Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(48)

Side by Side Diff: src/platform-win32.cc

Issue 358363002: Move platform abstraction to base library (Closed) Base URL: https://v8.googlecode.com/svn/branches/bleeding_edge
Patch Set: updates Created 6 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
OLDNEW
(Empty)
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 // Platform-specific code for Win32.
6
7 // Secure API functions are not available using MinGW with msvcrt.dll
8 // on Windows XP. Make sure MINGW_HAS_SECURE_API is not defined to
9 // disable definition of secure API functions in standard headers that
10 // would conflict with our own implementation.
11 #ifdef __MINGW32__
12 #include <_mingw.h>
13 #ifdef MINGW_HAS_SECURE_API
14 #undef MINGW_HAS_SECURE_API
15 #endif // MINGW_HAS_SECURE_API
16 #endif // __MINGW32__
17
18 #include "src/base/win32-headers.h"
19
20 #include "src/base/lazy-instance.h"
21 #include "src/platform.h"
22 #include "src/platform/time.h"
23 #include "src/utils.h"
24 #include "src/utils/random-number-generator.h"
25
26 #ifdef _MSC_VER
27
28 // Case-insensitive bounded string comparisons. Use stricmp() on Win32. Usually
29 // defined in strings.h.
30 int strncasecmp(const char* s1, const char* s2, int n) {
31 return _strnicmp(s1, s2, n);
32 }
33
34 #endif // _MSC_VER
35
36
37 // Extra functions for MinGW. Most of these are the _s functions which are in
38 // the Microsoft Visual Studio C++ CRT.
39 #ifdef __MINGW32__
40
41
42 #ifndef __MINGW64_VERSION_MAJOR
43
44 #define _TRUNCATE 0
45 #define STRUNCATE 80
46
47 inline void MemoryBarrier() {
48 int barrier = 0;
49 __asm__ __volatile__("xchgl %%eax,%0 ":"=r" (barrier));
50 }
51
52 #endif // __MINGW64_VERSION_MAJOR
53
54
55 int localtime_s(tm* out_tm, const time_t* time) {
56 tm* posix_local_time_struct = localtime(time);
57 if (posix_local_time_struct == NULL) return 1;
58 *out_tm = *posix_local_time_struct;
59 return 0;
60 }
61
62
63 int fopen_s(FILE** pFile, const char* filename, const char* mode) {
64 *pFile = fopen(filename, mode);
65 return *pFile != NULL ? 0 : 1;
66 }
67
68 int _vsnprintf_s(char* buffer, size_t sizeOfBuffer, size_t count,
69 const char* format, va_list argptr) {
70 ASSERT(count == _TRUNCATE);
71 return _vsnprintf(buffer, sizeOfBuffer, format, argptr);
72 }
73
74
75 int strncpy_s(char* dest, size_t dest_size, const char* source, size_t count) {
76 CHECK(source != NULL);
77 CHECK(dest != NULL);
78 CHECK_GT(dest_size, 0);
79
80 if (count == _TRUNCATE) {
81 while (dest_size > 0 && *source != 0) {
82 *(dest++) = *(source++);
83 --dest_size;
84 }
85 if (dest_size == 0) {
86 *(dest - 1) = 0;
87 return STRUNCATE;
88 }
89 } else {
90 while (dest_size > 0 && count > 0 && *source != 0) {
91 *(dest++) = *(source++);
92 --dest_size;
93 --count;
94 }
95 }
96 CHECK_GT(dest_size, 0);
97 *dest = 0;
98 return 0;
99 }
100
101 #endif // __MINGW32__
102
103 namespace v8 {
104 namespace internal {
105
106 namespace {
107
108 bool g_hard_abort = false;
109
110 } // namespace
111
112 intptr_t OS::MaxVirtualMemory() {
113 return 0;
114 }
115
116
117 class TimezoneCache {
118 public:
119 TimezoneCache() : initialized_(false) { }
120
121 void Clear() {
122 initialized_ = false;
123 }
124
125 // Initialize timezone information. The timezone information is obtained from
126 // windows. If we cannot get the timezone information we fall back to CET.
127 void InitializeIfNeeded() {
128 // Just return if timezone information has already been initialized.
129 if (initialized_) return;
130
131 // Initialize POSIX time zone data.
132 _tzset();
133 // Obtain timezone information from operating system.
134 memset(&tzinfo_, 0, sizeof(tzinfo_));
135 if (GetTimeZoneInformation(&tzinfo_) == TIME_ZONE_ID_INVALID) {
136 // If we cannot get timezone information we fall back to CET.
137 tzinfo_.Bias = -60;
138 tzinfo_.StandardDate.wMonth = 10;
139 tzinfo_.StandardDate.wDay = 5;
140 tzinfo_.StandardDate.wHour = 3;
141 tzinfo_.StandardBias = 0;
142 tzinfo_.DaylightDate.wMonth = 3;
143 tzinfo_.DaylightDate.wDay = 5;
144 tzinfo_.DaylightDate.wHour = 2;
145 tzinfo_.DaylightBias = -60;
146 }
147
148 // Make standard and DST timezone names.
149 WideCharToMultiByte(CP_UTF8, 0, tzinfo_.StandardName, -1,
150 std_tz_name_, kTzNameSize, NULL, NULL);
151 std_tz_name_[kTzNameSize - 1] = '\0';
152 WideCharToMultiByte(CP_UTF8, 0, tzinfo_.DaylightName, -1,
153 dst_tz_name_, kTzNameSize, NULL, NULL);
154 dst_tz_name_[kTzNameSize - 1] = '\0';
155
156 // If OS returned empty string or resource id (like "@tzres.dll,-211")
157 // simply guess the name from the UTC bias of the timezone.
158 // To properly resolve the resource identifier requires a library load,
159 // which is not possible in a sandbox.
160 if (std_tz_name_[0] == '\0' || std_tz_name_[0] == '@') {
161 OS::SNPrintF(std_tz_name_, kTzNameSize - 1,
162 "%s Standard Time",
163 GuessTimezoneNameFromBias(tzinfo_.Bias));
164 }
165 if (dst_tz_name_[0] == '\0' || dst_tz_name_[0] == '@') {
166 OS::SNPrintF(dst_tz_name_, kTzNameSize - 1,
167 "%s Daylight Time",
168 GuessTimezoneNameFromBias(tzinfo_.Bias));
169 }
170 // Timezone information initialized.
171 initialized_ = true;
172 }
173
174 // Guess the name of the timezone from the bias.
175 // The guess is very biased towards the northern hemisphere.
