Index: src/utils/SkTextureCompressor.cpp |
diff --git a/src/utils/SkTextureCompressor.cpp b/src/utils/SkTextureCompressor.cpp |
index 3a7fcfb1d296d730491792a707c0f043c3e5be27..52bf09afb8a3b52acd3d8ae29d3afe4a127b67b2 100644 |
--- a/src/utils/SkTextureCompressor.cpp |
+++ b/src/utils/SkTextureCompressor.cpp |
@@ -23,6 +23,47 @@ template <typename T> inline T abs_diff(const T &a, const T &b) { |
return (a > b) ? (a - b) : (b - a); |
} |
+static bool is_extremal(uint8_t pixel) { |
+ return 0 == pixel || 255 == pixel; |
+} |
+ |
+typedef uint64_t (*A84x4To64BitProc)(const uint8_t block[]); |
+ |
+// This function is used by both R11 EAC and LATC to compress 4x4 blocks |
+// of 8-bit alpha into 64-bit values that comprise the compressed data. |
+// For both formats, we need to make sure that the dimensions of the |
+// src pixels are divisible by 4, and copy 4x4 blocks one at a time |
+// for compression. |
+static bool compress_4x4_a8_to_64bit(uint8_t* dst, const uint8_t* src, |
+ int width, int height, int rowBytes, |
+ A84x4To64BitProc proc) { |
+ // Make sure that our data is well-formed enough to be considered for compression |
+ if (0 == width || 0 == height || (width % 4) != 0 || (height % 4) != 0) { |
+ return false; |
+ } |
+ |
+ int blocksX = width >> 2; |
+ int blocksY = height >> 2; |
+ |
+ uint8_t block[16]; |
+ uint64_t* encPtr = reinterpret_cast<uint64_t*>(dst); |
+ for (int y = 0; y < blocksY; ++y) { |
+ for (int x = 0; x < blocksX; ++x) { |
+ // Load block |
+ for (int k = 0; k < 4; ++k) { |
+ memcpy(block + k*4, src + k*rowBytes + 4*x, 4); |
+ } |
+ |
+ // Compress it |
+ *encPtr = proc(block); |
+ ++encPtr; |
+ } |
+ src += 4 * rowBytes; |
+ } |
+ |
+ return true; |
+} |
+ |
//////////////////////////////////////////////////////////////////////////////// |
// |
// LATC compressor |
@@ -30,9 +71,9 @@ template <typename T> inline T abs_diff(const T &a, const T &b) { |
//////////////////////////////////////////////////////////////////////////////// |
// LATC compressed texels down into square 4x4 blocks |
-static const int kPaletteSize = 8; |
+static const int kLATCPaletteSize = 8; |
static const int kLATCBlockSize = 4; |
-static const int kPixelsPerBlock = kLATCBlockSize * kLATCBlockSize; |
+static const int kLATCPixelsPerBlock = kLATCBlockSize * kLATCBlockSize; |
// Generates an LATC palette. LATC constructs |
// a palette of eight colors from LUM0 and LUM1 using the algorithm: |
@@ -55,7 +96,7 @@ static const int kPixelsPerBlock = kLATCBlockSize * kLATCBlockSize; |
// 0, if lum0 <= lum1 and code(x,y) == 6 |
// 255, if lum0 <= lum1 and code(x,y) == 7 |
-static void generate_palette(uint8_t palette[], uint8_t lum0, uint8_t lum1) { |
+static void generate_latc_palette(uint8_t palette[], uint8_t lum0, uint8_t lum1) { |
palette[0] = lum0; |
palette[1] = lum1; |
if (lum0 > lum1) { |
@@ -71,17 +112,13 @@ static void generate_palette(uint8_t palette[], uint8_t lum0, uint8_t lum1) { |
} |
} |
-static bool is_extremal(uint8_t pixel) { |
- return 0 == pixel || 255 == pixel; |
-} |
- |
// Compress a block by using the bounding box of the pixels. It is assumed that |
// there are no extremal pixels in this block otherwise we would have used |
// compressBlockBBIgnoreExtremal. |
-static uint64_t compress_block_bb(const uint8_t pixels[]) { |
