Chromium Code Reviews| OLD | NEW |
|---|---|
| 1 /* | 1 /* |
| 2 * Copyright 2014 Google Inc. | 2 * Copyright 2014 Google Inc. |
| 3 * | 3 * |
| 4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
| 5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
| 6 */ | 6 */ |
| 7 | 7 |
| 8 #include "SkTextureCompressor.h" | 8 #include "SkTextureCompressor.h" |
| 9 | 9 |
| 10 #include "SkBitmap.h" | 10 #include "SkBitmap.h" |
| 11 #include "SkData.h" | 11 #include "SkData.h" |
| 12 #include "SkEndian.h" | 12 #include "SkEndian.h" |
| 13 | 13 |
| 14 //////////////////////////////////////////////////////////////////////////////// | 14 //////////////////////////////////////////////////////////////////////////////// |
| 15 // | 15 // |
| 16 // Utility Functions | 16 // Utility Functions |
| 17 // | 17 // |
| 18 //////////////////////////////////////////////////////////////////////////////// | 18 //////////////////////////////////////////////////////////////////////////////// |
| 19 | 19 |
| 20 // Absolute difference between two values. More correct than SkTAbs(a - b) | 20 // Absolute difference between two values. More correct than SkTAbs(a - b) |
| 21 // because it works on unsigned values. | 21 // because it works on unsigned values. |
| 22 template <typename T> inline T abs_diff(const T &a, const T &b) { | 22 template <typename T> inline T abs_diff(const T &a, const T &b) { |
| 23 return (a > b) ? (a - b) : (b - a); | 23 return (a > b) ? (a - b) : (b - a); |
| 24 } | 24 } |
| 25 | 25 |
| 26 static bool is_extremal(uint8_t pixel) { | |
| 27 return 0 == pixel || 255 == pixel; | |
| 28 } | |
| 29 | |
| 30 typedef uint64_t (*A84x4To64BitProc)(const uint8_t block[]); | |
| 31 | |
|
robertphillips
2014/06/30 14:30:34
// This method is used by both LATC and R11 compre
krajcevski
2014/06/30 14:53:12
Done.
| |
| 32 static bool compress_4x4_a8_to_64bit(uint8_t* dst, const uint8_t* src, | |
| 33 int width, int height, int rowBytes, | |
| 34 A84x4To64BitProc proc) { | |
| 35 // Make sure that our data is well-formed enough to be | |
|
robertphillips
2014/06/30 14:30:34
Not just LATC anymore, right?
krajcevski
2014/06/30 14:53:12
Done.
| |
| 36 // considered for LATC compression | |
| 37 if (0 == width || 0 == height || (width % 4) != 0 || (height % 4) != 0) { | |
| 38 return false; | |
| 39 } | |
| 40 | |
| 41 int blocksX = width >> 2; | |
| 42 int blocksY = height >> 2; | |
| 43 | |
| 44 uint8_t block[16]; | |
| 45 uint64_t* encPtr = reinterpret_cast<uint64_t*>(dst); | |
| 46 for (int y = 0; y < blocksY; ++y) { | |
| 47 for (int x = 0; x < blocksX; ++x) { | |
| 48 // Load block | |
| 49 for (int k = 0; k < 4; ++k) { | |
| 50 memcpy(block + k*4, src + k*rowBytes + 4*x, 4); | |
| 51 } | |
| 52 | |
| 53 // Compress it | |
| 54 *encPtr = proc(block); | |
| 55 ++encPtr; | |
| 56 } | |
| 57 src += 4 * rowBytes; | |
| 58 } | |
| 59 | |
| 60 return true; | |
| 61 } | |
| 62 | |
| 26 //////////////////////////////////////////////////////////////////////////////// | 63 //////////////////////////////////////////////////////////////////////////////// |
| 27 // | 64 // |
| 28 // LATC compressor | 65 // LATC compressor |
| 29 // | 66 // |
| 30 //////////////////////////////////////////////////////////////////////////////// | 67 //////////////////////////////////////////////////////////////////////////////// |
| 31 | 68 |
| 32 // LATC compressed texels down into square 4x4 blocks | 69 // LATC compressed texels down into square 4x4 blocks |
| 33 static const int kPaletteSize = 8; | 70 static const int kLATCPaletteSize = 8; |
| 34 static const int kLATCBlockSize = 4; | 71 static const int kLATCBlockSize = 4; |
| 35 static const int kPixelsPerBlock = kLATCBlockSize * kLATCBlockSize; | 72 static const int kLATCPixelsPerBlock = kLATCBlockSize * kLATCBlockSize; |
| 36 | 73 |
| 37 // Generates an LATC palette. LATC constructs | 74 // Generates an LATC palette. LATC constructs |
| 38 // a palette of eight colors from LUM0 and LUM1 using the algorithm: | 75 // a palette of eight colors from LUM0 and LUM1 using the algorithm: |
| 39 // | 76 // |
| 40 // LUM0, if lum0 > lum1 and code(x,y) == 0 | 77 // LUM0, if lum0 > lum1 and code(x,y) == 0 |
