1(arg) => |
+ JS('NativeByteData', 'new DataView(new ArrayBuffer(#))', arg); |
+ |
+ static NativeByteData _create2(arg1, arg2) => |
+ JS('NativeByteData', 'new DataView(#, #)', arg1, arg2); |
+ |
+ static NativeByteData _create3(arg1, arg2, arg3) => |
+ JS('NativeByteData', 'new DataView(#, #, #)', arg1, arg2, arg3); |
+} |
+ |
+ |
+abstract class NativeTypedArray extends NativeTypedData |
+ implements JavaScriptIndexingBehavior { |
+ int get length => JS('JSUInt32', '#.length', this); |
+ |
+ bool _setRangeFast(int start, int end, |
+ NativeTypedArray source, int skipCount) { |
+ int targetLength = this.length; |
+ _checkIndex(start, targetLength + 1); |
+ _checkIndex(end, targetLength + 1); |
+ if (start > end) throw new RangeError.range(start, 0, end); |
+ int count = end - start; |
+ |
+ if (skipCount < 0) throw new ArgumentError(skipCount); |
+ |
+ int sourceLength = source.length; |
+ if (sourceLength - skipCount < count) { |
+ throw new StateError('Not enough elements'); |
+ } |
+ |
+ if (skipCount != 0 || sourceLength != count) { |
+ // Create a view of the exact subrange that is copied from the source. |
+ source = JS('', '#.subarray(#, #)', |
+ source, skipCount, skipCount + count); |
+ } |
+ JS('void', '#.set(#, #)', this, source, start); |
+ } |
+} |
+ |
+abstract class NativeTypedArrayOfDouble |
+ extends NativeTypedArray |
+ with ListMixin<double>, FixedLengthListMixin<double> { |
+ |
+ num operator[](int index) { |
+ _checkIndex(index, length); |
+ return JS('num', '#[#]', this, index); |
+ } |
+ |
+ void operator[]=(int index, num value) { |
+ _checkIndex(index, length); |
+ JS('void', '#[#] = #', this, index, value); |
+ } |
+ |
+ void setRange(int start, int end, Iterable<double> iterable, |
+ [int skipCount = 0]) { |
+ if (iterable is NativeTypedArrayOfDouble) { |
+ _setRangeFast(start, end, iterable, skipCount); |
+ return; |
+ } |
+ super.setRange(start, end, iterable, skipCount); |
+ } |
+} |
+ |
+abstract class NativeTypedArrayOfInt |
+ extends NativeTypedArray |
+ with ListMixin<int>, FixedLengthListMixin<int> |
+ implements List<int> { |
+ |
+ // operator[]() is not here since different versions have different return |
+ // types |
+ |
+ void operator[]=(int index, int value) { |
+ _checkIndex(index, length); |
+ JS('void', '#[#] = #', this, index, value); |
+ } |
+ |
+ void setRange(int start, int end, Iterable<int> iterable, |
+ [int skipCount = 0]) { |
+ if (iterable is NativeTypedArrayOfInt) { |
+ _setRangeFast(start, end, iterable, skipCount); |
+ return; |
+ } |
+ super.setRange(start, end, iterable, skipCount); |
+ } |
+} |
+ |
+ |
+class NativeFloat32List |
+ extends NativeTypedArrayOfDouble |
+ implements Float32List |
+ native "Float32Array" { |
+ |
+ factory NativeFloat32List(int length) => _create1(_checkLength(length)); |
+ |
+ factory NativeFloat32List.fromList(List<double> elements) => |
+ _create1(_ensureNativeList(elements)); |
+ |
+ factory NativeFloat32List.view(ByteBuffer buffer, |
+ int offsetInBytes, int length) { |
+ _checkViewArguments(buffer, offsetInBytes, length); |
+ return length == null |
+ ? _create2(buffer, offsetInBytes) |
+ : _create3(buffer, offsetInBytes, length); |
+ } |
+ |
+ Type get runtimeType => Float32List; |
+ |
+ List<double> sublist(int start, [int end]) { |
+ end = _checkSublistArguments(start, end, length); |
+ var source = JS('NativeFloat32List', '#.subarray(#, #)', this, start, end); |
+ return _create1(source); |
+ } |
+ |
+ static NativeFloat32List _create1(arg) => |
+ JS('NativeFloat32List', 'new Float32Array(#)', arg); |
+ |
+ static NativeFloat32List _create2(arg1, arg2) => |
+ JS('NativeFloat32List', 'new Float32Array(#, #)', arg1, arg2); |
+ |
+ static NativeFloat32List _create3(arg1, arg2, arg3) => |
+ JS('NativeFloat32List', 'new Float32Array(#, #, #)', arg1, arg2, arg3); |
+} |
+ |
+ |
+class NativeFloat64List |
+ extends NativeTypedArrayOfDouble |
+ implements Float64List |
+ native "Float64Array" { |
+ |
+ factory NativeFloat64List(int length) => _create1(_checkLength(length)); |
+ |
+ factory NativeFloat64List.fromList(List<double> elements) => |
+ _create1(_ensureNativeList(elements)); |
+ |
+ factory NativeFloat64List.view(ByteBuffer buffer, |
+ int offsetInBytes, int length) { |
+ _checkViewArguments(buffer, offsetInBytes, length); |
+ return length == null |
+ ? _create2(buffer, offsetInBytes) |
+ : _create3(buffer, offsetInBytes, length); |
+ } |
+ |
+ Type get runtimeType => Float64List; |
+ |
+ List<double> sublist(int start, [int end]) { |
+ end = _checkSublistArguments(start, end, length); |
+ var source = JS('NativeFloat64List', '#.subarray(#, #)', this, start, end); |
+ return _create1(source); |
+ } |
+ |
+ static NativeFloat64List _create1(arg) => |
+ JS('NativeFloat64List', 'new Float64Array(#)', arg); |