+static uint64_t compress_latc_block_bb(const uint8_t pixels[]) { |
uint8_t minVal = 255; |
uint8_t maxVal = 0; |
- for (int i = 0; i < kPixelsPerBlock; ++i) { |
+ for (int i = 0; i < kLATCPixelsPerBlock; ++i) { |
minVal = SkTMin(pixels[i], minVal); |
maxVal = SkTMax(pixels[i], maxVal); |
} |
@@ -89,16 +126,16 @@ static uint64_t compress_block_bb(const uint8_t pixels[]) { |
SkASSERT(!is_extremal(minVal)); |
SkASSERT(!is_extremal(maxVal)); |
- uint8_t palette[kPaletteSize]; |
- generate_palette(palette, maxVal, minVal); |
+ uint8_t palette[kLATCPaletteSize]; |
+ generate_latc_palette(palette, maxVal, minVal); |
uint64_t indices = 0; |
- for (int i = kPixelsPerBlock - 1; i >= 0; --i) { |
+ for (int i = kLATCPixelsPerBlock - 1; i >= 0; --i) { |
// Find the best palette index |
uint8_t bestError = abs_diff(pixels[i], palette[0]); |
uint8_t idx = 0; |
- for (int j = 1; j < kPaletteSize; ++j) { |
+ for (int j = 1; j < kLATCPaletteSize; ++j) { |
uint8_t error = abs_diff(pixels[i], palette[j]); |
if (error < bestError) { |
bestError = error; |
@@ -120,10 +157,10 @@ static uint64_t compress_block_bb(const uint8_t pixels[]) { |
// Compress a block by using the bounding box of the pixels without taking into |
// account the extremal values. The generated palette will contain extremal values |
// and fewer points along the line segment to interpolate. |
-static uint64_t compress_block_bb_ignore_extremal(const uint8_t pixels[]) { |
+static uint64_t compress_latc_block_bb_ignore_extremal(const uint8_t pixels[]) { |
uint8_t minVal = 255; |
uint8_t maxVal = 0; |
- for (int i = 0; i < kPixelsPerBlock; ++i) { |
+ for (int i = 0; i < kLATCPixelsPerBlock; ++i) { |
if (is_extremal(pixels[i])) { |
continue; |
} |
@@ -135,11 +172,11 @@ static uint64_t compress_block_bb_ignore_extremal(const uint8_t pixels[]) { |
SkASSERT(!is_extremal(minVal)); |
SkASSERT(!is_extremal(maxVal)); |
- uint8_t palette[kPaletteSize]; |
- generate_palette(palette, minVal, maxVal); |
+ uint8_t palette[kLATCPaletteSize]; |
+ generate_latc_palette(palette, minVal, maxVal); |
uint64_t indices = 0; |
- for (int i = kPixelsPerBlock - 1; i >= 0; --i) { |
+ for (int i = kLATCPixelsPerBlock - 1; i >= 0; --i) { |
// Find the best palette index |
uint8_t idx = 0; |
@@ -153,7 +190,7 @@ static uint64_t compress_block_bb_ignore_extremal(const uint8_t pixels[]) { |
} |
} else { |
uint8_t bestError = abs_diff(pixels[i], palette[0]); |
- for (int j = 1; j < kPaletteSize - 2; ++j) { |
+ for (int j = 1; j < kLATCPaletteSize - 2; ++j) { |
uint8_t error = abs_diff(pixels[i], palette[j]); |
if (error < bestError) { |
bestError = error; |
@@ -170,7 +207,7 @@ static uint64_t compress_block_bb_ignore_extremal(const uint8_t pixels[]) { |
SkEndian_SwapLE64( |
static_cast<uint64_t>(minVal) | |
(static_cast<uint64_t>(maxVal) << 8) | |
- (indices << 16)); |
+ (indices << 16)); |
} |
@@ -183,11 +220,11 @@ static uint64_t compress_block_bb_ignore_extremal(const uint8_t pixels[]) { |
// palette that has the extremal values built in. Otherwise, we use the full bounding |
// box. |
-static uint64_t compress_block(const uint8_t pixels[]) { |
+static uint64_t compress_latc_block(const uint8_t pixels[]) { |
// Collect unique pixels |
int nUniquePixels = 0; |
- uint8_t uniquePixels[kPixelsPerBlock]; |
- for (int i = 0; i < kPixelsPerBlock; ++i) { |