| 41 // LUM1, if lum0 > lum1 and code(x,y) == 1 | 78 // LUM1, if lum0 > lum1 and code(x,y) == 1 |
| 42 // (6*LUM0+ LUM1)/7, if lum0 > lum1 and code(x,y) == 2 | 79 // (6*LUM0+ LUM1)/7, if lum0 > lum1 and code(x,y) == 2 |
| 43 // (5*LUM0+2*LUM1)/7, if lum0 > lum1 and code(x,y) == 3 | 80 // (5*LUM0+2*LUM1)/7, if lum0 > lum1 and code(x,y) == 3 |
| 44 // (4*LUM0+3*LUM1)/7, if lum0 > lum1 and code(x,y) == 4 | 81 // (4*LUM0+3*LUM1)/7, if lum0 > lum1 and code(x,y) == 4 |
| 45 // (3*LUM0+4*LUM1)/7, if lum0 > lum1 and code(x,y) == 5 | 82 // (3*LUM0+4*LUM1)/7, if lum0 > lum1 and code(x,y) == 5 |
| 46 // (2*LUM0+5*LUM1)/7, if lum0 > lum1 and code(x,y) == 6 | 83 // (2*LUM0+5*LUM1)/7, if lum0 > lum1 and code(x,y) == 6 |
| 47 // ( LUM0+6*LUM1)/7, if lum0 > lum1 and code(x,y) == 7 | 84 // ( LUM0+6*LUM1)/7, if lum0 > lum1 and code(x,y) == 7 |
| 48 // | 85 // |
| 49 // LUM0, if lum0 <= lum1 and code(x,y) == 0 | 86 // LUM0, if lum0 <= lum1 and code(x,y) == 0 |
| 50 // LUM1, if lum0 <= lum1 and code(x,y) == 1 | 87 // LUM1, if lum0 <= lum1 and code(x,y) == 1 |
| 51 // (4*LUM0+ LUM1)/5, if lum0 <= lum1 and code(x,y) == 2 | 88 // (4*LUM0+ LUM1)/5, if lum0 <= lum1 and code(x,y) == 2 |
| 52 // (3*LUM0+2*LUM1)/5, if lum0 <= lum1 and code(x,y) == 3 | 89 // (3*LUM0+2*LUM1)/5, if lum0 <= lum1 and code(x,y) == 3 |
| 53 // (2*LUM0+3*LUM1)/5, if lum0 <= lum1 and code(x,y) == 4 | 90 // (2*LUM0+3*LUM1)/5, if lum0 <= lum1 and code(x,y) == 4 |
| 54 // ( LUM0+4*LUM1)/5, if lum0 <= lum1 and code(x,y) == 5 | 91 // ( LUM0+4*LUM1)/5, if lum0 <= lum1 and code(x,y) == 5 |
| 55 // 0, if lum0 <= lum1 and code(x,y) == 6 | 92 // 0, if lum0 <= lum1 and code(x,y) == 6 |
| 56 // 255, if lum0 <= lum1 and code(x,y) == 7 | 93 // 255, if lum0 <= lum1 and code(x,y) == 7 |
| 57 | 94 |
| 58 static void generate_palette(uint8_t palette[], uint8_t lum0, uint8_t lum1) { | 95 static void generate_latc_palette(uint8_t palette[], uint8_t lum0, uint8_t lum1) { |
| 59 palette[0] = lum0; | 96 palette[0] = lum0; |
| 60 palette[1] = lum1; | 97 palette[1] = lum1; |
| 61 if (lum0 > lum1) { | 98 if (lum0 > lum1) { |
| 62 for (int i = 1; i < 7; i++) { | 99 for (int i = 1; i < 7; i++) { |
| 63 palette[i+1] = ((7-i)*lum0 + i*lum1) / 7; | 100 palette[i+1] = ((7-i)*lum0 + i*lum1) / 7; |
| 64 } | 101 } |
| 65 } else { | 102 } else { |
| 66 for (int i = 1; i < 5; i++) { | 103 for (int i = 1; i < 5; i++) { |
| 67 palette[i+1] = ((5-i)*lum0 + i*lum1) / 5; | 104 palette[i+1] = ((5-i)*lum0 + i*lum1) / 5; |
| 68 } | 105 } |
| 69 palette[6] = 0; | 106 palette[6] = 0; |
| 70 palette[7] = 255; | 107 palette[7] = 255; |
| 71 } | 108 } |
| 72 } | 109 } |
| 73 | 110 |
| 74 static bool is_extremal(uint8_t pixel) { | |
| 75 return 0 == pixel || 255 == pixel; | |
| 76 } | |
| 77 | |
| 78 // Compress a block by using the bounding box of the pixels. It is assumed that | 111 // Compress a block by using the bounding box of the pixels. It is assumed that |
| 79 // there are no extremal pixels in this block otherwise we would have used | 112 // there are no extremal pixels in this block otherwise we would have used |
| 80 // compressBlockBBIgnoreExtremal. | 113 // compressBlockBBIgnoreExtremal. |
| 81 static uint64_t compress_block_bb(const uint8_t pixels[]) { | 114 static uint64_t compress_latc_block_bb(const uint8_t pixels[]) { |
| 82 uint8_t minVal = 255; | 115 uint8_t minVal = 255; |
| 83 uint8_t maxVal = 0; | 116 uint8_t maxVal = 0; |
| 84 for (int i = 0; i < kPixelsPerBlock; ++i) { | 117 for (int i = 0; i < kLATCPixelsPerBlock; ++i) { |
| 85 minVal = SkTMin(pixels[i], minVal); | 118 minVal = SkTMin(pixels[i], minVal); |
| 86 maxVal = SkTMax(pixels[i], maxVal); | 119 maxVal = SkTMax(pixels[i], maxVal); |
| 87 } | 120 } |
| 88 | 121 |
| 89 SkASSERT(!is_extremal(minVal)); | 122 SkASSERT(!is_extremal(minVal)); |
| 90 SkASSERT(!is_extremal(maxVal)); | 123 SkASSERT(!is_extremal(maxVal)); |
| 91 | 124 |
| 92 uint8_t palette[kPaletteSize]; | 125 uint8_t palette[kLATCPaletteSize]; |
| 93 generate_palette(palette, maxVal, minVal); | 126 generate_latc_palette(palette, maxVal, minVal); |
| 94 | 127 |