+ |
+ static NativeFloat64List _create2(arg1, arg2) => |
+ JS('NativeFloat64List', 'new Float64Array(#, #)', arg1, arg2); |
+ |
+ static NativeFloat64List _create3(arg1, arg2, arg3) => |
+ JS('NativeFloat64List', 'new Float64Array(#, #, #)', arg1, arg2, arg3); |
+} |
+ |
+ |
+class NativeInt16List |
+ extends NativeTypedArrayOfInt |
+ implements Int16List |
+ native "Int16Array" { |
+ |
+ factory NativeInt16List(int length) => _create1(_checkLength(length)); |
+ |
+ factory NativeInt16List.fromList(List<int> elements) => |
+ _create1(_ensureNativeList(elements)); |
+ |
+ factory NativeInt16List.view(NativeByteBuffer buffer, |
+ int offsetInBytes, int length) { |
+ _checkViewArguments(buffer, offsetInBytes, length); |
+ return length == null |
+ ? _create2(buffer, offsetInBytes) |
+ : _create3(buffer, offsetInBytes, length); |
+ } |
+ |
+ Type get runtimeType => Int16List; |
+ |
+ int operator[](int index) { |
+ _checkIndex(index, length); |
+ return JS('int', '#[#]', this, index); |
+ } |
+ |
+ List<int> sublist(int start, [int end]) { |
+ end = _checkSublistArguments(start, end, length); |
+ var source = JS('NativeInt16List', '#.subarray(#, #)', this, start, end); |
+ return _create1(source); |
+ } |
+ |
+ static NativeInt16List _create1(arg) => |
+ JS('NativeInt16List', 'new Int16Array(#)', arg); |
+ |
+ static NativeInt16List _create2(arg1, arg2) => |
+ JS('NativeInt16List', 'new Int16Array(#, #)', arg1, arg2); |
+ |
+ static NativeInt16List _create3(arg1, arg2, arg3) => |
+ JS('NativeInt16List', 'new Int16Array(#, #, #)', arg1, arg2, arg3); |
+} |
+ |
+ |
+class NativeInt32List |
+ extends NativeTypedArrayOfInt |
+ implements Int32List |
+ native "Int32Array" { |
+ |
+ factory NativeInt32List(int length) => _create1(_checkLength(length)); |
+ |
+ factory NativeInt32List.fromList(List<int> elements) => |
+ _create1(_ensureNativeList(elements)); |
+ |
+ factory NativeInt32List.view(ByteBuffer buffer, |
+ int offsetInBytes, int length) { |
+ _checkViewArguments(buffer, offsetInBytes, length); |
+ return length == null |
+ ? _create2(buffer, offsetInBytes) |
+ : _create3(buffer, offsetInBytes, length); |
+ } |
+ |
+ Type get runtimeType => Int32List; |
+ |
+ int operator[](int index) { |
+ _checkIndex(index, length); |
+ return JS('int', '#[#]', this, index); |
+ } |
+ |
+ List<int> sublist(int start, [int end]) { |
+ end = _checkSublistArguments(start, end, length); |
+ var source = JS('NativeInt32List', '#.subarray(#, #)', this, start, end); |
+ return _create1(source); |
+ } |
+ |
+ static NativeInt32List _create1(arg) => |
+ JS('NativeInt32List', 'new Int32Array(#)', arg); |
+ |
+ static NativeInt32List _create2(arg1, arg2) => |
+ JS('NativeInt32List', 'new Int32Array(#, #)', arg1, arg2); |
+ |
+ static NativeInt32List _create3(arg1, arg2, arg3) => |
+ JS('NativeInt32List', 'new Int32Array(#, #, #)', arg1, arg2, arg3); |
+} |
+ |
+ |
+class NativeInt8List |
+ extends NativeTypedArrayOfInt |
+ implements Int8List |
+ native "Int8Array" { |
+ |
+ factory NativeInt8List(int length) => _create1(_checkLength(length)); |
+ |
+ factory NativeInt8List.fromList(List<int> elements) => |
+ _create1(_ensureNativeList(elements)); |
+ |
+ factory NativeInt8List.view(ByteBuffer buffer, |
+ int offsetInBytes, int length) { |
+ _checkViewArguments(buffer, offsetInBytes, length); |
+ return length == null |
+ ? _create2(buffer, offsetInBytes) |
+ : _create3(buffer, offsetInBytes, length); |
+ } |
+ |
+ Type get runtimeType => Int8List; |
+ |
+ int operator[](int index) { |
+ _checkIndex(index, length); |
+ return JS('int', '#[#]', this, index); |
+ } |
+ |
+ List<int> sublist(int start, [int end]) { |
+ end = _checkSublistArguments(start, end, length); |
+ var source = JS('NativeInt8List', '#.subarray(#, #)', this, start, end); |
+ return _create1(source); |
+ } |
+ |
+ static NativeInt8List _create1(arg) => |
+ JS('NativeInt8List', 'new Int8Array(#)', arg); |
+ |
+ static NativeInt8List _create2(arg1, arg2) => |
+ JS('NativeInt8List', 'new Int8Array(#, #)', arg1, arg2); |
+ |
+ static Int8List _create3(arg1, arg2, arg3) => |
+ JS('NativeInt8List', 'new Int8Array(#, #, #)', arg1, arg2, arg3); |
+} |
+ |
+ |
+class NativeUint16List |
+ extends NativeTypedArrayOfInt |
+ implements Uint16List |
+ native "Uint16Array" { |
+ |
+ factory NativeUint16List(int length) => _create1(_checkLength(length)); |
+ |
+ factory NativeUint16List.fromList(List<int> list) => |
+ _create1(_ensureNativeList(list)); |
+ |
+ factory NativeUint16List.view(ByteBuffer buffer, |
+ int offsetInBytes, int length) { |
+ _checkViewArguments(buffer, offsetInBytes, length); |
+ return length == null |
+ ? _create2(buffer, offsetInBytes) |
+ : _create3(buffer, offsetInBytes, length); |
+ } |
+ |