176 const char* GuessTimezoneNameFromBias(int bias) {
177 static const int kHour = 60;
178 switch (-bias) {
179 case -9*kHour: return "Alaska";
180 case -8*kHour: return "Pacific";
181 case -7*kHour: return "Mountain";
182 case -6*kHour: return "Central";
183 case -5*kHour: return "Eastern";
184 case -4*kHour: return "Atlantic";
185 case 0*kHour: return "GMT";
186 case +1*kHour: return "Central Europe";
187 case +2*kHour: return "Eastern Europe";
188 case +3*kHour: return "Russia";
189 case +5*kHour + 30: return "India";
190 case +8*kHour: return "China";
191 case +9*kHour: return "Japan";
192 case +12*kHour: return "New Zealand";
193 default: return "Local";
194 }
195 }
196
197
198 private:
199 static const int kTzNameSize = 128;
200 bool initialized_;
201 char std_tz_name_[kTzNameSize];
202 char dst_tz_name_[kTzNameSize];
203 TIME_ZONE_INFORMATION tzinfo_;
204 friend class Win32Time;
205 };
206
207
208 // ----------------------------------------------------------------------------
209 // The Time class represents time on win32. A timestamp is represented as
210 // a 64-bit integer in 100 nanoseconds since January 1, 1601 (UTC). JavaScript
211 // timestamps are represented as a doubles in milliseconds since 00:00:00 UTC,
212 // January 1, 1970.
213
214 class Win32Time {
215 public:
216 // Constructors.
217 Win32Time();
218 explicit Win32Time(double jstime);
219 Win32Time(int year, int mon, int day, int hour, int min, int sec);
220
221 // Convert timestamp to JavaScript representation.
222 double ToJSTime();
223
224 // Set timestamp to current time.
225 void SetToCurrentTime();
226
227 // Returns the local timezone offset in milliseconds east of UTC. This is
228 // the number of milliseconds you must add to UTC to get local time, i.e.
229 // LocalOffset(CET) = 3600000 and LocalOffset(PST) = -28800000. This
230 // routine also takes into account whether daylight saving is effect
231 // at the time.
232 int64_t LocalOffset(TimezoneCache* cache);
233
234 // Returns the daylight savings time offset for the time in milliseconds.
235 int64_t DaylightSavingsOffset(TimezoneCache* cache);
236
237 // Returns a string identifying the current timezone for the
238 // timestamp taking into account daylight saving.
239 char* LocalTimezone(TimezoneCache* cache);
240
241 private:
242 // Constants for time conversion.
243 static const int64_t kTimeEpoc = 116444736000000000LL;
244 static const int64_t kTimeScaler = 10000;
245 static const int64_t kMsPerMinute = 60000;
246
247 // Constants for timezone information.
248 static const bool kShortTzNames = false;
249
250 // Return whether or not daylight savings time is in effect at this time.
251 bool InDST(TimezoneCache* cache);
252
253 // Accessor for FILETIME representation.
254 FILETIME& ft() { return time_.ft_; }
255
256 // Accessor for integer representation.
257 int64_t& t() { return time_.t_; }
258
259 // Although win32 uses 64-bit integers for representing timestamps,
260 // these are packed into a FILETIME structure. The FILETIME structure
261 // is just a struct representing a 64-bit integer. The TimeStamp union
262 // allows access to both a FILETIME and an integer representation of
263 // the timestamp.
264 union TimeStamp {
265 FILETIME ft_;
266 int64_t t_;
267 };
268
269 TimeStamp time_;
270 };
271
272
273 // Initialize timestamp to start of epoc.
274 Win32Time::Win32Time() {
275 t() = 0;
276 }
277
278
279 // Initialize timestamp from a JavaScript timestamp.
280 Win32Time::Win32Time(double jstime) {
281 t() = static_cast<int64_t>(jstime) * kTimeScaler + kTimeEpoc;
282 }
283
284
285 // Initialize timestamp from date/time components.
286 Win32Time::Win32Time(int year, int mon, int day, int hour, int min, int sec) {
287 SYSTEMTIME st;
288 st.wYear = year;
289 st.wMonth = mon;
290 st.wDay = day;
291 st.wHour = hour;
292 st.wMinute = min;
293 st.wSecond = sec;
294 st.wMilliseconds = 0;
295 SystemTimeToFileTime(&st, &ft());
296 }
297
298
299 // Convert timestamp to JavaScript timestamp.
300 double Win32Time::ToJSTime() {
301 return static_cast<double>((t() - kTimeEpoc) / kTimeScaler);
302 }
303
304
305 // Set timestamp to current time.
306 void Win32Time::SetToCurrentTime() {
307 // The default GetSystemTimeAsFileTime has a ~15.5ms resolution.
308 // Because we're fast, we like fast timers which have at least a
309 // 1ms resolution.
310 //
311 // timeGetTime() provides 1ms granularity when combined with
312 // timeBeginPeriod(). If the host application for v8 wants fast
313 // timers, it can use timeBeginPeriod to increase the resolution.
314 //
315 // Using timeGetTime() has a drawback because it is a 32bit value
316 // and hence rolls-over every ~49days.
317 //
318 // To use the clock, we use GetSystemTimeAsFileTime as our base;
319 // and then use timeGetTime to extrapolate current time from the
320 // start time. To deal with rollovers, we resync the clock
321 // any time when more than kMaxClockElapsedTime has passed or
322 // whenever timeGetTime creates a rollover.
323
324 static bool initialized = false;
325 static TimeStamp init_time;
326 static DWORD init_ticks;
327 static const int64_t kHundredNanosecondsPerSecond = 10000000;
328 static const int64_t kMaxClockElapsedTime =
329 60*kHundredNanosecondsPerSecond; // 1 minute
330
331 // If we are uninitialized, we need to resync the clock.
332 bool needs_resync = !initialized;
333
334 // Get the current time.
335 TimeStamp time_now;
336 GetSystemTimeAsFileTime(&time_now.ft_);
337 DWORD ticks_now = timeGetTime();
338
339 // Check if we need to resync due to clock rollover.
340 needs_resync |= ticks_now < init_ticks;
341
342 // Check if we need to resync due to elapsed time.
343 needs_resync |= (time_now.t_ - init_time.t_) > kMaxClockElapsedTime;
344
345 // Check if we need to resync due to backwards time change.
346 needs_resync |= time_now.t_ < init_time.t_;
347
348 // Resync the clock if necessary.
349 if (needs_resync) {
350 GetSystemTimeAsFileTime(&init_time.ft_);
351 init_ticks = ticks_now = timeGetTime();
352 initialized = true;
353 }
354
355 // Finally, compute the actual time. Why is this so hard.