| 95 uint64_t indices = 0; | 128 uint64_t indices = 0; |
| 96 for (int i = kPixelsPerBlock - 1; i >= 0; --i) { | 129 for (int i = kLATCPixelsPerBlock - 1; i >= 0; --i) { |
| 97 | 130 |
| 98 // Find the best palette index | 131 // Find the best palette index |
| 99 uint8_t bestError = abs_diff(pixels[i], palette[0]); | 132 uint8_t bestError = abs_diff(pixels[i], palette[0]); |
| 100 uint8_t idx = 0; | 133 uint8_t idx = 0; |
| 101 for (int j = 1; j < kPaletteSize; ++j) { | 134 for (int j = 1; j < kLATCPaletteSize; ++j) { |
| 102 uint8_t error = abs_diff(pixels[i], palette[j]); | 135 uint8_t error = abs_diff(pixels[i], palette[j]); |
| 103 if (error < bestError) { | 136 if (error < bestError) { |
| 104 bestError = error; | 137 bestError = error; |
| 105 idx = j; | 138 idx = j; |
| 106 } | 139 } |
| 107 } | 140 } |
| 108 | 141 |
| 109 indices <<= 3; | 142 indices <<= 3; |
| 110 indices |= idx; | 143 indices |= idx; |
| 111 } | 144 } |
| 112 | 145 |
| 113 return | 146 return |
| 114 SkEndian_SwapLE64( | 147 SkEndian_SwapLE64( |
| 115 static_cast<uint64_t>(maxVal) | | 148 static_cast<uint64_t>(maxVal) | |
| 116 (static_cast<uint64_t>(minVal) << 8) | | 149 (static_cast<uint64_t>(minVal) << 8) | |
| 117 (indices << 16)); | 150 (indices << 16)); |
| 118 } | 151 } |
| 119 | 152 |
| 120 // Compress a block by using the bounding box of the pixels without taking into | 153 // Compress a block by using the bounding box of the pixels without taking into |
| 121 // account the extremal values. The generated palette will contain extremal valu es | 154 // account the extremal values. The generated palette will contain extremal valu es |
| 122 // and fewer points along the line segment to interpolate. | 155 // and fewer points along the line segment to interpolate. |
| 123 static uint64_t compress_block_bb_ignore_extremal(const uint8_t pixels[]) { | 156 static uint64_t compress_latc_block_bb_ignore_extremal(const uint8_t pixels[]) { |
| 124 uint8_t minVal = 255; | 157 uint8_t minVal = 255; |
| 125 uint8_t maxVal = 0; | 158 uint8_t maxVal = 0; |
| 126 for (int i = 0; i < kPixelsPerBlock; ++i) { | 159 for (int i = 0; i < kLATCPixelsPerBlock; ++i) { |
| 127 if (is_extremal(pixels[i])) { | 160 if (is_extremal(pixels[i])) { |
| 128 continue; | 161 continue; |
| 129 } | 162 } |
| 130 | 163 |
| 131 minVal = SkTMin(pixels[i], minVal); | 164 minVal = SkTMin(pixels[i], minVal); |
| 132 maxVal = SkTMax(pixels[i], maxVal); | 165 maxVal = SkTMax(pixels[i], maxVal); |
| 133 } | 166 } |
| 134 | 167 |
| 135 SkASSERT(!is_extremal(minVal)); | 168 SkASSERT(!is_extremal(minVal)); |
| 136 SkASSERT(!is_extremal(maxVal)); | 169 SkASSERT(!is_extremal(maxVal)); |
| 137 | 170 |
| 138 uint8_t palette[kPaletteSize]; | 171 uint8_t palette[kLATCPaletteSize]; |
| 139 generate_palette(palette, minVal, maxVal); | 172 generate_latc_palette(palette, minVal, maxVal); |
| 140 | 173 |
| 141 uint64_t indices = 0; | 174 uint64_t indices = 0; |
| 142 for (int i = kPixelsPerBlock - 1; i >= 0; --i) { | 175 for (int i = kLATCPixelsPerBlock - 1; i >= 0; --i) { |
| 143 | 176 |
| 144 // Find the best palette index | 177 // Find the best palette index |
| 145 uint8_t idx = 0; | 178 uint8_t idx = 0; |
| 146 if (is_extremal(pixels[i])) { | 179 if (is_extremal(pixels[i])) { |
| 147 if (0xFF == pixels[i]) { | 180 if (0xFF == pixels[i]) { |
| 148 idx = 7; | 181 idx = 7; |
| 149 } else if (0 == pixels[i]) { | 182 } else if (0 == pixels[i]) { |
| 150 idx = 6; | 183 idx = 6; |
| 151 } else { | 184 } else { |
| 152 SkFAIL("Pixel is extremal but not really?!"); | 185 SkFAIL("Pixel is extremal but not really?!"); |
| 153 } | 186 } |
| 154 } else { | 187 } else { |
| 155 uint8_t bestError = abs_diff(pixels[i], palette[0]); | 188 uint8_t bestError = abs_diff(pixels[i], palette[0]); |
| 156 for (int j = 1; j < kPaletteSize - 2; ++j) { | 189 for (int j = 1; j < kLATCPaletteSize - 2; ++j) { |
| 157 uint8_t error = abs_diff(pixels[i], palette[j]); | 190 uint8_t error = abs_diff(pixels[i], palette[j]); |
| 158 if (error < bestError) { | 191 if (error < bestError) { |
| 159 bestError = error; | 192 bestError = error; |
| 160 idx = j; | 193 idx = j; |
| 161 } | 194 } |