+ Type get runtimeType => Uint16List; |
+ |
+ int operator[](int index) { |
+ _checkIndex(index, length); |
+ return JS('JSUInt31', '#[#]', this, index); |
+ } |
+ |
+ List<int> sublist(int start, [int end]) { |
+ end = _checkSublistArguments(start, end, length); |
+ var source = JS('NativeUint16List', '#.subarray(#, #)', this, start, end); |
+ return _create1(source); |
+ } |
+ |
+ static NativeUint16List _create1(arg) => |
+ JS('NativeUint16List', 'new Uint16Array(#)', arg); |
+ |
+ static NativeUint16List _create2(arg1, arg2) => |
+ JS('NativeUint16List', 'new Uint16Array(#, #)', arg1, arg2); |
+ |
+ static NativeUint16List _create3(arg1, arg2, arg3) => |
+ JS('NativeUint16List', 'new Uint16Array(#, #, #)', arg1, arg2, arg3); |
+} |
+ |
+ |
+class NativeUint32List |
+ extends NativeTypedArrayOfInt |
+ implements Uint32List |
+ native "Uint32Array" { |
+ |
+ factory NativeUint32List(int length) => _create1(_checkLength(length)); |
+ |
+ factory NativeUint32List.fromList(List<int> elements) => |
+ _create1(_ensureNativeList(elements)); |
+ |
+ factory NativeUint32List.view(ByteBuffer buffer, |
+ int offsetInBytes, int length) { |
+ _checkViewArguments(buffer, offsetInBytes, length); |
+ return length == null |
+ ? _create2(buffer, offsetInBytes) |
+ : _create3(buffer, offsetInBytes, length); |
+ } |
+ |
+ Type get runtimeType => Uint32List; |
+ |
+ int operator[](int index) { |
+ _checkIndex(index, length); |
+ return JS('JSUInt32', '#[#]', this, index); |
+ } |
+ |
+ List<int> sublist(int start, [int end]) { |
+ end = _checkSublistArguments(start, end, length); |
+ var source = JS('NativeUint32List', '#.subarray(#, #)', this, start, end); |
+ return _create1(source); |
+ } |
+ |
+ static NativeUint32List _create1(arg) => |
+ JS('NativeUint32List', 'new Uint32Array(#)', arg); |
+ |
+ static NativeUint32List _create2(arg1, arg2) => |
+ JS('NativeUint32List', 'new Uint32Array(#, #)', arg1, arg2); |
+ |
+ static NativeUint32List _create3(arg1, arg2, arg3) => |
+ JS('NativeUint32List', 'new Uint32Array(#, #, #)', arg1, arg2, arg3); |
+} |
+ |
+ |
+class NativeUint8ClampedList |
+ extends NativeTypedArrayOfInt |
+ implements Uint8ClampedList |
+ native "Uint8ClampedArray,CanvasPixelArray" { |
+ |
+ factory NativeUint8ClampedList(int length) => _create1(_checkLength(length)); |
+ |
+ factory NativeUint8ClampedList.fromList(List<int> elements) => |
+ _create1(_ensureNativeList(elements)); |
+ |
+ factory NativeUint8ClampedList.view(ByteBuffer buffer, |
+ int offsetInBytes, int length) { |
+ _checkViewArguments(buffer, offsetInBytes, length); |
+ return length == null |
+ ? _create2(buffer, offsetInBytes) |
+ : _create3(buffer, offsetInBytes, length); |
+ } |
+ |
+ Type get runtimeType => Uint8ClampedList; |
+ |
+ int get length => JS('JSUInt32', '#.length', this); |
+ |
+ int operator[](int index) { |
+ _checkIndex(index, length); |
+ return JS('JSUInt31', '#[#]', this, index); |
+ } |
+ |
+ List<int> sublist(int start, [int end]) { |
+ end = _checkSublistArguments(start, end, length); |
+ var source = JS('NativeUint8ClampedList', '#.subarray(#, #)', |
+ this, start, end); |
+ return _create1(source); |
+ } |
+ |
+ static NativeUint8ClampedList _create1(arg) => |
+ JS('NativeUint8ClampedList', 'new Uint8ClampedArray(#)', arg); |
+ |
+ static NativeUint8ClampedList _create2(arg1, arg2) => |
+ JS('NativeUint8ClampedList', 'new Uint8ClampedArray(#, #)', arg1, arg2); |
+ |
+ static NativeUint8ClampedList _create3(arg1, arg2, arg3) => |
+ JS('NativeUint8ClampedList', 'new Uint8ClampedArray(#, #, #)', |
+ arg1, arg2, arg3); |
+} |
+ |
+ |
+class NativeUint8List |
+ extends NativeTypedArrayOfInt |
+ implements Uint8List |
+ // On some browsers Uint8ClampedArray is a subtype of Uint8Array. Marking |
+ // Uint8List as !nonleaf ensures that the native dispatch correctly handles |
+ // the potential for Uint8ClampedArray to 'accidentally' pick up the |
+ // dispatch record for Uint8List. |
+ native "Uint8Array,!nonleaf" { |
+ |
+ factory NativeUint8List(int length) => _create1(_checkLength(length)); |
+ |
+ factory NativeUint8List.fromList(List<int> elements) => |
+ _create1(_ensureNativeList(elements)); |
+ |
+ factory NativeUint8List.view(ByteBuffer buffer, |
+ int offsetInBytes, int length) { |
+ _checkViewArguments(buffer, offsetInBytes, length); |
+ return length == null |
+ ? _create2(buffer, offsetInBytes) |
+ : _create3(buffer, offsetInBytes, length); |
+ } |
+ |
+ Type get runtimeType => Uint8List; |
+ |
+ int get length => JS('JSUInt32', '#.length', this); |
+ |
+ int operator[](int index) { |
+ _checkIndex(index, length); |
+ return JS('JSUInt31', '#[#]', this, index); |
+ } |
+ |
+ List<int> sublist(int start, [int end]) { |
+ end = _checkSublistArguments(start, end, length); |
