Index: src/platform/time.cc |
diff --git a/src/platform/time.cc b/src/platform/time.cc |
deleted file mode 100644 |
index 09b6f8a470cd86302104620f4dc74cfebf28e434..0000000000000000000000000000000000000000 |
--- a/src/platform/time.cc |
+++ /dev/null |
@@ -1,570 +0,0 @@ |
-// Copyright 2013 the V8 project authors. All rights reserved. |
-// Use of this source code is governed by a BSD-style license that can be |
-// found in the LICENSE file. |
- |
-#include "src/platform/time.h" |
- |
-#if V8_OS_POSIX |
-#include <sys/time.h> |
-#endif |
-#if V8_OS_MACOSX |
-#include <mach/mach_time.h> |
-#endif |
- |
-#include <string.h> |
- |
-#if V8_OS_WIN |
-#include "src/base/lazy-instance.h" |
-#include "src/base/win32-headers.h" |
-#endif |
-#include "src/checks.h" |
-#include "src/cpu.h" |
-#include "src/platform.h" |
- |
-namespace v8 { |
-namespace internal { |
- |
-TimeDelta TimeDelta::FromDays(int days) { |
- return TimeDelta(days * Time::kMicrosecondsPerDay); |
-} |
- |
- |
-TimeDelta TimeDelta::FromHours(int hours) { |
- return TimeDelta(hours * Time::kMicrosecondsPerHour); |
-} |
- |
- |
-TimeDelta TimeDelta::FromMinutes(int minutes) { |
- return TimeDelta(minutes * Time::kMicrosecondsPerMinute); |
-} |
- |
- |
-TimeDelta TimeDelta::FromSeconds(int64_t seconds) { |
- return TimeDelta(seconds * Time::kMicrosecondsPerSecond); |
-} |
- |
- |
-TimeDelta TimeDelta::FromMilliseconds(int64_t milliseconds) { |
- return TimeDelta(milliseconds * Time::kMicrosecondsPerMillisecond); |
-} |
- |
- |
-TimeDelta TimeDelta::FromNanoseconds(int64_t nanoseconds) { |
- return TimeDelta(nanoseconds / Time::kNanosecondsPerMicrosecond); |
-} |
- |
- |
-int TimeDelta::InDays() const { |
- return static_cast<int>(delta_ / Time::kMicrosecondsPerDay); |
-} |
- |
- |
-int TimeDelta::InHours() const { |
- return static_cast<int>(delta_ / Time::kMicrosecondsPerHour); |
-} |
- |
- |
-int TimeDelta::InMinutes() const { |
- return static_cast<int>(delta_ / Time::kMicrosecondsPerMinute); |
-} |
- |
- |
-double TimeDelta::InSecondsF() const { |
- return static_cast<double>(delta_) / Time::kMicrosecondsPerSecond; |
-} |
- |
- |
-int64_t TimeDelta::InSeconds() const { |
- return delta_ / Time::kMicrosecondsPerSecond; |
-} |
- |
- |
-double TimeDelta::InMillisecondsF() const { |
- return static_cast<double>(delta_) / Time::kMicrosecondsPerMillisecond; |
-} |
- |
- |
-int64_t TimeDelta::InMilliseconds() const { |
- return delta_ / Time::kMicrosecondsPerMillisecond; |
-} |
- |
- |
-int64_t TimeDelta::InNanoseconds() const { |
- return delta_ * Time::kNanosecondsPerMicrosecond; |
-} |
- |
- |
-#if V8_OS_MACOSX |
- |
-TimeDelta TimeDelta::FromMachTimespec(struct mach_timespec ts) { |
- ASSERT_GE(ts.tv_nsec, 0); |
- ASSERT_LT(ts.tv_nsec, |
- static_cast<long>(Time::kNanosecondsPerSecond)); // NOLINT |
- return TimeDelta(ts.tv_sec * Time::kMicrosecondsPerSecond + |
- ts.tv_nsec / Time::kNanosecondsPerMicrosecond); |
-} |
- |
- |
-struct mach_timespec TimeDelta::ToMachTimespec() const { |
- struct mach_timespec ts; |
- ASSERT(delta_ >= 0); |
- ts.tv_sec = delta_ / Time::kMicrosecondsPerSecond; |
- ts.tv_nsec = (delta_ % Time::kMicrosecondsPerSecond) * |
- Time::kNanosecondsPerMicrosecond; |
- return ts; |
-} |
- |
-#endif // V8_OS_MACOSX |
- |
- |
-#if V8_OS_POSIX |
- |
-TimeDelta TimeDelta::FromTimespec(struct timespec ts) { |
- ASSERT_GE(ts.tv_nsec, 0); |
- ASSERT_LT(ts.tv_nsec, |
- static_cast<long>(Time::kNanosecondsPerSecond)); // NOLINT |
- return TimeDelta(ts.tv_sec * Time::kMicrosecondsPerSecond + |