| 162 } | 195 } |
| 163 } | 196 } |
| 164 | 197 |
| 165 indices <<= 3; | 198 indices <<= 3; |
| 166 indices |= idx; | 199 indices |= idx; |
| 167 } | 200 } |
| 168 | 201 |
| 169 return | 202 return |
| 170 SkEndian_SwapLE64( | 203 SkEndian_SwapLE64( |
| 171 static_cast<uint64_t>(minVal) | | 204 static_cast<uint64_t>(minVal) | |
| 172 (static_cast<uint64_t>(maxVal) << 8) | | 205 (static_cast<uint64_t>(maxVal) << 8) | |
| 173 (indices << 16)); | 206 (indices << 16)); |
| 174 } | 207 } |
| 175 | 208 |
| 176 | 209 |
| 177 // Compress LATC block. Each 4x4 block of pixels is decompressed by LATC from tw o | 210 // Compress LATC block. Each 4x4 block of pixels is decompressed by LATC from tw o |
| 178 // values LUM0 and LUM1, and an index into the generated palette. Details of how | 211 // values LUM0 and LUM1, and an index into the generated palette. Details of how |
| 179 // the palette is generated can be found in the comments of generatePalette abov e. | 212 // the palette is generated can be found in the comments of generatePalette abov e. |
| 180 // | 213 // |
| 181 // We choose which palette type to use based on whether or not 'pixels' contains | 214 // We choose which palette type to use based on whether or not 'pixels' contains |
| 182 // any extremal values (0 or 255). If there are extremal values, then we use the | 215 // any extremal values (0 or 255). If there are extremal values, then we use the |
| 183 // palette that has the extremal values built in. Otherwise, we use the full bou nding | 216 // palette that has the extremal values built in. Otherwise, we use the full bou nding |
| 184 // box. | 217 // box. |
| 185 | 218 |
| 186 static uint64_t compress_block(const uint8_t pixels[]) { | 219 static uint64_t compress_latc_block(const uint8_t pixels[]) { |
| 187 // Collect unique pixels | 220 // Collect unique pixels |
| 188 int nUniquePixels = 0; | 221 int nUniquePixels = 0; |
| 189 uint8_t uniquePixels[kPixelsPerBlock]; | 222 uint8_t uniquePixels[kLATCPixelsPerBlock]; |
| 190 for (int i = 0; i < kPixelsPerBlock; ++i) { | 223 for (int i = 0; i < kLATCPixelsPerBlock; ++i) { |
| 191 bool foundPixel = false; | 224 bool foundPixel = false; |
| 192 for (int j = 0; j < nUniquePixels; ++j) { | 225 for (int j = 0; j < nUniquePixels; ++j) { |
| 193 foundPixel = foundPixel || uniquePixels[j] == pixels[i]; | 226 foundPixel = foundPixel || uniquePixels[j] == pixels[i]; |
| 194 } | 227 } |
| 195 | 228 |
| 196 if (!foundPixel) { | 229 if (!foundPixel) { |
| 197 uniquePixels[nUniquePixels] = pixels[i]; | 230 uniquePixels[nUniquePixels] = pixels[i]; |
| 198 ++nUniquePixels; | 231 ++nUniquePixels; |
| 199 } | 232 } |
| 200 } | 233 } |
| 201 | 234 |
| 202 // If there's only one unique pixel, then our compression is easy. | 235 // If there's only one unique pixel, then our compression is easy. |
| 203 if (1 == nUniquePixels) { | 236 if (1 == nUniquePixels) { |
| 204 return SkEndian_SwapLE64(pixels[0] | (pixels[0] << 8)); | 237 return SkEndian_SwapLE64(pixels[0] | (pixels[0] << 8)); |
| 205 | 238 |
| 206 // Similarly, if there are only two unique pixels, then our compression is | 239 // Similarly, if there are only two unique pixels, then our compression is |
| 207 // easy again: place the pixels in the block header, and assign the indices | 240 // easy again: place the pixels in the block header, and assign the indices |
| 208 // with one or zero depending on which pixel they belong to. | 241 // with one or zero depending on which pixel they belong to. |
| 209 } else if (2 == nUniquePixels) { | 242 } else if (2 == nUniquePixels) { |
| 210 uint64_t outBlock = 0; | 243 uint64_t outBlock = 0; |
| 211 for (int i = kPixelsPerBlock - 1; i >= 0; --i) { | 244 for (int i = kLATCPixelsPerBlock - 1; i >= 0; --i) { |
| 212 int idx = 0; | 245 int idx = 0; |
| 213 if (pixels[i] == uniquePixels[1]) { | 246 if (pixels[i] == uniquePixels[1]) { |
| 214 idx = 1; | 247 idx = 1; |
| 215 } | 248 } |
| 216 | 249 |
| 217 outBlock <<= 3; | 250 outBlock <<= 3; |
| 218 outBlock |= idx; | 251 outBlock |= idx; |
| 219 } | 252 } |
| 220 outBlock <<= 16; | 253 outBlock <<= 16; |