+ var source = JS('NativeUint8List', '#.subarray(#, #)', this, start, end); |
+ return _create1(source); |
+ } |
+ |
+ static NativeUint8List _create1(arg) => |
+ JS('NativeUint8List', 'new Uint8Array(#)', arg); |
+ |
+ static NativeUint8List _create2(arg1, arg2) => |
+ JS('NativeUint8List', 'new Uint8Array(#, #)', arg1, arg2); |
+ |
+ static NativeUint8List _create3(arg1, arg2, arg3) => |
+ JS('NativeUint8List', 'new Uint8Array(#, #, #)', arg1, arg2, arg3); |
+} |
+ |
+ |
+/** |
+ * Implementation of Dart Float32x4 immutable value type and operations. |
+ * Float32x4 stores 4 32-bit floating point values in "lanes". |
+ * The lanes are "x", "y", "z", and "w" respectively. |
+ */ |
+class NativeFloat32x4 implements Float32x4 { |
+ final _storage = new Float32List(4); |
+ |
+ NativeFloat32x4(double x, double y, double z, double w) { |
+ _storage[0] = x; |
+ _storage[1] = y; |
+ _storage[2] = z; |
+ _storage[3] = w; |
+ } |
+ |
+ NativeFloat32x4.splat(double v) { |
+ _storage[0] = v; |
+ _storage[1] = v; |
+ _storage[2] = v; |
+ _storage[3] = v; |
+ } |
+ |
+ NativeFloat32x4.zero(); |
+ /// Returns a bit-wise copy of [x] as a Float32x4. |
+ |
+ NativeFloat32x4.fromInt32x4Bits(NativeInt32x4 x) { |
Lasse Reichstein Nielsen
2014/07/03 12:32:12
It looks wrong (heck, it is wrong) to expect a Nat
|
+ var view = x._storage.buffer.asFloat32List(); |
+ _storage[0] = view[0]; |
+ _storage[1] = view[1]; |
+ _storage[2] = view[2]; |
+ _storage[3] = view[3]; |
+ } |
+ |
+ NativeFloat32x4.fromFloat64x2(NativeFloat64x2 v) { |
+ _storage[0] = v._storage[0]; |
+ _storage[1] = v._storage[1]; |
+ } |
+ |
+ String toString() { |
+ return '[${_storage[0]}, ${_storage[1]}, ${_storage[2]}, ${_storage[3]}]'; |
+ } |
+ |
+ /// Addition operator. |
+ Float32x4 operator+(NativeFloat32x4 other) { |
+ double _x = _storage[0] + other._storage[0]; |
+ double _y = _storage[1] + other._storage[1]; |
+ double _z = _storage[2] + other._storage[2]; |
+ double _w = _storage[3] + other._storage[3]; |
+ return new NativeFloat32x4(_x, _y, _z, _w); |
+ } |
+ |
+ /// Negate operator. |
+ Float32x4 operator-() { |
+ double _x = -_storage[0]; |
+ double _y = -_storage[1]; |
+ double _z = -_storage[2]; |
+ double _w = -_storage[3]; |
+ return new NativeFloat32x4(_x, _y, _z, _w); |
+ } |
+ |
+ /// Subtraction operator. |
+ Float32x4 operator-(NativeFloat32x4 other) { |
+ double _x = _storage[0] - other._storage[0]; |
+ double _y = _storage[1] - other._storage[1]; |
+ double _z = _storage[2] - other._storage[2]; |
+ double _w = _storage[3] - other._storage[3]; |
+ return new NativeFloat32x4(_x, _y, _z, _w); |
+ } |
+ |
+ /// Multiplication operator. |
+ Float32x4 operator*(NativeFloat32x4 other) { |
+ double _x = _storage[0] * other._storage[0]; |
+ double _y = _storage[1] * other._storage[1]; |
+ double _z = _storage[2] * other._storage[2]; |
+ double _w = _storage[3] * other._storage[3]; |
+ return new NativeFloat32x4(_x, _y, _z, _w); |
+ } |
+ |
+ /// Division operator. |
+ Float32x4 operator/(NativeFloat32x4 other) { |
+ double _x = _storage[0] / other._storage[0]; |
+ double _y = _storage[1] / other._storage[1]; |
+ double _z = _storage[2] / other._storage[2]; |
+ double _w = _storage[3] / other._storage[3]; |
+ return new NativeFloat32x4(_x, _y, _z, _w); |
+ } |
+ |
+ /// Relational less than. |
+ Int32x4 lessThan(NativeFloat32x4 other) { |
+ bool _cx = _storage[0] < other._storage[0]; |
+ bool _cy = _storage[1] < other._storage[1]; |
+ bool _cz = _storage[2] < other._storage[2]; |
+ bool _cw = _storage[3] < other._storage[3]; |
+ return new NativeInt32x4(_cx == true ? 0xFFFFFFFF : 0x0, |
+ _cy == true ? 0xFFFFFFFF : 0x0, |
+ _cz == true ? 0xFFFFFFFF : 0x0, |
+ _cw == true ? 0xFFFFFFFF : 0x0); |
+ } |
+ |
+ /// Relational less than or equal. |
+ Int32x4 lessThanOrEqual(NativeFloat32x4 other) { |
+ bool _cx = _storage[0] <= other._storage[0]; |
+ bool _cy = _storage[1] <= other._storage[1]; |
+ bool _cz = _storage[2] <= other._storage[2]; |
+ bool _cw = _storage[3] <= other._storage[3]; |
+ return new NativeInt32x4(_cx == true ? 0xFFFFFFFF : 0x0, |
+ _cy == true ? 0xFFFFFFFF : 0x0, |
+ _cz == true ? 0xFFFFFFFF : 0x0, |
+ _cw == true ? 0xFFFFFFFF : 0x0); |
+ } |
+ |
+ /// Relational greater than. |
+ Int32x4 greaterThan(NativeFloat32x4 other) { |
+ bool _cx = _storage[0] > other._storage[0]; |
+ bool _cy = _storage[1] > other._storage[1]; |
+ bool _cz = _storage[2] > other._storage[2]; |
+ bool _cw = _storage[3] > other._storage[3]; |
+ return new NativeInt32x4(_cx == true ? 0xFFFFFFFF : 0x0, |
+ _cy == true ? 0xFFFFFFFF : 0x0, |
+ _cz == true ? 0xFFFFFFFF : 0x0, |
+ _cw == true ? 0xFFFFFFFF : 0x0); |
+ } |
+ |
+ /// Relational greater than or equal. |
+ Int32x4 greaterThanOrEqual(NativeFloat32x4 other) { |
+ bool _cx = _storage[0] >= other._storage[0]; |