356 DWORD elapsed = ticks_now - init_ticks;
357 this->time_.t_ = init_time.t_ + (static_cast<int64_t>(elapsed) * 10000);
358 }
359
360
361 // Return the local timezone offset in milliseconds east of UTC. This
362 // takes into account whether daylight saving is in effect at the time.
363 // Only times in the 32-bit Unix range may be passed to this function.
364 // Also, adding the time-zone offset to the input must not overflow.
365 // The function EquivalentTime() in date.js guarantees this.
366 int64_t Win32Time::LocalOffset(TimezoneCache* cache) {
367 cache->InitializeIfNeeded();
368
369 Win32Time rounded_to_second(*this);
370 rounded_to_second.t() = rounded_to_second.t() / 1000 / kTimeScaler *
371 1000 * kTimeScaler;
372 // Convert to local time using POSIX localtime function.
373 // Windows XP Service Pack 3 made SystemTimeToTzSpecificLocalTime()
374 // very slow. Other browsers use localtime().
375
376 // Convert from JavaScript milliseconds past 1/1/1970 0:00:00 to
377 // POSIX seconds past 1/1/1970 0:00:00.
378 double unchecked_posix_time = rounded_to_second.ToJSTime() / 1000;
379 if (unchecked_posix_time > INT_MAX || unchecked_posix_time < 0) {
380 return 0;
381 }
382 // Because _USE_32BIT_TIME_T is defined, time_t is a 32-bit int.
383 time_t posix_time = static_cast<time_t>(unchecked_posix_time);
384
385 // Convert to local time, as struct with fields for day, hour, year, etc.
386 tm posix_local_time_struct;
387 if (localtime_s(&posix_local_time_struct, &posix_time)) return 0;
388
389 if (posix_local_time_struct.tm_isdst > 0) {
390 return (cache->tzinfo_.Bias + cache->tzinfo_.DaylightBias) * -kMsPerMinute;
391 } else if (posix_local_time_struct.tm_isdst == 0) {
392 return (cache->tzinfo_.Bias + cache->tzinfo_.StandardBias) * -kMsPerMinute;
393 } else {
394 return cache->tzinfo_.Bias * -kMsPerMinute;
395 }
396 }
397
398
399 // Return whether or not daylight savings time is in effect at this time.
400 bool Win32Time::InDST(TimezoneCache* cache) {
401 cache->InitializeIfNeeded();
402
403 // Determine if DST is in effect at the specified time.
404 bool in_dst = false;
405 if (cache->tzinfo_.StandardDate.wMonth != 0 ||
406 cache->tzinfo_.DaylightDate.wMonth != 0) {
407 // Get the local timezone offset for the timestamp in milliseconds.
408 int64_t offset = LocalOffset(cache);
409
410 // Compute the offset for DST. The bias parameters in the timezone info
411 // are specified in minutes. These must be converted to milliseconds.
412 int64_t dstofs =
413 -(cache->tzinfo_.Bias + cache->tzinfo_.DaylightBias) * kMsPerMinute;
414
415 // If the local time offset equals the timezone bias plus the daylight
416 // bias then DST is in effect.
417 in_dst = offset == dstofs;
418 }
419
420 return in_dst;
421 }
422
423
424 // Return the daylight savings time offset for this time.
425 int64_t Win32Time::DaylightSavingsOffset(TimezoneCache* cache) {
426 return InDST(cache) ? 60 * kMsPerMinute : 0;
427 }
428
429
430 // Returns a string identifying the current timezone for the
431 // timestamp taking into account daylight saving.
432 char* Win32Time::LocalTimezone(TimezoneCache* cache) {
433 // Return the standard or DST time zone name based on whether daylight
434 // saving is in effect at the given time.
435 return InDST(cache) ? cache->dst_tz_name_ : cache->std_tz_name_;
436 }
437
438
439 // Returns the accumulated user time for thread.
440 int OS::GetUserTime(uint32_t* secs, uint32_t* usecs) {
441 FILETIME dummy;
442 uint64_t usertime;
443
444 // Get the amount of time that the thread has executed in user mode.
445 if (!GetThreadTimes(GetCurrentThread(), &dummy, &dummy, &dummy,
446 reinterpret_cast<FILETIME*>(&usertime))) return -1;
447
448 // Adjust the resolution to micro-seconds.
449 usertime /= 10;
450
451 // Convert to seconds and microseconds
452 *secs = static_cast<uint32_t>(usertime / 1000000);
453 *usecs = static_cast<uint32_t>(usertime % 1000000);
454 return 0;
455 }
456
457
458 // Returns current time as the number of milliseconds since
459 // 00:00:00 UTC, January 1, 1970.
460 double OS::TimeCurrentMillis() {
461 return Time::Now().ToJsTime();
462 }
463
464
465 TimezoneCache* OS::CreateTimezoneCache() {
466 return new TimezoneCache();
467 }
468
469
470 void OS::DisposeTimezoneCache(TimezoneCache* cache) {
471 delete cache;
472 }
473
474
475 void OS::ClearTimezoneCache(TimezoneCache* cache) {
476 cache->Clear();
477 }
478
479
480 // Returns a string identifying the current timezone taking into
481 // account daylight saving.
482 const char* OS::LocalTimezone(double time, TimezoneCache* cache) {
483 return Win32Time(time).LocalTimezone(cache);
484 }
485
486
487 // Returns the local time offset in milliseconds east of UTC without
488 // taking daylight savings time into account.
489 double OS::LocalTimeOffset(TimezoneCache* cache) {
490 // Use current time, rounded to the millisecond.
491 Win32Time t(TimeCurrentMillis());
492 // Time::LocalOffset inlcudes any daylight savings offset, so subtract it.
493 return static_cast<double>(t.LocalOffset(cache) -
494 t.DaylightSavingsOffset(cache));
495 }
496
497
498 // Returns the daylight savings offset in milliseconds for the given
499 // time.
500 double OS::DaylightSavingsOffset(double time, TimezoneCache* cache) {
501 int64_t offset = Win32Time(time).DaylightSavingsOffset(cache);
502 return static_cast<double>(offset);
503 }
504
505
506 int OS::GetLastError() {
507 return ::GetLastError();
508 }
509
510
511 int OS::GetCurrentProcessId() {
512 return static_cast<int>(::GetCurrentProcessId());
513 }
514
515
516 // ----------------------------------------------------------------------------
517 // Win32 console output.