+ uint8_t uniquePixels[kLATCPixelsPerBlock]; |
+ for (int i = 0; i < kLATCPixelsPerBlock; ++i) { |
bool foundPixel = false; |
for (int j = 0; j < nUniquePixels; ++j) { |
foundPixel = foundPixel || uniquePixels[j] == pixels[i]; |
@@ -208,7 +245,7 @@ static uint64_t compress_block(const uint8_t pixels[]) { |
// with one or zero depending on which pixel they belong to. |
} else if (2 == nUniquePixels) { |
uint64_t outBlock = 0; |
- for (int i = kPixelsPerBlock - 1; i >= 0; --i) { |
+ for (int i = kLATCPixelsPerBlock - 1; i >= 0; --i) { |
int idx = 0; |
if (pixels[i] == uniquePixels[1]) { |
idx = 1; |
@@ -237,42 +274,215 @@ static uint64_t compress_block(const uint8_t pixels[]) { |
// never take this step. We don't lose too much perf here because |
// most of the processing in this function is worth it for the |
// 1 == nUniquePixels optimization. |
- return compress_block_bb(pixels); |
+ return compress_latc_block_bb(pixels); |
} else { |
- return compress_block_bb_ignore_extremal(pixels); |
+ return compress_latc_block_bb_ignore_extremal(pixels); |
} |
} |
static bool compress_a8_to_latc(uint8_t* dst, const uint8_t* src, |
int width, int height, int rowBytes) { |
- // Make sure that our data is well-formed enough to be |
- // considered for LATC compression |
- if (0 == width || 0 == height || |
- (width % kLATCBlockSize) != 0 || (height % kLATCBlockSize) != 0) { |
- return false; |
+ return compress_4x4_a8_to_64bit(dst, src, width, height, rowBytes, compress_latc_block); |
+} |
+ |
+//////////////////////////////////////////////////////////////////////////////// |
+// |
+// R11 EAC Compressor |
+// |
+//////////////////////////////////////////////////////////////////////////////// |
+ |
+// Blocks compressed into R11 EAC are represented as follows: |
+// 0000000000000000000000000000000000000000000000000000000000000000 |
+// |base_cw|mod|mul| ----------------- indices ------------------- |
+// |
+// To reconstruct the value of a given pixel, we use the formula: |
+// clamp[0, 2047](base_cw * 8 + 4 + mod_val*mul*8) |
+// |
+// mod_val is chosen from a palette of values based on the index of the |
+// given pixel. The palette is chosen by the value stored in mod. |
+// This formula returns a value between 0 and 2047, which is converted |
+// to a float from 0 to 1 in OpenGL. |
+// |
+// If mul is zero, then we set mul = 1/8, so that the formula becomes |
+// clamp[0, 2047](base_cw * 8 + 4 + mod_val) |
+ |
+static const int kNumR11EACPalettes = 16; |
+static const int kR11EACPaletteSize = 8; |
+static const int kR11EACModifierPalettes[kNumR11EACPalettes][kR11EACPaletteSize] = { |
+ {-3, -6, -9, -15, 2, 5, 8, 14}, |
+ {-3, -7, -10, -13, 2, 6, 9, 12}, |
+ {-2, -5, -8, -13, 1, 4, 7, 12}, |
+ {-2, -4, -6, -13, 1, 3, 5, 12}, |
+ {-3, -6, -8, -12, 2, 5, 7, 11}, |
+ {-3, -7, -9, -11, 2, 6, 8, 10}, |
+ {-4, -7, -8, -11, 3, 6, 7, 10}, |
+ {-3, -5, -8, -11, 2, 4, 7, 10}, |
+ {-2, -6, -8, -10, 1, 5, 7, 9}, |
+ {-2, -5, -8, -10, 1, 4, 7, 9}, |
+ {-2, -4, -8, -10, 1, 3, 7, 9}, |
+ {-2, -5, -7, -10, 1, 4, 6, 9}, |
+ {-3, -4, -7, -10, 2, 3, 6, 9}, |
+ {-1, -2, -3, -10, 0, 1, 2, 9}, |
+ {-4, -6, -8, -9, 3, 5, 7, 8}, |
+ {-3, -5, -7, -9, 2, 4, 6, 8} |
+}; |
+ |
+// Pack the base codeword, palette, and multiplier into the 64 bits necessary |
+// to decode it. |