- ts.tv_nsec / Time::kNanosecondsPerMicrosecond); |
-} |
- |
- |
-struct timespec TimeDelta::ToTimespec() const { |
- struct timespec ts; |
- ts.tv_sec = delta_ / Time::kMicrosecondsPerSecond; |
- ts.tv_nsec = (delta_ % Time::kMicrosecondsPerSecond) * |
- Time::kNanosecondsPerMicrosecond; |
- return ts; |
-} |
- |
-#endif // V8_OS_POSIX |
- |
- |
-#if V8_OS_WIN |
- |
-// We implement time using the high-resolution timers so that we can get |
-// timeouts which are smaller than 10-15ms. To avoid any drift, we |
-// periodically resync the internal clock to the system clock. |
-class Clock V8_FINAL { |
- public: |
- Clock() : initial_ticks_(GetSystemTicks()), initial_time_(GetSystemTime()) {} |
- |
- Time Now() { |
- // Time between resampling the un-granular clock for this API (1 minute). |
- const TimeDelta kMaxElapsedTime = TimeDelta::FromMinutes(1); |
- |
- LockGuard<Mutex> lock_guard(&mutex_); |
- |
- // Determine current time and ticks. |
- TimeTicks ticks = GetSystemTicks(); |
- Time time = GetSystemTime(); |
- |
- // Check if we need to synchronize with the system clock due to a backwards |
- // time change or the amount of time elapsed. |
- TimeDelta elapsed = ticks - initial_ticks_; |
- if (time < initial_time_ || elapsed > kMaxElapsedTime) { |
- initial_ticks_ = ticks; |
- initial_time_ = time; |
- return time; |
- } |
- |
- return initial_time_ + elapsed; |
- } |
- |
- Time NowFromSystemTime() { |
- LockGuard<Mutex> lock_guard(&mutex_); |
- initial_ticks_ = GetSystemTicks(); |
- initial_time_ = GetSystemTime(); |
- return initial_time_; |
- } |
- |
- private: |
- static TimeTicks GetSystemTicks() { |
- return TimeTicks::Now(); |
- } |
- |
- static Time GetSystemTime() { |
- FILETIME ft; |
- ::GetSystemTimeAsFileTime(&ft); |
- return Time::FromFiletime(ft); |
- } |
- |
- TimeTicks initial_ticks_; |
- Time initial_time_; |
- Mutex mutex_; |
-}; |
- |
- |
-static base::LazyStaticInstance<Clock, base::DefaultConstructTrait<Clock>, |
- base::ThreadSafeInitOnceTrait>::type clock = |
- LAZY_STATIC_INSTANCE_INITIALIZER; |
- |
- |
-Time Time::Now() { |
- return clock.Pointer()->Now(); |
-} |
- |
- |
-Time Time::NowFromSystemTime() { |
- return clock.Pointer()->NowFromSystemTime(); |
-} |
- |
- |
-// Time between windows epoch and standard epoch. |
-static const int64_t kTimeToEpochInMicroseconds = V8_INT64_C(11644473600000000); |
- |
- |
-Time Time::FromFiletime(FILETIME ft) { |
- if (ft.dwLowDateTime == 0 && ft.dwHighDateTime == 0) { |
- return Time(); |
- } |
- if (ft.dwLowDateTime == std::numeric_limits<DWORD>::max() && |
- ft.dwHighDateTime == std::numeric_limits<DWORD>::max()) { |
- return Max(); |
- } |
- int64_t us = (static_cast<uint64_t>(ft.dwLowDateTime) + |
- (static_cast<uint64_t>(ft.dwHighDateTime) << 32)) / 10; |
- return Time(us - kTimeToEpochInMicroseconds); |
-} |
- |
- |
-FILETIME Time::ToFiletime() const { |
- ASSERT(us_ >= 0); |
- FILETIME ft; |
- if (IsNull()) { |
- ft.dwLowDateTime = 0; |
- ft.dwHighDateTime = 0; |
- return ft; |
- } |
- if (IsMax()) { |
- ft.dwLowDateTime = std::numeric_limits<DWORD>::max(); |
- ft.dwHighDateTime = std::numeric_limits<DWORD>::max(); |
- return ft; |
- } |
- uint64_t us = static_cast<uint64_t>(us_ + kTimeToEpochInMicroseconds) * 10; |
- ft.dwLowDateTime = static_cast<DWORD>(us); |
- ft.dwHighDateTime = static_cast<DWORD>(us >> 32); |
- return ft; |
-} |
- |
-#elif V8_OS_POSIX |
- |
-Time Time::Now() { |
- struct timeval tv; |
- int result = gettimeofday(&tv, NULL); |