518 //
519 // If a Win32 application is linked as a console application it has a normal
520 // standard output and standard error. In this case normal printf works fine
521 // for output. However, if the application is linked as a GUI application,
522 // the process doesn't have a console, and therefore (debugging) output is lost.
523 // This is the case if we are embedded in a windows program (like a browser).
524 // In order to be able to get debug output in this case the the debugging
525 // facility using OutputDebugString. This output goes to the active debugger
526 // for the process (if any). Else the output can be monitored using DBMON.EXE.
527
528 enum OutputMode {
529 UNKNOWN, // Output method has not yet been determined.
530 CONSOLE, // Output is written to stdout.
531 ODS // Output is written to debug facility.
532 };
533
534 static OutputMode output_mode = UNKNOWN; // Current output mode.
535
536
537 // Determine if the process has a console for output.
538 static bool HasConsole() {
539 // Only check the first time. Eventual race conditions are not a problem,
540 // because all threads will eventually determine the same mode.
541 if (output_mode == UNKNOWN) {
542 // We cannot just check that the standard output is attached to a console
543 // because this would fail if output is redirected to a file. Therefore we
544 // say that a process does not have an output console if either the
545 // standard output handle is invalid or its file type is unknown.
546 if (GetStdHandle(STD_OUTPUT_HANDLE) != INVALID_HANDLE_VALUE &&
547 GetFileType(GetStdHandle(STD_OUTPUT_HANDLE)) != FILE_TYPE_UNKNOWN)
548 output_mode = CONSOLE;
549 else
550 output_mode = ODS;
551 }
552 return output_mode == CONSOLE;
553 }
554
555
556 static void VPrintHelper(FILE* stream, const char* format, va_list args) {
557 if ((stream == stdout || stream == stderr) && !HasConsole()) {
558 // It is important to use safe print here in order to avoid
559 // overflowing the buffer. We might truncate the output, but this
560 // does not crash.
561 char buffer[4096];
562 OS::VSNPrintF(buffer, sizeof(buffer), format, args);
563 OutputDebugStringA(buffer);
564 } else {
565 vfprintf(stream, format, args);
566 }
567 }
568
569
570 FILE* OS::FOpen(const char* path, const char* mode) {
571 FILE* result;
572 if (fopen_s(&result, path, mode) == 0) {
573 return result;
574 } else {
575 return NULL;
576 }
577 }
578
579
580 bool OS::Remove(const char* path) {
581 return (DeleteFileA(path) != 0);
582 }
583
584
585 FILE* OS::OpenTemporaryFile() {
586 // tmpfile_s tries to use the root dir, don't use it.
587 char tempPathBuffer[MAX_PATH];
588 DWORD path_result = 0;
589 path_result = GetTempPathA(MAX_PATH, tempPathBuffer);
590 if (path_result > MAX_PATH || path_result == 0) return NULL;
591 UINT name_result = 0;
592 char tempNameBuffer[MAX_PATH];
593 name_result = GetTempFileNameA(tempPathBuffer, "", 0, tempNameBuffer);
594 if (name_result == 0) return NULL;
595 FILE* result = FOpen(tempNameBuffer, "w+"); // Same mode as tmpfile uses.
596 if (result != NULL) {
597 Remove(tempNameBuffer); // Delete on close.
598 }
599 return result;
600 }
601
602
603 // Open log file in binary mode to avoid /n -> /r/n conversion.
604 const char* const OS::LogFileOpenMode = "wb";
605
606
607 // Print (debug) message to console.
608 void OS::Print(const char* format, ...) {
609 va_list args;
610 va_start(args, format);
611 VPrint(format, args);
612 va_end(args);
613 }
614
615
616 void OS::VPrint(const char* format, va_list args) {
617 VPrintHelper(stdout, format, args);
618 }
619
620
621 void OS::FPrint(FILE* out, const char* format, ...) {
622 va_list args;
623 va_start(args, format);
624 VFPrint(out, format, args);
625 va_end(args);
626 }
627
628
629 void OS::VFPrint(FILE* out, const char* format, va_list args) {
630 VPrintHelper(out, format, args);
631 }
632
633
634 // Print error message to console.
635 void OS::PrintError(const char* format, ...) {
636 va_list args;
637 va_start(args, format);
638 VPrintError(format, args);
639 va_end(args);
640 }
641
642
643 void OS::VPrintError(const char* format, va_list args) {
644 VPrintHelper(stderr, format, args);
645 }
646
647
648 int OS::SNPrintF(char* str, int length, const char* format, ...) {
649 va_list args;
650 va_start(args, format);
651 int result = VSNPrintF(str, length, format, args);
652 va_end(args);
653 return result;
654 }
655
656
657 int OS::VSNPrintF(char* str, int length, const char* format, va_list args) {
658 int n = _vsnprintf_s(str, length, _TRUNCATE, format, args);
659 // Make sure to zero-terminate the string if the output was
660 // truncated or if there was an error.
661 if (n < 0 || n >= length) {
662 if (length > 0)
663 str[length - 1] = '\0';
664 return -1;
665 } else {
666 return n;
667 }
668 }
669
670
671 char* OS::StrChr(char* str, int c) {
672 return const_cast<char*>(strchr(str, c));
673 }
674
675
676 void OS::StrNCpy(char* dest, int length, const char* src, size_t n) {
677 // Use _TRUNCATE or strncpy_s crashes (by design) if buffer is too small.
678 size_t buffer_size = static_cast<size_t>(length);
679 if (n + 1 > buffer_size) // count for trailing '\0'
680 n = _TRUNCATE;
681 int result = strncpy_s(dest, length, src, n);
682 USE(result);
683 ASSERT(result == 0 || (n == _TRUNCATE && result == STRUNCATE));
684 }
685
686
687 #undef _TRUNCATE
688 #undef STRUNCATE
689
690
691 // Get the system's page size used by VirtualAlloc() or the next power
692 // of two. The reason for always returning a power of two is that the
693 // rounding up in OS::Allocate expects that.
694 static size_t GetPageSize() {
695 static size_t page_size = 0;
696 if (page_size == 0) {
697 SYSTEM_INFO info;
698 GetSystemInfo(&info);
699 page_size = RoundUpToPowerOf2(info.dwPageSize);
700 }
701 return page_size;
702 }
703
704
705 // The allocation alignment is the guaranteed alignment for
706 // VirtualAlloc'ed blocks of memory.
