Index: net/spdy/spdy_priority_tree.h |
diff --git a/net/spdy/spdy_priority_tree.h b/net/spdy/spdy_priority_tree.h |
new file mode 100644 |
index 0000000000000000000000000000000000000000..19113d753a0349f5bebfac5c7b52e87c20b0b69e |
--- /dev/null |
+++ b/net/spdy/spdy_priority_tree.h |
@@ -0,0 +1,558 @@ |
+// Copyright (c) 2014 The Chromium Authors. All rights reserved. |
+// Use of this source code is governed by a BSD-style license that can be |
+// found in the LICENSE file. |
+ |
+#ifndef NET_SPDY_SPDY_PRIORITY_TREE_H_ |
+#define NET_SPDY_SPDY_PRIORITY_TREE_H_ |
+ |
+#include <cmath> |
+#include <list> |
+#include <map> |
+#include <queue> |
+#include <set> |
+ |
+#include "base/basictypes.h" |
+#include "base/containers/hash_tables.h" |
+#include "base/logging.h" |
+#include "base/memory/scoped_ptr.h" |
+ |
+namespace net { |
+ |
+// This data structure implements the HTTP2 prioritization data structure |
+// defined in draft standard: |
+// http://tools.ietf.org/html/draft-ietf-httpbis-http2-13 |
+// |
+// Nodes can be added and removed, and dependencies between them defined. Each |
+// node can have at most one parent and at most one child (forming a list), but |
+// there can be multiple lists, with each list root having its own priority. |
+// Individual nodes can also be marked as ready to read/write, and then the |
+// whole structure can be queried to pick the next node to read/write out of |
+// those ready. |
+// |
+// The NodeId type must be a POD that supports comparison (most |
+// likely, it will be a number). |
+ |
+namespace test { |
+template <typename NodeId> |
+class SpdyPriorityTreePeer; |
+} |
+ |
+const int kRootNodeId = 0; |
+const int kDefaultWeight = 16; |
+const int kMinWeight = 1; |
+const int kMaxWeight = 256; |
+ |
+template <typename NodeId> |
+class SpdyPriorityTree { |
+ typedef std::vector<std::pair<NodeId, float> > PriorityNodeList; |
+ |
+ public: |
+ SpdyPriorityTree(); |
+ ~SpdyPriorityTree(); |
+ |
+ typedef std::list<NodeId> List; |
+ struct Node { |
+ Node(); |
+ ~Node(); |
+ |
+ NodeId id; |
+ NodeId parent_id; |
+ int weight; // Weights can range between 1 and 256 (inclusive). |
+ // The total weight of this node's direct descendants. |
+ int total_child_weights; |
+ // The total weight of direct descendants that are writeable |
+ // (ready to write and not blocked). This value does not necessarily |
+ // reflect the current state of the tree; instead, we lazily update it |
+ // on calls to PropagateNodeState(node.id). |
+ int total_writeable_child_weights; |
+ List* child_list; // node ID's of children, if any |
+ bool blocked; // Is the associated stream write-blocked? |
+ bool ready; // Does the stream have data ready for writing? |
+ float priority; // The fraction of resources to dedicate to this node. |
+ }; |
+ |
+ // Orders in descending order of priority. |
+ struct NodePriorityComparator { |
+ bool operator ()(const std::pair<NodeId, float>& lhs, |
+ const std::pair<NodeId, float>& rhs); |
+ }; |
+ |
+ friend class test::SpdyPriorityTreePeer<NodeId>; |
+ |
+ // Return the number of nodes currently in the tree. |
+ int num_nodes() const; |
+ |
+ // Return true if the tree contains a node with the given ID. |
+ bool NodeExists(NodeId node_id) const; |
+ |
+ // Add a new node with the given weight and parent. Non-exclusive nodes |
+ // simply get added below the parent node. If exclusive = true, the node |
+ // becomes the parent's sole child and the parent's previous children |
+ // become the children of the new node. |
+ // Returns true on success. Returns false if the node already exists |
+ // in the tree, or if the parent node does not exist. |
+ bool AddNode(NodeId node_id, NodeId parent_id, int weight, bool exclusive); |
+ |
+ // Remove an existing node from the tree. Returns true on success, or |
+ // false if the node doesn't exist. |