- ASSERT_EQ(0, result); |
- USE(result); |
- return FromTimeval(tv); |
-} |
- |
- |
-Time Time::NowFromSystemTime() { |
- return Now(); |
-} |
- |
- |
-Time Time::FromTimespec(struct timespec ts) { |
- ASSERT(ts.tv_nsec >= 0); |
- ASSERT(ts.tv_nsec < static_cast<long>(kNanosecondsPerSecond)); // NOLINT |
- if (ts.tv_nsec == 0 && ts.tv_sec == 0) { |
- return Time(); |
- } |
- if (ts.tv_nsec == static_cast<long>(kNanosecondsPerSecond - 1) && // NOLINT |
- ts.tv_sec == std::numeric_limits<time_t>::max()) { |
- return Max(); |
- } |
- return Time(ts.tv_sec * kMicrosecondsPerSecond + |
- ts.tv_nsec / kNanosecondsPerMicrosecond); |
-} |
- |
- |
-struct timespec Time::ToTimespec() const { |
- struct timespec ts; |
- if (IsNull()) { |
- ts.tv_sec = 0; |
- ts.tv_nsec = 0; |
- return ts; |
- } |
- if (IsMax()) { |
- ts.tv_sec = std::numeric_limits<time_t>::max(); |
- ts.tv_nsec = static_cast<long>(kNanosecondsPerSecond - 1); // NOLINT |
- return ts; |
- } |
- ts.tv_sec = us_ / kMicrosecondsPerSecond; |
- ts.tv_nsec = (us_ % kMicrosecondsPerSecond) * kNanosecondsPerMicrosecond; |
- return ts; |
-} |
- |
- |
-Time Time::FromTimeval(struct timeval tv) { |
- ASSERT(tv.tv_usec >= 0); |
- ASSERT(tv.tv_usec < static_cast<suseconds_t>(kMicrosecondsPerSecond)); |
- if (tv.tv_usec == 0 && tv.tv_sec == 0) { |
- return Time(); |
- } |
- if (tv.tv_usec == static_cast<suseconds_t>(kMicrosecondsPerSecond - 1) && |
- tv.tv_sec == std::numeric_limits<time_t>::max()) { |
- return Max(); |
- } |
- return Time(tv.tv_sec * kMicrosecondsPerSecond + tv.tv_usec); |
-} |
- |
- |
-struct timeval Time::ToTimeval() const { |
- struct timeval tv; |
- if (IsNull()) { |
- tv.tv_sec = 0; |
- tv.tv_usec = 0; |
- return tv; |
- } |
- if (IsMax()) { |
- tv.tv_sec = std::numeric_limits<time_t>::max(); |
- tv.tv_usec = static_cast<suseconds_t>(kMicrosecondsPerSecond - 1); |
- return tv; |
- } |
- tv.tv_sec = us_ / kMicrosecondsPerSecond; |
- tv.tv_usec = us_ % kMicrosecondsPerSecond; |
- return tv; |
-} |
- |
-#endif // V8_OS_WIN |
- |
- |
-Time Time::FromJsTime(double ms_since_epoch) { |
- // The epoch is a valid time, so this constructor doesn't interpret |
- // 0 as the null time. |
- if (ms_since_epoch == std::numeric_limits<double>::max()) { |
- return Max(); |
- } |
- return Time( |
- static_cast<int64_t>(ms_since_epoch * kMicrosecondsPerMillisecond)); |
-} |
- |
- |
-double Time::ToJsTime() const { |
- if (IsNull()) { |
- // Preserve 0 so the invalid result doesn't depend on the platform. |
- return 0; |
- } |
- if (IsMax()) { |
- // Preserve max without offset to prevent overflow. |
- return std::numeric_limits<double>::max(); |
- } |
- return static_cast<double>(us_) / kMicrosecondsPerMillisecond; |
-} |
- |
- |
-#if V8_OS_WIN |
- |
-class TickClock { |
- public: |
- virtual ~TickClock() {} |
- virtual int64_t Now() = 0; |
- virtual bool IsHighResolution() = 0; |
-}; |
- |
- |
-// Overview of time counters: |
-// (1) CPU cycle counter. (Retrieved via RDTSC) |
-// The CPU counter provides the highest resolution time stamp and is the least |
-// expensive to retrieve. However, the CPU counter is unreliable and should not |
-// be used in production. Its biggest issue is that it is per processor and it |
-// is not synchronized between processors. Also, on some computers, the counters |
-// will change frequency due to thermal and power changes, and stop in some |
-// states. |
-// |
-// (2) QueryPerformanceCounter (QPC). The QPC counter provides a high- |