707 size_t OS::AllocateAlignment() {
708 static size_t allocate_alignment = 0;
709 if (allocate_alignment == 0) {
710 SYSTEM_INFO info;
711 GetSystemInfo(&info);
712 allocate_alignment = info.dwAllocationGranularity;
713 }
714 return allocate_alignment;
715 }
716
717
718 static base::LazyInstance<RandomNumberGenerator>::type
719 platform_random_number_generator = LAZY_INSTANCE_INITIALIZER;
720
721
722 void OS::Initialize(int64_t random_seed, bool hard_abort,
723 const char* const gc_fake_mmap) {
724 if (random_seed) {
725 platform_random_number_generator.Pointer()->SetSeed(random_seed);
726 }
727 g_hard_abort = hard_abort;
728 }
729
730
731 void* OS::GetRandomMmapAddr() {
732 // The address range used to randomize RWX allocations in OS::Allocate
733 // Try not to map pages into the default range that windows loads DLLs
734 // Use a multiple of 64k to prevent committing unused memory.
735 // Note: This does not guarantee RWX regions will be within the
736 // range kAllocationRandomAddressMin to kAllocationRandomAddressMax
737 #ifdef V8_HOST_ARCH_64_BIT
738 static const intptr_t kAllocationRandomAddressMin = 0x0000000080000000;
739 static const intptr_t kAllocationRandomAddressMax = 0x000003FFFFFF0000;
740 #else
741 static const intptr_t kAllocationRandomAddressMin = 0x04000000;
742 static const intptr_t kAllocationRandomAddressMax = 0x3FFF0000;
743 #endif
744 uintptr_t address =
745 (platform_random_number_generator.Pointer()->NextInt() << kPageSizeBits) |
746 kAllocationRandomAddressMin;
747 address &= kAllocationRandomAddressMax;
748 return reinterpret_cast<void *>(address);
749 }
750
751
752 static void* RandomizedVirtualAlloc(size_t size, int action, int protection) {
753 LPVOID base = NULL;
754
755 if (protection == PAGE_EXECUTE_READWRITE || protection == PAGE_NOACCESS) {
756 // For exectutable pages try and randomize the allocation address
757 for (size_t attempts = 0; base == NULL && attempts < 3; ++attempts) {
758 base = VirtualAlloc(OS::GetRandomMmapAddr(), size, action, protection);
759 }
760 }
761
762 // After three attempts give up and let the OS find an address to use.
763 if (base == NULL) base = VirtualAlloc(NULL, size, action, protection);
764
765 return base;
766 }
767
768
769 void* OS::Allocate(const size_t requested,
770 size_t* allocated,
771 bool is_executable) {
772 // VirtualAlloc rounds allocated size to page size automatically.
773 size_t msize = RoundUp(requested, static_cast<int>(GetPageSize()));
774
775 // Windows XP SP2 allows Data Excution Prevention (DEP).
776 int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
777
778 LPVOID mbase = RandomizedVirtualAlloc(msize,
779 MEM_COMMIT | MEM_RESERVE,
780 prot);
781
782 if (mbase == NULL) return NULL;
783
784 ASSERT(IsAligned(reinterpret_cast<size_t>(mbase), OS::AllocateAlignment()));
785
786 *allocated = msize;
787 return mbase;
788 }
789
790
791 void OS::Free(void* address, const size_t size) {
792 // TODO(1240712): VirtualFree has a return value which is ignored here.
793 VirtualFree(address, 0, MEM_RELEASE);
794 USE(size);
795 }
796
797
798 intptr_t OS::CommitPageSize() {
799 return 4096;
800 }
801
802
803 void OS::ProtectCode(void* address, const size_t size) {
804 DWORD old_protect;
805 VirtualProtect(address, size, PAGE_EXECUTE_READ, &old_protect);
806 }
807
808
809 void OS::Guard(void* address, const size_t size) {
810 DWORD oldprotect;
811 VirtualProtect(address, size, PAGE_NOACCESS, &oldprotect);
812 }
813
814
815 void OS::Sleep(int milliseconds) {
816 ::Sleep(milliseconds);
817 }
818
819
820 void OS::Abort() {
821 if (g_hard_abort) {
822 V8_IMMEDIATE_CRASH();
823 }
824 // Make the MSVCRT do a silent abort.
825 raise(SIGABRT);
826 }
827
828
829 void OS::DebugBreak() {
830 #ifdef _MSC_VER
831 // To avoid Visual Studio runtime support the following code can be used
832 // instead
833 // __asm { int 3 }
834 __debugbreak();
835 #else
836 ::DebugBreak();
837 #endif
838 }
839
840
841 class Win32MemoryMappedFile : public OS::MemoryMappedFile {
842 public:
843 Win32MemoryMappedFile(HANDLE file,
844 HANDLE file_mapping,
845 void* memory,
846 int size)
847 : file_(file),
848 file_mapping_(file_mapping),
849 memory_(memory),
850 size_(size) { }
851 virtual ~Win32MemoryMappedFile();
852 virtual void* memory() { return memory_; }
853 virtual int size() { return size_; }
854 private:
855 HANDLE file_;
856 HANDLE file_mapping_;
857 void* memory_;
858 int size_;
859 };
860
861
862 OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) {
863 // Open a physical file
864 HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
865 FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, NULL);
866 if (file == INVALID_HANDLE_VALUE) return NULL;
867
868 int size = static_cast<int>(GetFileSize(file, NULL));
869
870 // Create a file mapping for the physical file
871 HANDLE file_mapping = CreateFileMapping(file, NULL,
872 PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL);
873 if (file_mapping == NULL) return NULL;
874
875 // Map a view of the file into memory
876 void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
877 return new Win32MemoryMappedFile(file, file_mapping, memory, size);
878 }
879
880
881 OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
882 void* initial) {
883 // Open a physical file
884 HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
885 FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_ALWAYS, 0, NULL);
886 if (file == NULL) return NULL;
887 // Create a file mapping for the physical file
888 HANDLE file_mapping = CreateFileMapping(file, NULL,
889 PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL);
890 if (file_mapping == NULL) return NULL;
891 // Map a view of the file into memory
892 void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
893 if (memory) MemMove(memory, initial, size);
894 return new Win32MemoryMappedFile(file, file_mapping, memory, size);
895 }
896
897
898 Win32MemoryMappedFile::~Win32MemoryMappedFile() {
899 if (memory_ != NULL)
900 UnmapViewOfFile(memory_);
901 CloseHandle(file_mapping_);
902 CloseHandle(file_);
903 }
904
905
906 // The following code loads functions defined in DbhHelp.h and TlHelp32.h
907 // dynamically. This is to avoid being depending on dbghelp.dll and
908 // tlhelp32.dll when running (the functions in tlhelp32.dll have been moved to
909 // kernel32.dll at some point so loading functions defines in TlHelp32.h
910 // dynamically might not be necessary any more - for some versions of Windows?).