+ bool _cy = _storage[1] >= other._storage[1]; |
+ bool _cz = _storage[2] >= other._storage[2]; |
+ bool _cw = _storage[3] >= other._storage[3]; |
+ return new NativeInt32x4(_cx == true ? 0xFFFFFFFF : 0x0, |
+ _cy == true ? 0xFFFFFFFF : 0x0, |
+ _cz == true ? 0xFFFFFFFF : 0x0, |
+ _cw == true ? 0xFFFFFFFF : 0x0); |
+ } |
+ |
+ /// Relational equal. |
+ Int32x4 equal(NativeFloat32x4 other) { |
+ bool _cx = _storage[0] == other._storage[0]; |
+ bool _cy = _storage[1] == other._storage[1]; |
+ bool _cz = _storage[2] == other._storage[2]; |
+ bool _cw = _storage[3] == other._storage[3]; |
+ return new NativeInt32x4(_cx == true ? 0xFFFFFFFF : 0x0, |
+ _cy == true ? 0xFFFFFFFF : 0x0, |
+ _cz == true ? 0xFFFFFFFF : 0x0, |
+ _cw == true ? 0xFFFFFFFF : 0x0); |
+ } |
+ |
+ /// Relational not-equal. |
+ Int32x4 notEqual(NativeFloat32x4 other) { |
+ bool _cx = _storage[0] != other._storage[0]; |
+ bool _cy = _storage[1] != other._storage[1]; |
+ bool _cz = _storage[2] != other._storage[2]; |
+ bool _cw = _storage[3] != other._storage[3]; |
+ return new NativeInt32x4(_cx == true ? 0xFFFFFFFF : 0x0, |
+ _cy == true ? 0xFFFFFFFF : 0x0, |
+ _cz == true ? 0xFFFFFFFF : 0x0, |
+ _cw == true ? 0xFFFFFFFF : 0x0); |
+ } |
+ |
+ /// Returns a copy of [this] each lane being scaled by [s]. |
+ Float32x4 scale(double s) { |
+ double _x = s * _storage[0]; |
+ double _y = s * _storage[1]; |
+ double _z = s * _storage[2]; |
+ double _w = s * _storage[3]; |
+ return new NativeFloat32x4(_x, _y, _z, _w); |
+ } |
+ |
+ /// Returns the absolute value of this [Float32x4]. |
+ Float32x4 abs() { |
+ double _x = _storage[0].abs(); |
+ double _y = _storage[1].abs(); |
+ double _z = _storage[2].abs(); |
+ double _w = _storage[3].abs(); |
+ return new Float32x4(_x, _y, _z, _w); |
+ } |
+ |
+ /// Clamps [this] to be in the range [lowerLimit]-[upperLimit]. |
+ NativeFloat32x4 clamp(NativeFloat32x4 lowerLimit, |
+ NativeFloat32x4 upperLimit) { |
+ double _lx = lowerLimit._storage[0]; |
+ double _ly = lowerLimit._storage[1]; |
+ double _lz = lowerLimit._storage[2]; |
+ double _lw = lowerLimit._storage[3]; |
+ double _ux = upperLimit._storage[0]; |
+ double _uy = upperLimit._storage[1]; |
+ double _uz = upperLimit._storage[2]; |
+ double _uw = upperLimit._storage[3]; |
+ double _x = _storage[0]; |
+ double _y = _storage[1]; |
+ double _z = _storage[2]; |
+ double _w = _storage[3]; |
+ // MAX(MIN(self, upper), lower). |
+ _x = _x > _ux ? _ux : _x; |
+ _y = _y > _uy ? _uy : _y; |
+ _z = _z > _uz ? _uz : _z; |
+ _w = _w > _uw ? _uw : _w; |
+ _x = _x < _lx ? _lx : _x; |
+ _y = _y < _ly ? _ly : _y; |
+ _z = _z < _lz ? _lz : _z; |
+ _w = _w < _lw ? _lw : _w; |
+ return new Float32x4(_x, _y, _z, _w); |
+ } |
+ |
+ /// Extracted x value. |
+ double get x => _storage[0]; |
+ /// Extracted y value. |
+ double get y => _storage[1]; |
+ /// Extracted z value. |
+ double get z => _storage[2]; |
+ /// Extracted w value. |
+ double get w => _storage[3]; |
+ |
+ /// Extract the sign bit from each lane return them in the first 4 bits. |
+ int get signMask { |
+ var view = new NativeUint32List.view(_storage.buffer, 0, null); |
+ var mx = (view[0] & 0x80000000) >> 31; |
+ var my = (view[1] & 0x80000000) >> 31; |
+ var mz = (view[2] & 0x80000000) >> 31; |
+ var mw = (view[3] & 0x80000000) >> 31; |
+ return mx | my << 1 | mz << 2 | mw << 3; |
+ } |
+ |
+ /// Shuffle the lane values. [mask] must be one of the 256 shuffle constants. |
+ Float32x4 shuffle(int m) { |
+ if ((m < 0) || (m > 255)) { |
+ throw new RangeError('mask $m must be in the range [0..256)'); |
+ } |
+ double _x = _storage[m & 0x3]; |
+ double _y = _storage[(m >> 2) & 0x3]; |
+ double _z = _storage[(m >> 4) & 0x3]; |
+ double _w = _storage[(m >> 6) & 0x3]; |
+ return new NativeFloat32x4(_x, _y, _z, _w); |
+ } |
+ |
+ /// Shuffle the lane values in [this] and [other]. The returned |
+ /// Float32x4 will have XY lanes from [this] and ZW lanes from [other]. |
+ /// Uses the same [mask] as [shuffle]. |
+ Float32x4 shuffleMix(NativeFloat32x4 other, int m) { |
+ if ((m < 0) || (m > 255)) { |
+ throw new RangeError('mask $m must be in the range [0..256)'); |
+ } |
+ double _x = _storage[m & 0x3]; |
+ double _y = _storage[(m >> 2) & 0x3]; |
+ double _z = other._storage[(m >> 4) & 0x3]; |
+ double _w = other._storage[(m >> 6) & 0x3]; |
+ return new NativeFloat32x4(_x, _y, _z, _w); |
+ } |
+ |
+ /// Copy [this] and replace the [x] lane. |
+ Float32x4 withX(double x) { |
+ double _x = x; |
+ double _y = _storage[1]; |
+ double _z = _storage[2]; |
+ double _w = _storage[3]; |
+ return new NativeFloat32x4(_x, _y, _z, _w); |
+ } |
+ |
+ /// Copy [this] and replace the [y] lane. |
+ Float32x4 withY(double y) { |
+ double _x = _storage[0]; |
+ double _y = y; |
+ double _z = _storage[2]; |