-// resolution (100 nanoseconds) time stamp but is comparatively more expensive |
-// to retrieve. What QueryPerformanceCounter actually does is up to the HAL. |
-// (with some help from ACPI). |
-// According to http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx |
-// in the worst case, it gets the counter from the rollover interrupt on the |
-// programmable interrupt timer. In best cases, the HAL may conclude that the |
-// RDTSC counter runs at a constant frequency, then it uses that instead. On |
-// multiprocessor machines, it will try to verify the values returned from |
-// RDTSC on each processor are consistent with each other, and apply a handful |
-// of workarounds for known buggy hardware. In other words, QPC is supposed to |
-// give consistent result on a multiprocessor computer, but it is unreliable in |
-// reality due to bugs in BIOS or HAL on some, especially old computers. |
-// With recent updates on HAL and newer BIOS, QPC is getting more reliable but |
-// it should be used with caution. |
-// |
-// (3) System time. The system time provides a low-resolution (typically 10ms |
-// to 55 milliseconds) time stamp but is comparatively less expensive to |
-// retrieve and more reliable. |
-class HighResolutionTickClock V8_FINAL : public TickClock { |
- public: |
- explicit HighResolutionTickClock(int64_t ticks_per_second) |
- : ticks_per_second_(ticks_per_second) { |
- ASSERT_LT(0, ticks_per_second); |
- } |
- virtual ~HighResolutionTickClock() {} |
- |
- virtual int64_t Now() V8_OVERRIDE { |
- LARGE_INTEGER now; |
- BOOL result = QueryPerformanceCounter(&now); |
- ASSERT(result); |
- USE(result); |
- |
- // Intentionally calculate microseconds in a round about manner to avoid |
- // overflow and precision issues. Think twice before simplifying! |
- int64_t whole_seconds = now.QuadPart / ticks_per_second_; |
- int64_t leftover_ticks = now.QuadPart % ticks_per_second_; |
- int64_t ticks = (whole_seconds * Time::kMicrosecondsPerSecond) + |
- ((leftover_ticks * Time::kMicrosecondsPerSecond) / ticks_per_second_); |
- |
- // Make sure we never return 0 here, so that TimeTicks::HighResolutionNow() |
- // will never return 0. |
- return ticks + 1; |
- } |
- |
- virtual bool IsHighResolution() V8_OVERRIDE { |
- return true; |
- } |
- |
- private: |
- int64_t ticks_per_second_; |
-}; |
- |
- |
-class RolloverProtectedTickClock V8_FINAL : public TickClock { |
- public: |
- // We initialize rollover_ms_ to 1 to ensure that we will never |
- // return 0 from TimeTicks::HighResolutionNow() and TimeTicks::Now() below. |
- RolloverProtectedTickClock() : last_seen_now_(0), rollover_ms_(1) {} |
- virtual ~RolloverProtectedTickClock() {} |
- |
- virtual int64_t Now() V8_OVERRIDE { |
- LockGuard<Mutex> lock_guard(&mutex_); |
- // We use timeGetTime() to implement TimeTicks::Now(), which rolls over |
- // every ~49.7 days. We try to track rollover ourselves, which works if |
- // TimeTicks::Now() is called at least every 49 days. |
- // Note that we do not use GetTickCount() here, since timeGetTime() gives |
- // more predictable delta values, as described here: |
- // http://blogs.msdn.com/b/larryosterman/archive/2009/09/02/what-s-the-difference-between-gettickcount-and-timegettime.aspx |
- // timeGetTime() provides 1ms granularity when combined with |
- // timeBeginPeriod(). If the host application for V8 wants fast timers, it |
- // can use timeBeginPeriod() to increase the resolution. |
- DWORD now = timeGetTime(); |