911
912 // Function pointers to functions dynamically loaded from dbghelp.dll.
913 #define DBGHELP_FUNCTION_LIST(V) \
914 V(SymInitialize) \
915 V(SymGetOptions) \
916 V(SymSetOptions) \
917 V(SymGetSearchPath) \
918 V(SymLoadModule64) \
919 V(StackWalk64) \
920 V(SymGetSymFromAddr64) \
921 V(SymGetLineFromAddr64) \
922 V(SymFunctionTableAccess64) \
923 V(SymGetModuleBase64)
924
925 // Function pointers to functions dynamically loaded from dbghelp.dll.
926 #define TLHELP32_FUNCTION_LIST(V) \
927 V(CreateToolhelp32Snapshot) \
928 V(Module32FirstW) \
929 V(Module32NextW)
930
931 // Define the decoration to use for the type and variable name used for
932 // dynamically loaded DLL function..
933 #define DLL_FUNC_TYPE(name) _##name##_
934 #define DLL_FUNC_VAR(name) _##name
935
936 // Define the type for each dynamically loaded DLL function. The function
937 // definitions are copied from DbgHelp.h and TlHelp32.h. The IN and VOID macros
938 // from the Windows include files are redefined here to have the function
939 // definitions to be as close to the ones in the original .h files as possible.
940 #ifndef IN
941 #define IN
942 #endif
943 #ifndef VOID
944 #define VOID void
945 #endif
946
947 // DbgHelp isn't supported on MinGW yet
948 #ifndef __MINGW32__
949 // DbgHelp.h functions.
950 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymInitialize))(IN HANDLE hProcess,
951 IN PSTR UserSearchPath,
952 IN BOOL fInvadeProcess);
953 typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymGetOptions))(VOID);
954 typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymSetOptions))(IN DWORD SymOptions);
955 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSearchPath))(
956 IN HANDLE hProcess,
957 OUT PSTR SearchPath,
958 IN DWORD SearchPathLength);
959 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymLoadModule64))(
960 IN HANDLE hProcess,
961 IN HANDLE hFile,
962 IN PSTR ImageName,
963 IN PSTR ModuleName,
964 IN DWORD64 BaseOfDll,
965 IN DWORD SizeOfDll);
966 typedef BOOL (__stdcall *DLL_FUNC_TYPE(StackWalk64))(
967 DWORD MachineType,
968 HANDLE hProcess,
969 HANDLE hThread,
970 LPSTACKFRAME64 StackFrame,
971 PVOID ContextRecord,
972 PREAD_PROCESS_MEMORY_ROUTINE64 ReadMemoryRoutine,
973 PFUNCTION_TABLE_ACCESS_ROUTINE64 FunctionTableAccessRoutine,
974 PGET_MODULE_BASE_ROUTINE64 GetModuleBaseRoutine,
975 PTRANSLATE_ADDRESS_ROUTINE64 TranslateAddress);
976 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSymFromAddr64))(
977 IN HANDLE hProcess,
978 IN DWORD64 qwAddr,
979 OUT PDWORD64 pdwDisplacement,
980 OUT PIMAGEHLP_SYMBOL64 Symbol);
981 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetLineFromAddr64))(
982 IN HANDLE hProcess,
983 IN DWORD64 qwAddr,
984 OUT PDWORD pdwDisplacement,
985 OUT PIMAGEHLP_LINE64 Line64);
986 // DbgHelp.h typedefs. Implementation found in dbghelp.dll.
987 typedef PVOID (__stdcall *DLL_FUNC_TYPE(SymFunctionTableAccess64))(
988 HANDLE hProcess,
989 DWORD64 AddrBase); // DbgHelp.h typedef PFUNCTION_TABLE_ACCESS_ROUTINE64
990 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymGetModuleBase64))(
991 HANDLE hProcess,
992 DWORD64 AddrBase); // DbgHelp.h typedef PGET_MODULE_BASE_ROUTINE64
993
994 // TlHelp32.h functions.
995 typedef HANDLE (__stdcall *DLL_FUNC_TYPE(CreateToolhelp32Snapshot))(
996 DWORD dwFlags,
997 DWORD th32ProcessID);
998 typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32FirstW))(HANDLE hSnapshot,
999 LPMODULEENTRY32W lpme);
1000 typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32NextW))(HANDLE hSnapshot,
1001 LPMODULEENTRY32W lpme);
1002
1003 #undef IN
1004 #undef VOID
1005
1006 // Declare a variable for each dynamically loaded DLL function.
1007 #define DEF_DLL_FUNCTION(name) DLL_FUNC_TYPE(name) DLL_FUNC_VAR(name) = NULL;
1008 DBGHELP_FUNCTION_LIST(DEF_DLL_FUNCTION)
1009 TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)
1010 #undef DEF_DLL_FUNCTION
1011
1012 // Load the functions. This function has a lot of "ugly" macros in order to
1013 // keep down code duplication.
1014
1015 static bool LoadDbgHelpAndTlHelp32() {
1016 static bool dbghelp_loaded = false;
1017
1018 if (dbghelp_loaded) return true;
1019
1020 HMODULE module;
1021
1022 // Load functions from the dbghelp.dll module.
1023 module = LoadLibrary(TEXT("dbghelp.dll"));
1024 if (module == NULL) {
1025 return false;
1026 }
1027
1028 #define LOAD_DLL_FUNC(name) \
1029 DLL_FUNC_VAR(name) = \
1030 reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
1031
1032 DBGHELP_FUNCTION_LIST(LOAD_DLL_FUNC)
1033
1034 #undef LOAD_DLL_FUNC
1035
1036 // Load functions from the kernel32.dll module (the TlHelp32.h function used
1037 // to be in tlhelp32.dll but are now moved to kernel32.dll).
1038 module = LoadLibrary(TEXT("kernel32.dll"));
1039 if (module == NULL) {
1040 return false;
1041 }
1042
1043 #define LOAD_DLL_FUNC(name) \
1044 DLL_FUNC_VAR(name) = \
1045 reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
1046
1047 TLHELP32_FUNCTION_LIST(LOAD_DLL_FUNC)
1048
1049 #undef LOAD_DLL_FUNC
1050
1051 // Check that all functions where loaded.
1052 bool result =
1053 #define DLL_FUNC_LOADED(name) (DLL_FUNC_VAR(name) != NULL) &&
1054
1055 DBGHELP_FUNCTION_LIST(DLL_FUNC_LOADED)
1056 TLHELP32_FUNCTION_LIST(DLL_FUNC_LOADED)
1057
1058 #undef DLL_FUNC_LOADED
1059 true;
1060
1061 dbghelp_loaded = result;
1062 return result;
1063 // NOTE: The modules are never unloaded and will stay around until the
1064 // application is closed.