+ bool RemoveNode(NodeId node_id); |
+ |
+ // Get the weight of the given node. |
+ int GetWeight(NodeId node_id) const; |
+ |
+ // Get the parent of the given node. If the node doesn't exist, or is a root |
+ // node (and thus has no parent), returns NodeId(). |
+ NodeId GetParent(NodeId node_id) const; |
+ |
+ // Get the child list of the given node. If the node doesn't exist, or has no |
+ // child, returns NULL. |
+ std::list<NodeId>* GetChildren(NodeId node_id) const; |
+ |
+ // Set the priority of the given node. |
+ bool SetWeight(NodeId node_id, int weight); |
+ |
+ // Set the parent of the given node. Returns true on success. |
+ // Returns false and has no effect if the node and/or the parent doesn't |
+ // exist. If the new parent is a descendant of the node (i.e. this would have |
+ // created a cycle) then we rearrange the topology of the tree as described |
+ // in the HTTP2 spec. |
+ bool SetParent(NodeId node_id, NodeId parent_id, bool exclusive); |
+ |
+ // Returns true if the node parent_id has child_id in its child_list. |
+ bool HasChild(NodeId parent_id, NodeId child_id) const; |
+ |
+ // Mark a node as blocked or unblocked. Return true on success, or false |
+ // if unable to mark the specified node. |
+ bool SetBlocked(NodeId node_id, bool blocked); |
+ |
+ // Mark whether or not a node is ready to write; i.e. whether there is |
+ // buffered data for the associated stream. Return true on success, or false |
+ // if unable to mark the specified node. |
+ bool SetReady(NodeId node_id, bool ready); |
+ |
+ // Return true if all internal invariants hold (useful for unit tests). |
+ // Unless there are bugs, this should always return true. |
+ bool ValidateInvariantsForTests() const; |
+ |
+ // Get the given node, or return NULL if it doesn't exist. |
+ const Node* FindNode(NodeId node_id) const; |
+ |
+ // Returns an ordered list of writeable nodes and their priorities. |
+ // Priority is calculated as: |
+ // parent's priority * (node's weight / sum of sibling weights) |
+ PriorityNodeList GetPriorityList(); |
+ |
+ protected: |
+ // Update the value of total_writeable_child_weights for the given node |
+ // to reflect the current state of the tree. |
+ void PropagateNodeState(NodeId node); |
+ |
+ private: |
+ typedef base::hash_map<NodeId, Node> NodeMap; |
+ |
+ NodeMap all_nodes_; // maps from node IDs to Node objects |
+ |
+ DISALLOW_COPY_AND_ASSIGN(SpdyPriorityTree); |
+}; |
+ |
+template <typename NodeId> |
+SpdyPriorityTree<NodeId>::SpdyPriorityTree() { |
+ Node* root_node = &all_nodes_[kRootNodeId]; |
+ root_node->id = kRootNodeId; |
+ root_node->weight = kDefaultWeight; |
+ root_node->parent_id = static_cast<NodeId>(kRootNodeId); |
+ root_node->child_list = new std::list<NodeId>; |
+ root_node->priority = 1.0; |
+ root_node->ready = true; |
+} |
+ |
+template <typename NodeId> |
+SpdyPriorityTree<NodeId>::~SpdyPriorityTree() {} |
+ |
+template <typename NodeId> |
+SpdyPriorityTree<NodeId>::Node::Node() : |
+ parent_id(kRootNodeId), |
+ weight(kDefaultWeight), |
+ total_child_weights(0), |
+ total_writeable_child_weights(0), |
+ child_list(), |
+ blocked(false), |
+ ready(false), |
+ priority(0) { |
+} |
+ |
+template <typename NodeId> |
+SpdyPriorityTree<NodeId>::Node::~Node() { |
+ delete child_list; |
+} |
+ |
+template <typename NodeId> |
+bool SpdyPriorityTree<NodeId>::NodePriorityComparator::operator ()( |
+ const std::pair<NodeId, float>& lhs, |
+ const std::pair<NodeId, float>& rhs) { |
+ return lhs.second > rhs.second; |
+} |
+ |
+template <typename NodeId> |
+int SpdyPriorityTree<NodeId>::num_nodes() const { |
+ return all_nodes_.size(); |
+} |
+ |
+template <typename NodeId> |
+bool SpdyPriorityTree<NodeId>::NodeExists(NodeId node_id) const { |
+ return all_nodes_.count(node_id) != 0; |
+} |
+ |
+template <typename NodeId> |
+bool SpdyPriorityTree<NodeId>::AddNode(NodeId node_id, |