| 221 outBlock |= (uniquePixels[0] | (uniquePixels[1] << 8)); | 254 outBlock |= (uniquePixels[0] | (uniquePixels[1] << 8)); |
| 222 return SkEndian_SwapLE64(outBlock); | 255 return SkEndian_SwapLE64(outBlock); |
| 223 } | 256 } |
| 224 | 257 |
| 225 // Count non-maximal pixel values | 258 // Count non-maximal pixel values |
| 226 int nonExtremalPixels = 0; | 259 int nonExtremalPixels = 0; |
| 227 for (int i = 0; i < nUniquePixels; ++i) { | 260 for (int i = 0; i < nUniquePixels; ++i) { |
| 228 if (!is_extremal(uniquePixels[i])) { | 261 if (!is_extremal(uniquePixels[i])) { |
| 229 ++nonExtremalPixels; | 262 ++nonExtremalPixels; |
| 230 } | 263 } |
| 231 } | 264 } |
| 232 | 265 |
| 233 // If all the pixels are nonmaximal then compute the palette using | 266 // If all the pixels are nonmaximal then compute the palette using |
| 234 // the bounding box of all the pixels. | 267 // the bounding box of all the pixels. |
| 235 if (nonExtremalPixels == nUniquePixels) { | 268 if (nonExtremalPixels == nUniquePixels) { |
| 236 // This is really just for correctness, in all of my tests we | 269 // This is really just for correctness, in all of my tests we |
| 237 // never take this step. We don't lose too much perf here because | 270 // never take this step. We don't lose too much perf here because |
| 238 // most of the processing in this function is worth it for the | 271 // most of the processing in this function is worth it for the |
| 239 // 1 == nUniquePixels optimization. | 272 // 1 == nUniquePixels optimization. |
| 240 return compress_block_bb(pixels); | 273 return compress_latc_block_bb(pixels); |
| 241 } else { | 274 } else { |
| 242 return compress_block_bb_ignore_extremal(pixels); | 275 return compress_latc_block_bb_ignore_extremal(pixels); |
| 243 } | 276 } |
| 244 } | 277 } |
| 245 | 278 |
| 246 static bool compress_a8_to_latc(uint8_t* dst, const uint8_t* src, | 279 static bool compress_a8_to_latc(uint8_t* dst, const uint8_t* src, |
|
robertphillips
2014/06/30 14:30:34
line this up ?
krajcevski
2014/06/30 14:53:12
Done.
| |
| 247 int width, int height, int rowBytes) { | 280 int width, int height, int rowBytes) { |
| 248 // Make sure that our data is well-formed enough to be | 281 return compress_4x4_a8_to_64bit(dst, src, width, height, rowBytes, &compress _latc_block); |
| 249 // considered for LATC compression | 282 } |
| 250 if (0 == width || 0 == height || | 283 |
| 251 (width % kLATCBlockSize) != 0 || (height % kLATCBlockSize) != 0) { | 284 //////////////////////////////////////////////////////////////////////////////// |
| 252 return false; | 285 // |
| 253 } | 286 // R11 EAC Compressor |
| 254 | 287 // |
| 255 int blocksX = width / kLATCBlockSize; | 288 //////////////////////////////////////////////////////////////////////////////// |
| 256 int blocksY = height / kLATCBlockSize; | 289 |
| 257 | 290 // Blocks compressed into R11 EAC are represented as follows: |
| 258 uint8_t block[16]; | 291 // 0000000000000000000000000000000000000000000000000000000000000000 |
| 259 uint64_t* encPtr = reinterpret_cast<uint64_t*>(dst); | 292 // |base_cw|mod|mul| ----------------- indices ------------------- |
| 260 for (int y = 0; y < blocksY; ++y) { | 293 // |
| 261 for (int x = 0; x < blocksX; ++x) { | 294 // To reconstruct the value of a given pixel, we use the formula: |
| 262 // Load block | 295 // clamp[0, 2047](base_cw * 8 + 4 + mod_val*mul*8) |
| 263 static const int kBS = kLATCBlockSize; | 296 // |
| 264 for (int k = 0; k < kBS; ++k) { | 297 // mod_val is chosen from a palette of values based on the index of the |
| 265 memcpy(block + k*kBS, src + k*rowBytes + (kBS * x), kBS); | 298 // given pixel. The palette is chosen by the value stored in mod. |
| 299 // This formula returns a value between 0 and 2047, which is converted | |
| 300 // to a float from 0 to 1 in OpenGL. | |
| 301 // | |
| 302 // If mul is zero, then we set mul = 1/8, so that the formula becomes | |
| 303 // clamp[0, 2047](base_cw * 8 + 4 + mod_val) | |
| 304 | |
| 305 static const int kNumR11EACPalettes = 16; | |
| 306 static const int kR11EACPaletteSize = 8; | |
|
robertphillips
2014/06/30 14:30:34
kR11EAC ... ?