1065 }
1066
1067 #undef DBGHELP_FUNCTION_LIST
1068 #undef TLHELP32_FUNCTION_LIST
1069 #undef DLL_FUNC_VAR
1070 #undef DLL_FUNC_TYPE
1071
1072
1073 // Load the symbols for generating stack traces.
1074 static std::vector<OS::SharedLibraryAddress> LoadSymbols(
1075 HANDLE process_handle) {
1076 static std::vector<OS::SharedLibraryAddress> result;
1077
1078 static bool symbols_loaded = false;
1079
1080 if (symbols_loaded) return result;
1081
1082 BOOL ok;
1083
1084 // Initialize the symbol engine.
1085 ok = _SymInitialize(process_handle, // hProcess
1086 NULL, // UserSearchPath
1087 false); // fInvadeProcess
1088 if (!ok) return result;
1089
1090 DWORD options = _SymGetOptions();
1091 options |= SYMOPT_LOAD_LINES;
1092 options |= SYMOPT_FAIL_CRITICAL_ERRORS;
1093 options = _SymSetOptions(options);
1094
1095 char buf[OS::kStackWalkMaxNameLen] = {0};
1096 ok = _SymGetSearchPath(process_handle, buf, OS::kStackWalkMaxNameLen);
1097 if (!ok) {
1098 int err = GetLastError();
1099 PrintF("%d\n", err);
1100 return result;
1101 }
1102
1103 HANDLE snapshot = _CreateToolhelp32Snapshot(
1104 TH32CS_SNAPMODULE, // dwFlags
1105 GetCurrentProcessId()); // th32ProcessId
1106 if (snapshot == INVALID_HANDLE_VALUE) return result;
1107 MODULEENTRY32W module_entry;
1108 module_entry.dwSize = sizeof(module_entry); // Set the size of the structure.
1109 BOOL cont = _Module32FirstW(snapshot, &module_entry);
1110 while (cont) {
1111 DWORD64 base;
1112 // NOTE the SymLoadModule64 function has the peculiarity of accepting a
1113 // both unicode and ASCII strings even though the parameter is PSTR.
1114 base = _SymLoadModule64(
1115 process_handle, // hProcess
1116 0, // hFile
1117 reinterpret_cast<PSTR>(module_entry.szExePath), // ImageName
1118 reinterpret_cast<PSTR>(module_entry.szModule), // ModuleName
1119 reinterpret_cast<DWORD64>(module_entry.modBaseAddr), // BaseOfDll
1120 module_entry.modBaseSize); // SizeOfDll
1121 if (base == 0) {
1122 int err = GetLastError();
1123 if (err != ERROR_MOD_NOT_FOUND &&
1124 err != ERROR_INVALID_HANDLE) {
1125 result.clear();
1126 return result;
1127 }
1128 }
1129 int lib_name_length = WideCharToMultiByte(
1130 CP_UTF8, 0, module_entry.szExePath, -1, NULL, 0, NULL, NULL);
1131 std::string lib_name(lib_name_length, 0);
1132 WideCharToMultiByte(CP_UTF8, 0, module_entry.szExePath, -1, &lib_name[0],
1133 lib_name_length, NULL, NULL);
1134 result.push_back(OS::SharedLibraryAddress(
1135 lib_name, reinterpret_cast<unsigned int>(module_entry.modBaseAddr),
1136 reinterpret_cast<unsigned int>(module_entry.modBaseAddr +
1137 module_entry.modBaseSize)));
1138 cont = _Module32NextW(snapshot, &module_entry);
1139 }
1140 CloseHandle(snapshot);
1141
1142 symbols_loaded = true;
1143 return result;
1144 }
1145
1146
1147 std::vector<OS::SharedLibraryAddress> OS::GetSharedLibraryAddresses() {
1148 // SharedLibraryEvents are logged when loading symbol information.
1149 // Only the shared libraries loaded at the time of the call to
1150 // GetSharedLibraryAddresses are logged. DLLs loaded after
1151 // initialization are not accounted for.
1152 if (!LoadDbgHelpAndTlHelp32()) return std::vector<OS::SharedLibraryAddress>();
1153 HANDLE process_handle = GetCurrentProcess();
1154 return LoadSymbols(process_handle);
1155 }
1156
1157
1158 void OS::SignalCodeMovingGC() {
1159 }
1160
1161
1162 uint64_t OS::TotalPhysicalMemory() {
1163 MEMORYSTATUSEX memory_info;
1164 memory_info.dwLength = sizeof(memory_info);
1165 if (!GlobalMemoryStatusEx(&memory_info)) {
1166 UNREACHABLE();
1167 return 0;
1168 }
1169
1170 return static_cast<uint64_t>(memory_info.ullTotalPhys);
1171 }
1172
1173
1174 #else // __MINGW32__
1175 std::vector<OS::SharedLibraryAddress> OS::GetSharedLibraryAddresses() {
1176 return std::vector<OS::SharedLibraryAddress>();
1177 }
1178
1179
1180 void OS::SignalCodeMovingGC() { }
1181 #endif // __MINGW32__
1182
1183
1184 int OS::NumberOfProcessorsOnline() {
1185 SYSTEM_INFO info;
1186 GetSystemInfo(&info);
1187 return info.dwNumberOfProcessors;
1188 }
1189
1190
1191 double OS::nan_value() {
1192 #ifdef _MSC_VER
1193 // Positive Quiet NaN with no payload (aka. Indeterminate) has all bits
1194 // in mask set, so value equals mask.
1195 static const __int64 nanval = kQuietNaNMask;
1196 return *reinterpret_cast<const double*>(&nanval);
1197 #else // _MSC_VER
1198 return NAN;
1199 #endif // _MSC_VER
1200 }
1201
1202
1203 int OS::ActivationFrameAlignment() {
1204 #ifdef _WIN64
1205 return 16; // Windows 64-bit ABI requires the stack to be 16-byte aligned.
1206 #elif defined(__MINGW32__)
1207 // With gcc 4.4 the tree vectorization optimizer can generate code
1208 // that requires 16 byte alignment such as movdqa on x86.
1209 return 16;
1210 #else
1211 return 8; // Floating-point math runs faster with 8-byte alignment.