+static uint64_t pack_r11eac_block(uint16_t base_cw, uint16_t palette, uint16_t multiplier, |
+ uint64_t indices) { |
+ SkASSERT(palette < 16); |
+ SkASSERT(multiplier < 16); |
+ SkASSERT(indices < (static_cast<uint64_t>(1) << 48)); |
+ |
+ const uint64_t b = static_cast<uint64_t>(base_cw) << 56; |
+ const uint64_t m = static_cast<uint64_t>(multiplier) << 52; |
+ const uint64_t p = static_cast<uint64_t>(palette) << 48; |
+ return SkEndian_SwapBE64(b | m | p | indices); |
+} |
+ |
+// Given a base codeword, a modifier, and a multiplier, compute the proper |
+// pixel value in the range [0, 2047]. |
+static uint16_t compute_r11eac_pixel(int base_cw, int modifier, int multiplier) { |
+ int ret = (base_cw * 8 + 4) + (modifier * multiplier * 8); |
+ return (ret > 2047)? 2047 : ((ret < 0)? 0 : ret); |
+} |
+ |
+// Compress a block into R11 EAC format. |
+// The compression works as follows: |
+// 1. Find the center of the span of the block's values. Use this as the base codeword. |
+// 2. Choose a multiplier based roughly on the size of the span of block values |
+// 3. Iterate through each palette and choose the one with the most accurate |
+// modifiers. |
+static uint64_t compress_heterogeneous_r11eac_block(const uint8_t block[16]) { |
+ // Find the center of the data... |
+ uint16_t bmin = block[0]; |
+ uint16_t bmax = block[0]; |
+ for (int i = 1; i < 16; ++i) { |
+ bmin = SkTMin<uint16_t>(bmin, block[i]); |
+ bmax = SkTMax<uint16_t>(bmax, block[i]); |
} |
- int blocksX = width / kLATCBlockSize; |
- int blocksY = height / kLATCBlockSize; |
+ uint16_t center = (bmax + bmin) >> 1; |
+ SkASSERT(center <= 255); |
+ |
+ // Based on the min and max, we can guesstimate a proper multiplier |
+ // This is kind of a magic choice to start with. |
+ uint16_t multiplier = (bmax - center) / 10; |
+ |
+ // Now convert the block to 11 bits and transpose it to match |
+ // the proper layout |
+ uint16_t cblock[16]; |
+ for (int i = 0; i < 4; ++i) { |
+ for (int j = 0; j < 4; ++j) { |
+ int srcIdx = i*4+j; |
+ int dstIdx = j*4+i; |
+ cblock[dstIdx] = (block[srcIdx] << 3) | (block[srcIdx] >> 5); |
+ } |
+ } |
- uint8_t block[16]; |
- uint64_t* encPtr = reinterpret_cast<uint64_t*>(dst); |
- for (int y = 0; y < blocksY; ++y) { |
- for (int x = 0; x < blocksX; ++x) { |
- // Load block |
- static const int kBS = kLATCBlockSize; |
- for (int k = 0; k < kBS; ++k) { |
- memcpy(block + k*kBS, src + k*rowBytes + (kBS * x), kBS); |
+ // Finally, choose the proper palette and indices |
+ uint32_t bestError = static_cast<uint32_t>(-1); |
+ uint64_t bestIndices = 0; |
+ uint16_t bestPalette = 0; |
+ for (uint16_t paletteIdx = 0; paletteIdx < kNumR11EACPalettes; ++paletteIdx) { |
+ const int *palette = kR11EACModifierPalettes[paletteIdx]; |
tfarina
2014/07/12 02:07:28
clang is warning on me:
../../src/utils/SkTexture
|
+ |
+ // Iterate through each pixel to find the best palette index |
+ // and update the indices with the choice. Also store the error |
+ // for this palette to be compared against the best error... |
+ uint32_t error = 0; |
+ uint64_t indices = 0; |
+ for (int pixelIdx = 0; pixelIdx < 16; ++pixelIdx) { |
+ const uint16_t pixel = cblock[pixelIdx]; |
+ |
+ // Iterate through each palette value to find the best index |
+ // for this particular pixel for this particular palette. |
+ uint16_t bestPixelError = |