gR11EAC ... ?
krajcevski
2014/06/30 14:53:12
Done.
| |
| 307 static const int r11eac_modifier_palettes[kNumR11EACPalettes][kR11EACPaletteSize ] = { | |
| 308 {-3, -6, -9, -15, 2, 5, 8, 14}, | |
| 309 {-3, -7, -10, -13, 2, 6, 9, 12}, | |
| 310 {-2, -5, -8, -13, 1, 4, 7, 12}, | |
| 311 {-2, -4, -6, -13, 1, 3, 5, 12}, | |
| 312 {-3, -6, -8, -12, 2, 5, 7, 11}, | |
| 313 {-3, -7, -9, -11, 2, 6, 8, 10}, | |
| 314 {-4, -7, -8, -11, 3, 6, 7, 10}, | |
| 315 {-3, -5, -8, -11, 2, 4, 7, 10}, | |
| 316 {-2, -6, -8, -10, 1, 5, 7, 9}, | |
| 317 {-2, -5, -8, -10, 1, 4, 7, 9}, | |
| 318 {-2, -4, -8, -10, 1, 3, 7, 9}, | |
| 319 {-2, -5, -7, -10, 1, 4, 6, 9}, | |
| 320 {-3, -4, -7, -10, 2, 3, 6, 9}, | |
| 321 {-1, -2, -3, -10, 0, 1, 2, 9}, | |
| 322 {-4, -6, -8, -9, 3, 5, 7, 8}, | |
| 323 {-3, -5, -7, -9, 2, 4, 6, 8} | |
| 324 }; | |
| 325 | |
| 326 // Pack the base codeword, palette, and multiplier into the 64 bits necessary | |
| 327 // to decode it. | |
| 328 static uint64_t pack_r11eac_block(uint8_t base_cw, uint8_t palette, uint8_t mult iplier, | |
| 329 uint64_t indices) { | |
| 330 SkASSERT(palette < 16); | |
| 331 SkASSERT(multiplier < 16); | |
| 332 SkASSERT(indices < (static_cast<uint64_t>(1) << 48)); | |
| 333 | |
| 334 const uint64_t b = static_cast<uint64_t>(base_cw) << 56; | |
| 335 const uint64_t m = static_cast<uint64_t>(multiplier) << 52; | |
| 336 const uint64_t p = static_cast<uint64_t>(palette) << 48; | |
| 337 return SkEndian_SwapBE64(b | m | p | indices); | |
| 338 } | |
| 339 | |
| 340 // Given a base codeword, a modifier, and a multiplier, compute the proper | |
| 341 // pixel value in the range [0, 2047]. | |
| 342 static uint16_t compute_r11eac_pixel(int base_cw, int modifier, int multiplier) { | |
| 343 int ret = (base_cw * 8 + 4) + (modifier * multiplier * 8); | |
| 344 return (ret > 2047)? 2047 : ((ret < 0)? 0 : ret); | |
| 345 } | |
| 346 | |
| 347 // Compress a block into R11 EAC format. | |
| 348 // The compression works as follows: | |
| 349 // 1. Find the center of the span of the block's values. Use this as the base co deword. | |
| 350 // 2. Choose a multiplier based roughly on the size of the span of block values | |
| 351 // 3. Iterate through each palette and choose the one with the most accurate | |
| 352 // modifiers. | |
| 353 static uint64_t compress_heterogeneous_r11eac_block(const uint8_t block[16]) { | |
| 354 // Find the center of the data... | |
| 355 uint16_t bmin = block[0]; | |
| 356 uint16_t bmax = block[0]; | |
| 357 for (int i = 1; i < 16; ++i) { | |
| 358 bmin = SkTMin<uint16_t>(bmin, block[i]); | |
| 359 bmax = SkTMax<uint16_t>(bmax, block[i]); | |
| 360 } | |
| 361 | |
| 362 uint16_t center = (bmax + bmin) >> 1; | |
| 363 SkASSERT(center <= 255); | |
| 364 | |
| 365 // Based on the min and max, we can guesstimate a proper multiplier | |
| 366 // This is kind of a magic choice to start with. | |
| 367 uint16_t multiplier = (bmax - center) / 10; | |
| 368 | |
| 369 // Now convert the block to 11 bits and transpose it to match | |
| 370 // the proper layout | |
| 371 uint16_t cblock[16]; | |
| 372 for (int i = 0; i < 4; ++i) { | |
| 373 for (int j = 0; j < 4; ++j) { | |
| 374 int srcIdx = i*4+j; | |
| 375 int dstIdx = j*4+i; | |
| 376 cblock[srcIdx] = (block[dstIdx] << 3) | (block[dstIdx] >> 5); | |
| 377 } | |
| 378 } | |
| 379 | |
| 380 // Finally, choose the proper palette and indices | |
| 381 uint32_t bestError = static_cast<uint32_t>(-1); | |
| 382 uint16_t bestPalette = 0; | |
| 383 uint64_t bestIndices = 0; | |
| 384 for (int paletteIdx = 0; paletteIdx < kNumR11EACPalettes; ++paletteIdx) { | |
| 385 const int *palette = r11eac_modifier_palettes[paletteIdx]; | |
| 386 | |
| 387 // Iterate through each pixel to find the best palette index | |
| 388 // and update the indices with the choice. Also store the error | |
| 389 // for this palette to be compared against the best error... | |
| 390 uint32_t error = 0; | |