+ NodeId parent_id, |
+ int weight, |
+ bool exclusive) { |
+ if (NodeExists(node_id) || !NodeExists(parent_id)) { |
+ return false; |
+ } |
+ if (weight < kMinWeight || weight > kMaxWeight) { |
+ return false; |
+ } |
+ Node* parent = &all_nodes_[parent_id]; |
+ Node* new_node = &all_nodes_[node_id]; |
+ new_node->id = node_id; |
+ new_node->weight = weight; |
+ new_node->parent_id = parent_id; |
+ if (exclusive) { |
+ // Move the parent's current children below the new node. |
+ new_node->child_list = parent->child_list; |
+ new_node->total_child_weights = parent->total_child_weights; |
+ // Update each child's parent_id. |
+ for (typename List::iterator it = new_node->child_list->begin(); |
+ it != new_node->child_list->end(); ++it) { |
+ Node* child = &all_nodes_[*it]; |
+ child->parent_id = node_id; |
+ } |
+ // Clear parent's old child data. |
+ parent->child_list = new std::list<NodeId>; |
+ parent->total_child_weights = 0; |
+ } else { |
+ new_node->child_list = new std::list<NodeId>; |
+ } |
+ // Add new node to parent. |
+ parent->child_list->push_back(node_id); |
+ parent->total_child_weights += weight; |
+ return true; |
+} |
+ |
+template <typename NodeId> |
+bool SpdyPriorityTree<NodeId>::RemoveNode(NodeId node_id) { |
+ if (node_id == static_cast<NodeId>(kRootNodeId) || !NodeExists(node_id)) { |
+ return false; |
+ } |
+ const Node& node = all_nodes_[node_id]; |
+ |
+ DCHECK(NodeExists(node.parent_id)); |
+ Node* parent = &all_nodes_[node.parent_id]; |
+ // Remove the node id from parent's child list. |
+ parent->child_list->remove(node_id); |
+ parent->total_child_weights -= node.weight; |
+ |
+ // Move the node's children to the parent's child list. |
+ if (node.child_list != NULL) { |
+ // Update each child's parent_id and weight. |
+ for (typename List::iterator it = node.child_list->begin(); |
+ it != node.child_list->end(); ++it) { |
+ Node* child = &all_nodes_[*it]; |
+ child->parent_id = node.parent_id; |
+ // Divide the removed node's weight among its children, rounding to the |
+ // nearest valid weight. |
+ float float_weight = node.weight * static_cast<float>(child->weight) / |
+ static_cast<float>(node.total_child_weights); |
+ int new_weight = std::floor(float_weight + 0.5); |
+ if (new_weight == 0) { |
+ new_weight = 1; |
+ } |
+ child->weight = new_weight; |
+ parent->total_child_weights += child->weight; |
+ } |
+ parent->child_list->splice(parent->child_list->end(), *node.child_list); |
+ } |
+ |
+ // Delete the node. |
+ all_nodes_.erase(node_id); |
+ return true; |
+} |
+ |
+template <typename NodeId> |
+int SpdyPriorityTree<NodeId>::GetWeight(NodeId node_id) const { |
+ const Node* node = FindNode(node_id); |
+ if (node != NULL) { |
+ return node->weight; |
+ } |
+ return 0; |
+} |
+ |
+template <typename NodeId> |
+NodeId SpdyPriorityTree<NodeId>::GetParent(NodeId node_id) const { |
+ const Node* node = FindNode(node_id); |
+ if (node != NULL && node->id != static_cast<NodeId>(kRootNodeId)) { |
+ return node->parent_id; |
+ } |
+ return static_cast<NodeId>(kRootNodeId); |
+} |
+ |
+template <typename NodeId> |
+std::list<NodeId>* SpdyPriorityTree<NodeId>::GetChildren(NodeId node_id) const { |
+ const Node* node = FindNode(node_id); |
+ if (node != NULL) { |
+ return node->child_list; |
+ } |
+ return NULL; |
+} |
+ |
+template <typename NodeId> |
+bool SpdyPriorityTree<NodeId>::SetWeight( |
+ NodeId node_id, int weight) { |
+ if (!NodeExists(node_id)) { |
+ return false; |
+ } |
+ if (weight < kMinWeight || weight > kMaxWeight) { |
+ return false; |
+ } |
+ |
+ Node* node = &all_nodes_[node_id]; |
+ Node* parent = &all_nodes_[node->parent_id]; |
+ |
+ parent->total_child_weights += (weight - node->weight); |
+ node->weight = weight; |
+ |
+ return true; |
+} |
+ |
+ |
+template <typename NodeId> |
+bool SpdyPriorityTree<NodeId>::SetParent( |