1212 #endif
1213 }
1214
1215
1216 VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { }
1217
1218
1219 VirtualMemory::VirtualMemory(size_t size)
1220 : address_(ReserveRegion(size)), size_(size) { }
1221
1222
1223 VirtualMemory::VirtualMemory(size_t size, size_t alignment)
1224 : address_(NULL), size_(0) {
1225 ASSERT(IsAligned(alignment, static_cast<intptr_t>(OS::AllocateAlignment())));
1226 size_t request_size = RoundUp(size + alignment,
1227 static_cast<intptr_t>(OS::AllocateAlignment()));
1228 void* address = ReserveRegion(request_size);
1229 if (address == NULL) return;
1230 uint8_t* base = RoundUp(static_cast<uint8_t*>(address), alignment);
1231 // Try reducing the size by freeing and then reallocating a specific area.
1232 bool result = ReleaseRegion(address, request_size);
1233 USE(result);
1234 ASSERT(result);
1235 address = VirtualAlloc(base, size, MEM_RESERVE, PAGE_NOACCESS);
1236 if (address != NULL) {
1237 request_size = size;
1238 ASSERT(base == static_cast<uint8_t*>(address));
1239 } else {
1240 // Resizing failed, just go with a bigger area.
1241 address = ReserveRegion(request_size);
1242 if (address == NULL) return;
1243 }
1244 address_ = address;
1245 size_ = request_size;
1246 }
1247
1248
1249 VirtualMemory::~VirtualMemory() {
1250 if (IsReserved()) {
1251 bool result = ReleaseRegion(address(), size());
1252 ASSERT(result);
1253 USE(result);
1254 }
1255 }
1256
1257
1258 bool VirtualMemory::IsReserved() {
1259 return address_ != NULL;
1260 }
1261
1262
1263 void VirtualMemory::Reset() {
1264 address_ = NULL;
1265 size_ = 0;
1266 }
1267
1268
1269 bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
1270 return CommitRegion(address, size, is_executable);
1271 }
1272
1273
1274 bool VirtualMemory::Uncommit(void* address, size_t size) {
1275 ASSERT(IsReserved());
1276 return UncommitRegion(address, size);
1277 }
1278
1279
1280 bool VirtualMemory::Guard(void* address) {
1281 if (NULL == VirtualAlloc(address,
1282 OS::CommitPageSize(),
1283 MEM_COMMIT,
1284 PAGE_NOACCESS)) {
1285 return false;
1286 }
1287 return true;
1288 }
1289
1290
1291 void* VirtualMemory::ReserveRegion(size_t size) {
1292 return RandomizedVirtualAlloc(size, MEM_RESERVE, PAGE_NOACCESS);
1293 }
1294
1295
1296 bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) {
1297 int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
1298 if (NULL == VirtualAlloc(base, size, MEM_COMMIT, prot)) {
1299 return false;
1300 }
1301 return true;
1302 }
1303
1304
1305 bool VirtualMemory::UncommitRegion(void* base, size_t size) {
1306 return VirtualFree(base, size, MEM_DECOMMIT) != 0;
1307 }
1308
1309
1310 bool VirtualMemory::ReleaseRegion(void* base, size_t size) {
1311 return VirtualFree(base, 0, MEM_RELEASE) != 0;
1312 }
1313
1314
1315 bool VirtualMemory::HasLazyCommits() {
1316 // TODO(alph): implement for the platform.
1317 return false;
1318 }
1319
1320
1321 // ----------------------------------------------------------------------------
1322 // Win32 thread support.
1323
1324 // Definition of invalid thread handle and id.
1325 static const HANDLE kNoThread = INVALID_HANDLE_VALUE;
1326
1327 // Entry point for threads. The supplied argument is a pointer to the thread
1328 // object. The entry function dispatches to the run method in the thread
1329 // object. It is important that this function has __stdcall calling
1330 // convention.
1331 static unsigned int __stdcall ThreadEntry(void* arg) {
1332 Thread* thread = reinterpret_cast<Thread*>(arg);
1333 thread->NotifyStartedAndRun();
1334 return 0;
1335 }
1336
1337
1338 class Thread::PlatformData {
1339 public:
1340 explicit PlatformData(HANDLE thread) : thread_(thread) {}
1341 HANDLE thread_;
1342 unsigned thread_id_;
1343 };
1344
1345
1346 // Initialize a Win32 thread object. The thread has an invalid thread
1347 // handle until it is started.
1348
1349 Thread::Thread(const Options& options)
1350 : stack_size_(options.stack_size()),
1351 start_semaphore_(NULL) {
1352 data_ = new PlatformData(kNoThread);
1353 set_name(options.name());
1354 }
1355
1356
1357 void Thread::set_name(const char* name) {
1358 OS::StrNCpy(name_, sizeof(name_), name, strlen(name));
1359 name_[sizeof(name_) - 1] = '\0';
1360 }
1361
1362
1363 // Close our own handle for the thread.
1364 Thread::~Thread() {
1365 if (data_->thread_ != kNoThread) CloseHandle(data_->thread_);
1366 delete data_;
1367 }
1368
1369
1370 // Create a new thread. It is important to use _beginthreadex() instead of
1371 // the Win32 function CreateThread(), because the CreateThread() does not
1372 // initialize thread specific structures in the C runtime library.
1373 void Thread::Start() {
1374 data_->thread_ = reinterpret_cast<HANDLE>(
1375 _beginthreadex(NULL,
1376 static_cast<unsigned>(stack_size_),
1377 ThreadEntry,
1378 this,
1379 0,
1380 &data_->thread_id_));
1381 }
1382
1383
1384 // Wait for thread to terminate.
1385 void Thread::Join() {
1386 if (data_->thread_id_ != GetCurrentThreadId()) {
1387 WaitForSingleObject(data_->thread_, INFINITE);
1388 }
1389 }
1390
1391
1392 Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
1393 DWORD result = TlsAlloc();
1394 ASSERT(result != TLS_OUT_OF_INDEXES);
1395 return static_cast<LocalStorageKey>(result);
1396 }
1397
1398
1399 void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
1400 BOOL result = TlsFree(static_cast<DWORD>(key));
1401 USE(result);
1402 ASSERT(result);
1403 }
1404
1405
1406 void* Thread::GetThreadLocal(LocalStorageKey key) {
1407 return TlsGetValue(static_cast<DWORD>(key));
1408 }
1409
1410
1411 void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
1412 BOOL result = TlsSetValue(static_cast<DWORD>(key), value);
1413 USE(result);
1414 ASSERT(result);
1415 }
1416
1417
1418
1419 void Thread::YieldCPU() {
1420 Sleep(0);
1421 }
1422
1423 } } // namespace v8::internal
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698