| 391 uint64_t indices = 0; | |
| 392 for (int pixelIdx = 0; pixelIdx < 16; ++pixelIdx) { | |
| 393 const uint16_t pixel = cblock[pixelIdx]; | |
| 394 | |
| 395 // Iterate through each palette value to find the best index | |
| 396 // for this particular pixel for this particular palette. | |
| 397 uint16_t bestPixelError = | |
| 398 abs_diff(pixel, compute_r11eac_pixel(center, palette[0], multipl ier)); | |
| 399 int bestIndex = 0; | |
| 400 for (int i = 1; i < kR11EACPaletteSize; ++i) { | |
| 401 const uint16_t p = compute_r11eac_pixel(center, palette[i], mult iplier); | |
| 402 const uint16_t perror = abs_diff(pixel, p); | |
| 403 | |
| 404 // Is this index better? | |
| 405 if (perror < bestPixelError) { | |
| 406 bestIndex = i; | |
| 407 bestPixelError = perror; | |
| 408 } | |
| 266 } | 409 } |
| 267 | 410 |
| 268 // Compress it | 411 SkASSERT(bestIndex < 8); |
| 269 *encPtr = compress_block(block); | 412 |
| 270 ++encPtr; | 413 error += bestPixelError; |
| 271 } | 414 indices <<= 3; |
| 272 src += kLATCBlockSize * rowBytes; | 415 indices |= bestIndex; |
| 273 } | 416 } |
| 274 | 417 |
| 275 return true; | 418 SkASSERT(indices < (static_cast<uint64_t>(1) << 48)); |
| 419 | |
| 420 // Is this palette better? | |
| 421 if (error < bestError) { | |
| 422 bestPalette = paletteIdx; | |
| 423 bestIndices = indices; | |
| 424 bestError = error; | |
| 425 } | |
| 426 } | |
| 427 | |
| 428 // Finally, pack everything together... | |
| 429 return pack_r11eac_block(center, bestPalette, multiplier, bestIndices); | |
| 430 } | |
| 431 | |
| 432 static uint64_t compress_r11eac_block(const uint8_t block[16]) { | |
| 433 // Are all blocks a solid color? | |
| 434 bool solid = true; | |
| 435 for (int i = 1; i < 16; ++i) { | |
| 436 if (block[i] != block[0]) { | |
| 437 solid = false; | |
| 438 break; | |
| 439 } | |
| 440 } | |
| 441 | |
| 442 // Fully transparent? We know the encoding... | |
| 443 if (solid && 0 == block[0]) { | |
| 444 // (0x0060 << 48) produces the following: | |
| 445 // basw_cw: 0 | |
| 446 // mod: 6, palette: {-4, -7, -8, -11, 3, 6, 7, 10} | |
| 447 // mod_val: -3 | |
| 448 // | |
| 449 // this gives the following formula: | |
| 450 // clamp[0, 2047](0*8+4+(-4)) = 0 | |
| 451 return SkEndian_SwapBE64(static_cast<uint64_t>(0x0060) << 48); | |
| 452 | |
| 453 // Fully opaque? We know this encoding too... | |
| 454 } else if (solid && 255 == block[0]) { | |
| 455 // -1 produces the following: | |
| 456 // basw_cw: 255 | |
| 457 // mod: 15, palette: {-3, -5, -7, -9, 2, 4, 6, 8} | |
| 458 // mod_val: 8 | |
| 459 // | |
| 460 // this gives the following formula: | |
| 461 // clamp[0, 2047](255*8+4+8*8*8) = clamp[0, 2047](2556) = 2047 | |
| 462 return static_cast<uint64_t>(-1); | |
| 463 } | |
| 464 | |
| 465 #if 0 | |
| 466 else if (solid) { | |
| 467 // !TODO! krajcevski: | |
| 468 // This will probably never happen, since we're using this format | |
| 469 // primarily for compressing alpha maps. Usually the only | |
| 470 // non-fullly opaque or fully transparent blocks are not a solid | |
| 471 // intermediate color. If we notice that they are, then we can | |
| 472 // add another optimization... | |
| 473 } | |
| 474 #endif | |
| 475 | |
| 476 return compress_heterogeneous_r11eac_block(block); | |
| 477 } | |
| 478 | |
| 479 static bool compress_a8_to_r11eac(uint8_t* dst, const uint8_t* src, | |
| 480 int width, int height, int rowBytes) { | |
| 481 return compress_4x4_a8_to_64bit(dst, src, width, height, rowBytes, compress_ r11eac_block); | |
| 276 } | 482 } |
| 277 | 483 |
| 278 //////////////////////////////////////////////////////////////////////////////// | 484 //////////////////////////////////////////////////////////////////////////////// |
| 279 | 485 |
| 280 namespace SkTextureCompressor { | 486 namespace SkTextureCompressor { |
| 281 | 487 |