+ NodeId node_id, NodeId parent_id, bool exclusive) { |
+ if (!NodeExists(node_id) || !NodeExists(parent_id)) { |
+ return false; |
+ } |
+ if (node_id == parent_id) return false; |
+ |
+ Node* node = &all_nodes_[node_id]; |
+ Node* new_parent = &all_nodes_[parent_id]; |
+ // If the new parent is already the node's parent, we're done. |
+ if (node->parent_id == parent_id) { |
+ return true; |
+ } |
+ |
+ // Next, check to see if the new parent is currently a descendant |
+ // of the node. |
+ Node* last = new_parent; |
+ NodeId last_id = parent_id; |
+ bool cycle_exists = false; |
+ while (last->parent_id != static_cast<NodeId>(kRootNodeId)) { |
+ if (last->parent_id == node_id) { |
+ cycle_exists = true; |
+ break; |
+ } |
+ last_id = last->parent_id; |
+ DCHECK(NodeExists(last_id)); |
+ last = &all_nodes_[last_id]; |
+ } |
+ |
+ if (cycle_exists) { |
+ // The new parent moves to the level of the current node. |
+ SetParent(parent_id, node->parent_id, false); |
+ } |
+ |
+ // Remove node from old parent's child list. |
+ const NodeId old_parent_id = node->parent_id; |
+ DCHECK(NodeExists(old_parent_id)); |
+ Node* old_parent = &all_nodes_[old_parent_id]; |
+ old_parent->child_list->remove(node_id); |
+ old_parent->total_child_weights -= node->weight; |
+ |
+ // Make the change. |
+ node->parent_id = parent_id; |
+ new_parent->child_list->push_back(node_id); |
+ new_parent->total_child_weights += node->weight; |
+ return true; |
+} |
+ |
+template <typename NodeId> |
+bool SpdyPriorityTree<NodeId>::SetBlocked(NodeId node_id, bool blocked) { |
+ if (!NodeExists(node_id)) { |
+ return false; |
+ } |
+ |
+ Node* node = &all_nodes_[node_id]; |
+ node->blocked = blocked; |
+ return true; |
+} |
+ |
+template <typename NodeId> |
+bool SpdyPriorityTree<NodeId>::SetReady(NodeId node_id, bool ready) { |
+ if (!NodeExists(node_id)) { |
+ return false; |
+ } |
+ Node* node = &all_nodes_[node_id]; |
+ node->ready = ready; |
+ return true; |
+} |
+ |
+template <typename NodeId> |
+void SpdyPriorityTree<NodeId>::PropagateNodeState(NodeId node_id) { |
+ // Reset total_writeable_child_weights to its maximum value. |
+ Node* node = &all_nodes_[node_id]; |
+ node->total_writeable_child_weights = node->total_child_weights; |
+ for (typename List::iterator it = node->child_list->begin(); |
+ it != node->child_list->end(); ++it) { |
+ PropagateNodeState(*it); |
+ } |
+ if (node->total_writeable_child_weights == 0 && |
+ (node->blocked || !node->ready)) { |
+ // Tell the parent that this entire subtree is unwriteable. |
+ Node* parent = &all_nodes_[node->parent_id]; |
+ parent->total_writeable_child_weights -= node->weight; |
+ } |
+} |
+ |
+template <typename NodeId> |
+const typename SpdyPriorityTree<NodeId>::Node* |
+SpdyPriorityTree<NodeId>::FindNode(NodeId node_id) const { |
+ typename NodeMap::const_iterator iter = all_nodes_.find(node_id); |
+ if (iter == all_nodes_.end()) { |
+ return NULL; |
+ } |
+ return &iter->second; |
+} |
+ |
+template <typename NodeId> |
+bool SpdyPriorityTree<NodeId>::HasChild(NodeId parent_id, |
+ NodeId child_id) const { |
+ const Node* parent = FindNode(parent_id); |
+ return parent->child_list->end() != |
+ std::find(parent->child_list->begin(), |
+ parent->child_list->end(), |
+ child_id); |
+} |
+ |
+template <typename NodeId> |
+std::vector<std::pair<NodeId, float> > |
+SpdyPriorityTree<NodeId>::GetPriorityList() { |
+ typedef std::pair<NodeId, float> PriorityNode; |
+ typedef std::vector<PriorityNode> PriorityList; |
+ PriorityList priority_list; |
+ |
+ // Update total_writeable_child_weights to reflect the current |
+ // state of the tree. |
+ PropagateNodeState(kRootNodeId); |
+ |
+ List queue; |
+ const Node* root_node = FindNode(kRootNodeId); |
+ DCHECK(root_node->priority == 1.0); |
+ // Start by examining our top-level nodes. |
+ for (typename List::iterator it = root_node->child_list->begin(); |