+ double _w = _storage[3]; |
+ return new NativeFloat32x4(_x, _y, _z, _w); |
+ } |
+ |
+ /// Copy [this] and replace the [z] lane. |
+ Float32x4 withZ(double z) { |
+ double _x = _storage[0]; |
+ double _y = _storage[1]; |
+ double _z = z; |
+ double _w = _storage[3]; |
+ return new NativeFloat32x4(_x, _y, _z, _w); |
+ } |
+ |
+ /// Copy [this] and replace the [w] lane. |
+ Float32x4 withW(double w) { |
+ double _x = _storage[0]; |
+ double _y = _storage[1]; |
+ double _z = _storage[2]; |
+ double _w = w; |
+ return new NativeFloat32x4(_x, _y, _z, _w); |
+ } |
+ |
+ /// Returns the lane-wise minimum value in [this] or [other]. |
+ Float32x4 min(NativeFloat32x4 other) { |
+ double _x = _storage[0] < other._storage[0] ? |
+ _storage[0] : other._storage[0]; |
+ double _y = _storage[1] < other._storage[1] ? |
+ _storage[1] : other._storage[1]; |
+ double _z = _storage[2] < other._storage[2] ? |
+ _storage[2] : other._storage[2]; |
+ double _w = _storage[3] < other._storage[3] ? |
+ _storage[3] : other._storage[3]; |
+ return new NativeFloat32x4(_x, _y, _z, _w); |
+ } |
+ |
+ /// Returns the lane-wise maximum value in [this] or [other]. |
+ Float32x4 max(NativeFloat32x4 other) { |
+ double _x = _storage[0] > other._storage[0] ? |
+ _storage[0] : other._storage[0]; |
+ double _y = _storage[1] > other._storage[1] ? |
+ _storage[1] : other._storage[1]; |
+ double _z = _storage[2] > other._storage[2] ? |
+ _storage[2] : other._storage[2]; |
+ double _w = _storage[3] > other._storage[3] ? |
+ _storage[3] : other._storage[3]; |
+ return new NativeFloat32x4(_x, _y, _z, _w); |
+ } |
+ |
+ /// Returns the square root of [this]. |
+ Float32x4 sqrt() { |
+ double _x = Math.sqrt(_storage[0]); |
+ double _y = Math.sqrt(_storage[1]); |
+ double _z = Math.sqrt(_storage[2]); |
+ double _w = Math.sqrt(_storage[3]); |
+ return new NativeFloat32x4(_x, _y, _z, _w); |
+ } |
+ |
+ /// Returns the reciprocal of [this]. |
+ Float32x4 reciprocal() { |
+ double _x = 1.0 / _storage[0]; |
+ double _y = 1.0 / _storage[1]; |
+ double _z = 1.0 / _storage[2]; |
+ double _w = 1.0 / _storage[3]; |
+ return new NativeFloat32x4(_x, _y, _z, _w); |
+ } |
+ |
+ /// Returns the square root of the reciprocal of [this]. |
+ Float32x4 reciprocalSqrt() { |
+ double _x = Math.sqrt(1.0 / _storage[0]); |
+ double _y = Math.sqrt(1.0 / _storage[1]); |
+ double _z = Math.sqrt(1.0 / _storage[2]); |
+ double _w = Math.sqrt(1.0 / _storage[3]); |
+ return new NativeFloat32x4(_x, _y, _z, _w); |
+ } |
+} |
+ |
+ |
+/** |
+ * Interface of Dart Int32x4 and operations. |
+ * Int32x4 stores 4 32-bit bit-masks in "lanes". |
+ * The lanes are "x", "y", "z", and "w" respectively. |
+ */ |
+class NativeInt32x4 implements Int32x4 { |
+ final _storage = new NativeInt32List(4); |
+ |
+ NativeInt32x4(int x, int y, int z, int w) { |
+ _storage[0] = x; |
+ _storage[1] = y; |
+ _storage[2] = z; |
+ _storage[3] = w; |
+ } |
+ |
+ NativeInt32x4.bool(bool x, bool y, bool z, bool w) { |
+ _storage[0] = x == true ? 0xFFFFFFFF : 0x0; |
+ _storage[1] = y == true ? 0xFFFFFFFF : 0x0; |
+ _storage[2] = z == true ? 0xFFFFFFFF : 0x0; |
+ _storage[3] = w == true ? 0xFFFFFFFF : 0x0; |
+ } |
+ |
+ /// Returns a bit-wise copy of [x] as a Int32x4. |
+ NativeInt32x4.fromFloat32x4Bits(NativeFloat32x4 x) { |
+ var view = new NativeUint32List.view(x._storage.buffer, 0, null); |
+ _storage[0] = view[0]; |
+ _storage[1] = view[1]; |
+ _storage[2] = view[2]; |
+ _storage[3] = view[3]; |
+ } |
+ |
+ String toString() { |
+ return '[${_storage[0]}, ${_storage[1]}, ${_storage[2]}, ${_storage[3]}]'; |
+ } |
+ |
+ /// The bit-wise or operator. |
+ Int32x4 operator|(NativeInt32x4 other) { |
+ int _x = _storage[0] | other._storage[0]; |
+ int _y = _storage[1] | other._storage[1]; |
+ int _z = _storage[2] | other._storage[2]; |
+ int _w = _storage[3] | other._storage[3]; |
+ return new NativeInt32x4(_x, _y, _z, _w); |
+ } |
+ |
+ /// The bit-wise and operator. |
+ Int32x4 operator&(NativeInt32x4 other) { |
+ int _x = _storage[0] & other._storage[0]; |
+ int _y = _storage[1] & other._storage[1]; |
+ int _z = _storage[2] & other._storage[2]; |
+ int _w = _storage[3] & other._storage[3]; |
+ return new NativeInt32x4(_x, _y, _z, _w); |
+ } |
+ |
+ /// The bit-wise xor operator. |
+ Int32x4 operator^(NativeInt32x4 other) { |
+ int _x = _storage[0] ^ other._storage[0]; |
+ int _y = _storage[1] ^ other._storage[1]; |
+ int _z = _storage[2] ^ other._storage[2]; |
+ int _w = _storage[3] ^ other._storage[3]; |
+ return new NativeInt32x4(_x, _y, _z, _w); |
+ } |
+ |
+ Int32x4 operator+(NativeInt32x4 other) { |
+ var r = new NativeInt32x4(0, 0, 0, 0); |
+ r._storage[0] = (_storage[0] + other._storage[0]); |
+ r._storage[1] = (_storage[1] + other._storage[1]); |
+ r._storage[2] = (_storage[2] + other._storage[2]); |