| 282 static size_t get_compressed_data_size(Format fmt, int width, int height) { | 488 static size_t get_compressed_data_size(Format fmt, int width, int height) { |
| 283 switch (fmt) { | 489 switch (fmt) { |
| 490 case kR11_EAC_Format: | |
| 284 case kLATC_Format: | 491 case kLATC_Format: |
| 285 { | 492 { |
| 286 // The LATC format is 64 bits per 4x4 block. | 493 // The LATC format is 64 bits per 4x4 block. |
| 287 static const int kLATCEncodedBlockSize = 8; | 494 static const int kLATCEncodedBlockSize = 8; |
| 288 | 495 |
| 289 int blocksX = width / kLATCBlockSize; | 496 int blocksX = width / kLATCBlockSize; |
| 290 int blocksY = height / kLATCBlockSize; | 497 int blocksY = height / kLATCBlockSize; |
| 291 | 498 |
| 292 return blocksX * blocksY * kLATCEncodedBlockSize; | 499 return blocksX * blocksY * kLATCEncodedBlockSize; |
| 293 } | 500 } |
| 294 | 501 |
| 295 default: | 502 default: |
| 296 SkFAIL("Unknown compressed format!"); | 503 SkFAIL("Unknown compressed format!"); |
| 297 return 0; | 504 return 0; |
| 298 } | 505 } |
| 299 } | 506 } |
| 300 | 507 |
| 301 typedef bool (*CompressBitmapProc)(uint8_t* dst, const uint8_t* src, | 508 typedef bool (*CompressBitmapProc)(uint8_t* dst, const uint8_t* src, |
| 302 int width, int height, int rowBytes); | 509 int width, int height, int rowBytes); |
| 303 | 510 |
| 304 bool CompressBufferToFormat(uint8_t* dst, const uint8_t* src, SkColorType srcCol orType, | 511 bool CompressBufferToFormat(uint8_t* dst, const uint8_t* src, SkColorType srcCol orType, |
| 305 int width, int height, int rowBytes, Format format) { | 512 int width, int height, int rowBytes, Format format) { |
| 306 | 513 |
| 307 CompressBitmapProc kProcMap[kFormatCnt][kLastEnum_SkColorType + 1]; | 514 CompressBitmapProc kProcMap[kFormatCnt][kLastEnum_SkColorType + 1]; |
| 308 memset(kProcMap, 0, sizeof(kProcMap)); | 515 memset(kProcMap, 0, sizeof(kProcMap)); |
| 309 | 516 |
| 310 kProcMap[kLATC_Format][kAlpha_8_SkColorType] = compress_a8_to_latc; | 517 kProcMap[kLATC_Format][kAlpha_8_SkColorType] = compress_a8_to_latc; |
| 518 kProcMap[kR11_EAC_Format][kAlpha_8_SkColorType] = compress_a8_to_r11eac; | |
| 311 | 519 |
| 312 CompressBitmapProc proc = kProcMap[format][srcColorType]; | 520 CompressBitmapProc proc = kProcMap[format][srcColorType]; |
| 313 if (NULL != proc) { | 521 if (NULL != proc) { |
| 314 return proc(dst, src, width, height, rowBytes); | 522 return proc(dst, src, width, height, rowBytes); |
| 315 } | 523 } |
| 316 | 524 |
| 317 return false; | 525 return false; |
| 318 } | 526 } |
| 319 | 527 |
| 320 SkData *CompressBitmapToFormat(const SkBitmap &bitmap, Format format) { | 528 SkData *CompressBitmapToFormat(const SkBitmap &bitmap, Format format) { |
| 321 SkAutoLockPixels alp(bitmap); | 529 SkAutoLockPixels alp(bitmap); |
| 322 | 530 |
| 323 int compressedDataSize = get_compressed_data_size(format, bitmap.width(), bi tmap.height()); | 531 int compressedDataSize = get_compressed_data_size(format, bitmap.width(), bi tmap.height()); |
| 324 const uint8_t* src = reinterpret_cast<const uint8_t*>(bitmap.getPixels()); | 532 const uint8_t* src = reinterpret_cast<const uint8_t*>(bitmap.getPixels()); |
| 325 uint8_t* dst = reinterpret_cast<uint8_t*>(sk_malloc_throw(compressedDataSize )); | 533 uint8_t* dst = reinterpret_cast<uint8_t*>(sk_malloc_throw(compressedDataSize )); |
| 326 if (CompressBufferToFormat(dst, src, bitmap.colorType(), bitmap.width(), bit map.height(), | 534 if (CompressBufferToFormat(dst, src, bitmap.colorType(), bitmap.width(), bit map.height(), |
| 327 bitmap.rowBytes(), format)) { | 535 bitmap.rowBytes(), format)) { |
| 328 return SkData::NewFromMalloc(dst, compressedDataSize); | 536 return SkData::NewFromMalloc(dst, compressedDataSize); |
| 329 } | 537 } |
| 330 | 538 |
| 331 sk_free(dst); | 539 sk_free(dst); |
| 332 return NULL; | 540 return NULL; |
| 333 } | 541 } |
| 334 | 542 |
| 335 } // namespace SkTextureCompressor | 543 } // namespace SkTextureCompressor |
| OLD | NEW |