+ it != root_node->child_list->end(); ++it) { |
+ queue.push_back(*it); |
+ } |
+ while (!queue.empty()) { |
+ NodeId current_node_id = queue.front(); |
+ Node* current_node = &all_nodes_[current_node_id]; |
+ const Node* parent_node = FindNode(current_node->parent_id); |
+ if (current_node->blocked || !current_node->ready) { |
+ if (current_node->total_writeable_child_weights > 0) { |
+ // This node isn't writeable, but it has writeable children. |
+ // Calculate the total fraction of resources we can allot |
+ // to this subtree. |
+ current_node->priority = parent_node->priority * |
+ (static_cast<float>(current_node->weight) / |
+ static_cast<float>(parent_node->total_writeable_child_weights)); |
+ // Examine the children. |
+ for (typename List::iterator it = current_node->child_list->begin(); |
+ it != current_node->child_list->end(); ++it) { |
+ queue.push_back(*it); |
+ } |
+ } else { |
+ // There's nothing to see in this subtree. |
+ current_node->priority = 0; |
+ } |
+ } else { |
+ // This node is writeable; calculate its priority. |
+ current_node->priority = parent_node->priority * |
+ (static_cast<float>(current_node->weight) / |
+ static_cast<float>(parent_node->total_writeable_child_weights)); |
+ // Add this node to the priority list. |
+ priority_list.push_back(PriorityNode(current_node_id, |
+ current_node->priority)); |
+ } |
+ // Remove this node from the queue. |
+ queue.pop_front(); |
+ } |
+ |
+ // Sort the nodes in descending order of priority. |
+ std::sort(priority_list.begin(), priority_list.end(), |
+ NodePriorityComparator()); |
+ |
+ return priority_list; |
+} |
+ |
+template <typename NodeId> |
+bool SpdyPriorityTree<NodeId>::ValidateInvariantsForTests() const { |
+ int total_nodes = 0; |
+ int nodes_visited = 0; |
+ // Iterate through all nodes in the map. |
+ for (typename NodeMap::const_iterator iter = all_nodes_.begin(); |
+ iter != all_nodes_.end(); ++iter) { |
+ ++total_nodes; |
+ ++nodes_visited; |
+ const Node& node = iter->second; |
+ // All nodes except the root should have a parent, and should appear in |
+ // the child_list of that parent. |
+ if (node.id != static_cast<NodeId>(kRootNodeId) && |
+ (!NodeExists(node.parent_id) || |
+ !HasChild(node.parent_id, node.id))) { |
+ DLOG(INFO) << "Parent node " << node.parent_id |
+ << " does not exist, or does not list node " << node.id |
+ << " as its child."; |
+ return false; |
+ } |
+ |
+ if (!node.child_list->empty()) { |
+ int total_child_weights = 0; |
+ // Iterate through the node's children. |
+ for (typename List::iterator it = node.child_list->begin(); |
+ it != node.child_list->end(); ++it) { |
+ ++nodes_visited; |
+ // Each node in the list should exist and should have this node |
+ // set as its parent. |
+ if (!NodeExists(*it) || node.id != GetParent(*it)) { |
+ DLOG(INFO) << "Child node " << *it << " does not exist, " |
+ << "or does not list " << node.id << " as its parent."; |
+ return false; |
+ } |
+ const Node* child = FindNode(*it); |
+ total_child_weights += child->weight; |
+ } |
+ // Verify that total_child_weights is correct. |
+ if (total_child_weights != node.total_child_weights) { |
+ DLOG(INFO) << "Child weight totals do not agree. For node " << node.id |
+ << " total_child_weights has value " |
+ << node.total_child_weights |
+ << ", expected " << total_child_weights; |
+ return false; |
+ } |
+ } |
+ } |
+ |
+ // Make sure num_nodes reflects the total number of nodes the map contains. |
+ if (total_nodes != num_nodes()) { |
+ DLOG(INFO) << "Map contains incorrect number of nodes."; |
+ return false; |
+ } |
+ // Validate the validation function; we should have visited each node twice |
+ // (except for the root) |
+ DCHECK(nodes_visited == 2*num_nodes() - 1); |
+ return true; |
+} |
+ |
+} // namespace net |
+ |
+#endif // NET_SPDY_SPDY_PRIORITY_TREE_H_ |