+ r._storage[3] = (_storage[3] + other._storage[3]); |
+ return r; |
+ } |
+ |
+ Int32x4 operator-(NativeInt32x4 other) { |
+ var r = new NativeInt32x4(0, 0, 0, 0); |
+ r._storage[0] = (_storage[0] - other._storage[0]); |
+ r._storage[1] = (_storage[1] - other._storage[1]); |
+ r._storage[2] = (_storage[2] - other._storage[2]); |
+ r._storage[3] = (_storage[3] - other._storage[3]); |
+ return r; |
+ } |
+ |
+ /// Extract 32-bit mask from x lane. |
+ int get x => _storage[0]; |
+ /// Extract 32-bit mask from y lane. |
+ int get y => _storage[1]; |
+ /// Extract 32-bit mask from z lane. |
+ int get z => _storage[2]; |
+ /// Extract 32-bit mask from w lane. |
+ int get w => _storage[3]; |
+ |
+ /// Extract the top bit from each lane return them in the first 4 bits. |
+ int get signMask { |
+ int mx = (_storage[0] & 0x80000000) >> 31; |
+ int my = (_storage[1] & 0x80000000) >> 31; |
+ int mz = (_storage[2] & 0x80000000) >> 31; |
+ int mw = (_storage[3] & 0x80000000) >> 31; |
+ return mx | my << 1 | mz << 2 | mw << 3; |
+ } |
+ |
+ /// Shuffle the lane values. [mask] must be one of the 256 shuffle constants. |
+ Int32x4 shuffle(int mask) { |
+ if ((mask < 0) || (mask > 255)) { |
+ throw new RangeError('mask $mask must be in the range [0..256)'); |
+ } |
+ int _x = _storage[mask & 0x3]; |
+ int _y = _storage[(mask >> 2) & 0x3]; |
+ int _z = _storage[(mask >> 4) & 0x3]; |
+ int _w = _storage[(mask >> 6) & 0x3]; |
+ return new NativeInt32x4(_x, _y, _z, _w); |
+ } |
+ |
+ /// Shuffle the lane values in [this] and [other]. The returned |
+ /// Int32x4 will have XY lanes from [this] and ZW lanes from [other]. |
+ /// Uses the same [mask] as [shuffle]. |
+ Int32x4 shuffleMix(NativeInt32x4 other, int mask) { |
+ if ((mask < 0) || (mask > 255)) { |
+ throw new RangeError('mask $mask must be in the range [0..256)'); |
+ } |
+ int _x = _storage[mask & 0x3]; |
+ int _y = _storage[(mask >> 2) & 0x3]; |
+ int _z = other._storage[(mask >> 4) & 0x3]; |
+ int _w = other._storage[(mask >> 6) & 0x3]; |
+ return new NativeInt32x4(_x, _y, _z, _w); |
+ } |
+ |
+ /// Returns a new [Int32x4] copied from [this] with a new x value. |
+ Int32x4 withX(int x) { |
+ int _x = x; |
+ int _y = _storage[1]; |
+ int _z = _storage[2]; |
+ int _w = _storage[3]; |
+ return new NativeInt32x4(_x, _y, _z, _w); |
+ } |
+ |
+ /// Returns a new [Int32x4] copied from [this] with a new y value. |
+ Int32x4 withY(int y) { |
+ int _x = _storage[0]; |
+ int _y = y; |
+ int _z = _storage[2]; |
+ int _w = _storage[3]; |
+ return new NativeInt32x4(_x, _y, _z, _w); |
+ } |
+ |
+ /// Returns a new [Int32x4] copied from [this] with a new z value. |
+ Int32x4 withZ(int z) { |
+ int _x = _storage[0]; |
+ int _y = _storage[1]; |
+ int _z = z; |
+ int _w = _storage[3]; |
+ return new NativeInt32x4(_x, _y, _z, _w); |
+ } |
+ |
+ /// Returns a new [Int32x4] copied from [this] with a new w value. |
+ Int32x4 withW(int w) { |
+ int _x = _storage[0]; |
+ int _y = _storage[1]; |
+ int _z = _storage[2]; |
+ int _w = w; |
+ return new NativeInt32x4(_x, _y, _z, _w); |
+ } |
+ |
+ /// Extracted x value. Returns false for 0, true for any other value. |
+ bool get flagX => _storage[0] != 0x0; |
+ /// Extracted y value. Returns false for 0, true for any other value. |
+ bool get flagY => _storage[1] != 0x0; |
+ /// Extracted z value. Returns false for 0, true for any other value. |
+ bool get flagZ => _storage[2] != 0x0; |
+ /// Extracted w value. Returns false for 0, true for any other value. |
+ bool get flagW => _storage[3] != 0x0; |
+ |
+ /// Returns a new [Int32x4] copied from [this] with a new x value. |
+ Int32x4 withFlagX(bool x) { |
+ int _x = x == true ? 0xFFFFFFFF : 0x0; |
+ int _y = _storage[1]; |
+ int _z = _storage[2]; |
+ int _w = _storage[3]; |
+ return new NativeInt32x4(_x, _y, _z, _w); |
+ } |
+ |
+ /// Returns a new [Int32x4] copied from [this] with a new y value. |
+ Int32x4 withFlagY(bool y) { |
+ int _x = _storage[0]; |
+ int _y = y == true ? 0xFFFFFFFF : 0x0; |
+ int _z = _storage[2]; |
+ int _w = _storage[3]; |
+ return new NativeInt32x4(_x, _y, _z, _w); |
+ } |
+ |
+ /// Returns a new [Int32x4] copied from [this] with a new z value. |
+ Int32x4 withFlagZ(bool z) { |
+ int _x = _storage[0]; |
+ int _y = _storage[1]; |
+ int _z = z == true ? 0xFFFFFFFF : 0x0; |
+ int _w = _storage[3]; |
+ return new NativeInt32x4(_x, _y, _z, _w); |
+ } |
+ |
+ /// Returns a new [Int32x4] copied from [this] with a new w value. |
+ Int32x4 withFlagW(bool w) { |
+ int _x = _storage[0]; |
+ int _y = _storage[1]; |
+ int _z = _storage[2]; |
+ int _w = w == true ? 0xFFFFFFFF : 0x0; |
+ return new NativeInt32x4(_x, _y, _z, _w); |
+ } |
+ |
+ /// Merge [trueValue] and [falseValue] based on [this]' bit mask: |
+ /// Select bit from [trueValue] when bit in [this] is on. |