- if (now < last_seen_now_) { |
- rollover_ms_ += V8_INT64_C(0x100000000); // ~49.7 days. |
- } |
- last_seen_now_ = now; |
- return (now + rollover_ms_) * Time::kMicrosecondsPerMillisecond; |
- } |
- |
- virtual bool IsHighResolution() V8_OVERRIDE { |
- return false; |
- } |
- |
- private: |
- Mutex mutex_; |
- DWORD last_seen_now_; |
- int64_t rollover_ms_; |
-}; |
- |
- |
-static base::LazyStaticInstance< |
- RolloverProtectedTickClock, |
- base::DefaultConstructTrait<RolloverProtectedTickClock>, |
- base::ThreadSafeInitOnceTrait>::type tick_clock = |
- LAZY_STATIC_INSTANCE_INITIALIZER; |
- |
- |
-struct CreateHighResTickClockTrait { |
- static TickClock* Create() { |
- // Check if the installed hardware supports a high-resolution performance |
- // counter, and if not fallback to the low-resolution tick clock. |
- LARGE_INTEGER ticks_per_second; |
- if (!QueryPerformanceFrequency(&ticks_per_second)) { |
- return tick_clock.Pointer(); |
- } |
- |
- // On Athlon X2 CPUs (e.g. model 15) the QueryPerformanceCounter |
- // is unreliable, fallback to the low-resolution tick clock. |
- CPU cpu; |
- if (strcmp(cpu.vendor(), "AuthenticAMD") == 0 && cpu.family() == 15) { |
- return tick_clock.Pointer(); |
- } |
- |
- return new HighResolutionTickClock(ticks_per_second.QuadPart); |
- } |
-}; |
- |
- |
-static base::LazyDynamicInstance<TickClock, |
- CreateHighResTickClockTrait, |
- base::ThreadSafeInitOnceTrait>::type high_res_tick_clock = |
- LAZY_DYNAMIC_INSTANCE_INITIALIZER; |
- |
- |
-TimeTicks TimeTicks::Now() { |
- // Make sure we never return 0 here. |
- TimeTicks ticks(tick_clock.Pointer()->Now()); |
- ASSERT(!ticks.IsNull()); |
- return ticks; |
-} |
- |
- |
-TimeTicks TimeTicks::HighResolutionNow() { |
- // Make sure we never return 0 here. |
- TimeTicks ticks(high_res_tick_clock.Pointer()->Now()); |
- ASSERT(!ticks.IsNull()); |
- return ticks; |
-} |
- |
- |
-// static |
-bool TimeTicks::IsHighResolutionClockWorking() { |
- return high_res_tick_clock.Pointer()->IsHighResolution(); |
-} |
- |
-#else // V8_OS_WIN |
- |
-TimeTicks TimeTicks::Now() { |
- return HighResolutionNow(); |
-} |
- |
- |
-TimeTicks TimeTicks::HighResolutionNow() { |
- int64_t ticks; |
-#if V8_OS_MACOSX |
- static struct mach_timebase_info info; |
- if (info.denom == 0) { |
- kern_return_t result = mach_timebase_info(&info); |
- ASSERT_EQ(KERN_SUCCESS, result); |
- USE(result); |
- } |
- ticks = (mach_absolute_time() / Time::kNanosecondsPerMicrosecond * |
- info.numer / info.denom); |
-#elif V8_OS_SOLARIS |
- ticks = (gethrtime() / Time::kNanosecondsPerMicrosecond); |
-#elif V8_LIBRT_NOT_AVAILABLE |
- // TODO(bmeurer): This is a temporary hack to support cross-compiling |
- // Chrome for Android in AOSP. Remove this once AOSP is fixed, also |
- // cleanup the tools/gyp/v8.gyp file. |
- struct timeval tv; |
- int result = gettimeofday(&tv, NULL); |
- ASSERT_EQ(0, result); |
- USE(result); |
- ticks = (tv.tv_sec * Time::kMicrosecondsPerSecond + tv.tv_usec); |
-#elif V8_OS_POSIX |
- struct timespec ts; |
- int result = clock_gettime(CLOCK_MONOTONIC, &ts); |
- ASSERT_EQ(0, result); |
- USE(result); |
- ticks = (ts.tv_sec * Time::kMicrosecondsPerSecond + |
- ts.tv_nsec / Time::kNanosecondsPerMicrosecond); |
-#endif // V8_OS_MACOSX |
- // Make sure we never return 0 here. |
- return TimeTicks(ticks + 1); |
-} |
- |
- |
-// static |
-bool TimeTicks::IsHighResolutionClockWorking() { |
- return true; |
-} |
- |
-#endif // V8_OS_WIN |
- |
-} } // namespace v8::internal |