+ abs_diff(pixel, compute_r11eac_pixel(center, palette[0], multiplier)); |
+ int bestIndex = 0; |
+ for (int i = 1; i < kR11EACPaletteSize; ++i) { |
+ const uint16_t p = compute_r11eac_pixel(center, palette[i], multiplier); |
+ const uint16_t perror = abs_diff(pixel, p); |
+ |
+ // Is this index better? |
+ if (perror < bestPixelError) { |
+ bestIndex = i; |
+ bestPixelError = perror; |
+ } |
} |
- // Compress it |
- *encPtr = compress_block(block); |
- ++encPtr; |
+ SkASSERT(bestIndex < 8); |
+ |
+ error += bestPixelError; |
+ indices <<= 3; |
+ indices |= bestIndex; |
+ } |
+ |
+ SkASSERT(indices < (static_cast<uint64_t>(1) << 48)); |
+ |
+ // Is this palette better? |
+ if (error < bestError) { |
+ bestPalette = paletteIdx; |
+ bestIndices = indices; |
+ bestError = error; |
} |
- src += kLATCBlockSize * rowBytes; |
} |
- return true; |
+ // Finally, pack everything together... |
+ return pack_r11eac_block(center, bestPalette, multiplier, bestIndices); |
+} |
+ |
+static uint64_t compress_r11eac_block(const uint8_t block[16]) { |
+ // Are all blocks a solid color? |
+ bool solid = true; |
+ for (int i = 1; i < 16; ++i) { |
+ if (block[i] != block[0]) { |
+ solid = false; |
+ break; |
+ } |
+ } |
+ |
+ // Fully transparent? We know the encoding... |
+ if (solid && 0 == block[0]) { |
+ // (0x0060 << 48) produces the following: |
+ // basw_cw: 0 |
+ // mod: 6, palette: {-4, -7, -8, -11, 3, 6, 7, 10} |
+ // mod_val: -3 |
+ // |
+ // this gives the following formula: |
+ // clamp[0, 2047](0*8+4+(-4)) = 0 |
+ return SkEndian_SwapBE64(static_cast<uint64_t>(0x0060) << 48); |
+ |
+ // Fully opaque? We know this encoding too... |
+ } else if (solid && 255 == block[0]) { |
+ // -1 produces the following: |
+ // basw_cw: 255 |
+ // mod: 15, palette: {-3, -5, -7, -9, 2, 4, 6, 8} |
+ // mod_val: 8 |
+ // |
+ // this gives the following formula: |
+ // clamp[0, 2047](255*8+4+8*8*8) = clamp[0, 2047](2556) = 2047 |
+ return static_cast<uint64_t>(-1); |
+ } |
+ |
+#if 0 |
+ else if (solid) { |
+ // !TODO! krajcevski: |
+ // This will probably never happen, since we're using this format |
+ // primarily for compressing alpha maps. Usually the only |
+ // non-fullly opaque or fully transparent blocks are not a solid |
+ // intermediate color. If we notice that they are, then we can |
+ // add another optimization... |
+ } |
+#endif |
+ |
+ return compress_heterogeneous_r11eac_block(block); |
+} |
+ |
+static bool compress_a8_to_r11eac(uint8_t* dst, const uint8_t* src, |
+ int width, int height, int rowBytes) { |
+ return compress_4x4_a8_to_64bit(dst, src, width, height, rowBytes, compress_r11eac_block); |
} |
//////////////////////////////////////////////////////////////////////////////// |
@@ -281,6 +491,7 @@ namespace SkTextureCompressor { |
static size_t get_compressed_data_size(Format fmt, int width, int height) { |
switch (fmt) { |
+ case kR11_EAC_Format: |
case kLATC_Format: |
{ |
// The LATC format is 64 bits per 4x4 block. |
@@ -308,6 +519,7 @@ bool CompressBufferToFormat(uint8_t* dst, const uint8_t* src, SkColorType srcCol |
memset(kProcMap, 0, sizeof(kProcMap)); |
kProcMap[kLATC_Format][kAlpha_8_SkColorType] = compress_a8_to_latc; |
+ kProcMap[kR11_EAC_Format][kAlpha_8_SkColorType] = compress_a8_to_r11eac; |
CompressBitmapProc proc = kProcMap[format][srcColorType]; |
if (NULL != proc) { |