+ /// Select bit from [falseValue] when bit in [this] is off. |
+ Float32x4 select(NativeFloat32x4 trueValue, NativeFloat32x4 falseValue) { |
+ var trueView = trueValue._storage.buffer.asInt32List(); |
+ var falseView = falseValue._storage.buffer.asInt32List(); |
+ int cmx = _storage[0]; |
+ int cmy = _storage[1]; |
+ int cmz = _storage[2]; |
+ int cmw = _storage[3]; |
+ int stx = trueView[0]; |
+ int sty = trueView[1]; |
+ int stz = trueView[2]; |
+ int stw = trueView[3]; |
+ int sfx = falseView[0]; |
+ int sfy = falseView[1]; |
+ int sfz = falseView[2]; |
+ int sfw = falseView[3]; |
+ int _x = (cmx & stx) | (~cmx & sfx); |
+ int _y = (cmy & sty) | (~cmy & sfy); |
+ int _z = (cmz & stz) | (~cmz & sfz); |
+ int _w = (cmw & stw) | (~cmw & sfw); |
+ var r = new NativeFloat32x4(0.0, 0.0, 0.0, 0.0); |
+ var rView = r._storage.buffer.asInt32List(); |
+ rView[0] = _x; |
+ rView[1] = _y; |
+ rView[2] = _z; |
+ rView[3] = _w; |
+ return r; |
+ } |
+} |
+ |
+class NativeFloat64x2 implements Float64x2 { |
+ final _storage = new Float64List(2); |
+ |
+ NativeFloat64x2(double x, double y) { |
+ _storage[0] = x; |
+ _storage[1] = y; |
+ } |
+ |
+ NativeFloat64x2.splat(double v) { |
+ _storage[0] = v; |
+ _storage[1] = v; |
+ } |
+ |
+ NativeFloat64x2.zero(); |
+ |
+ NativeFloat64x2.fromFloat32x4(NativeFloat32x4 v) { |
+ _storage[0] = v._storage[0]; |
+ _storage[1] = v._storage[1]; |
+ } |
+ |
+ String toString() { |
+ return '[${_storage[0]}, ${_storage[1]}]'; |
+ } |
+ |
+ /// Addition operator. |
+ Float64x2 operator+(NativeFloat64x2 other) { |
+ return new NativeFloat64x2(_storage[0] + other._storage[0], |
+ _storage[1] + other._storage[1]); |
+ } |
+ |
+ /// Negate operator. |
+ Float64x2 operator-() { |
+ return new NativeFloat64x2(-_storage[0], -_storage[1]); |
+ } |
+ |
+ /// Subtraction operator. |
+ Float64x2 operator-(NativeFloat64x2 other) { |
+ return new NativeFloat64x2(_storage[0] - other._storage[0], |
+ _storage[1] - other._storage[1]); |
+ } |
+ /// Multiplication operator. |
+ Float64x2 operator*(NativeFloat64x2 other) { |
+ return new NativeFloat64x2(_storage[0] * other._storage[0], |
+ _storage[1] * other._storage[1]); |
+ } |
+ /// Division operator. |
+ Float64x2 operator/(NativeFloat64x2 other) { |
+ return new NativeFloat64x2(_storage[0] / other._storage[0], |
+ _storage[1] / other._storage[1]); |
+ } |
+ |
+ /// Returns a copy of [this] each lane being scaled by [s]. |
+ Float64x2 scale(double s) { |
+ return new NativeFloat64x2(_storage[0] * s, _storage[1] * s); |
+ } |
+ |
+ /// Returns the absolute value of this [Float64x2]. |
+ Float64x2 abs() { |
+ return new NativeFloat64x2(_storage[0].abs(), _storage[1].abs()); |
+ } |
+ |
+ /// Clamps [this] to be in the range [lowerLimit]-[upperLimit]. |
+ Float64x2 clamp(NativeFloat64x2 lowerLimit, |
+ NativeFloat64x2 upperLimit) { |
+ double _lx = lowerLimit._storage[0]; |
+ double _ly = lowerLimit._storage[1]; |
+ double _ux = upperLimit._storage[0]; |
+ double _uy = upperLimit._storage[1]; |
+ double _x = _storage[0]; |
+ double _y = _storage[1]; |
+ // MAX(MIN(self, upper), lower). |
+ _x = _x > _ux ? _ux : _x; |
+ _y = _y > _uy ? _uy : _y; |
+ _x = _x < _lx ? _lx : _x; |
+ _y = _y < _ly ? _ly : _y; |
+ return new NativeFloat64x2(_x, _y); |
+ } |
+ |
+ /// Extracted x value. |
+ double get x => _storage[0]; |
+ /// Extracted y value. |
+ double get y => _storage[1]; |
+ |
+ /// Extract the sign bits from each lane return them in the first 2 bits. |
+ int get signMask { |
+ var view = _storage.buffer.asUint32List(); |
+ var mx = (view[1] & 0x80000000) >> 31; |
+ var my = (view[3] & 0x80000000) >> 31; |
+ return mx | my << 1; |
+ } |
+ |
+ /// Returns a new [Float64x2] copied from [this] with a new x value. |
+ Float64x2 withX(double x) { |
+ return new NativeFloat64x2(x, _storage[1]); |
+ } |
+ |
+ /// Returns a new [Float64x2] copied from [this] with a new y value. |
+ Float64x2 withY(double y) { |
+ return new NativeFloat64x2(_storage[0], y); |
+ } |
+ |
+ /// Returns the lane-wise minimum value in [this] or [other]. |
+ Float64x2 min(NativeFloat64x2 other) { |
+ return new NativeFloat64x2( |
+ _storage[0] < other._storage[0] ? _storage[0] : other._storage[0], |
+ _storage[1] < other._storage[1] ? _storage[1] : other._storage[1]); |
+ |
+ } |
+ |
+ /// Returns the lane-wise maximum value in [this] or [other]. |
+ Float64x2 max(NativeFloat64x2 other) { |
+ return new NativeFloat64x2( |
+ _storage[0] > other._storage[0] ? _storage[0] : other._storage[0], |
+ _storage[1] > other._storage[1] ? _storage[1] : other._storage[1]); |
+ } |
+ |
+ /// Returns the lane-wise square root of [this]. |
+ Float64x2 sqrt() { |
+ return new NativeFloat64x2(Math.sqrt(_storage[0]), Math.sqrt(_storage[1])); |
+ } |
+} |