OLD | NEW |
| (Empty) |
1 // Copyright 2012 the V8 project authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 // Platform-specific code for Cygwin goes here. For the POSIX-compatible | |
6 // parts, the implementation is in platform-posix.cc. | |
7 | |
8 #include <errno.h> | |
9 #include <pthread.h> | |
10 #include <semaphore.h> | |
11 #include <stdarg.h> | |
12 #include <strings.h> // index | |
13 #include <sys/mman.h> // mmap & munmap | |
14 #include <sys/time.h> | |
15 #include <unistd.h> // sysconf | |
16 | |
17 #include <cmath> | |
18 | |
19 #undef MAP_TYPE | |
20 | |
21 #include "src/base/win32-headers.h" | |
22 #include "src/platform.h" | |
23 #include "src/utils.h" | |
24 | |
25 namespace v8 { | |
26 namespace internal { | |
27 | |
28 | |
29 const char* OS::LocalTimezone(double time, TimezoneCache* cache) { | |
30 if (std::isnan(time)) return ""; | |
31 time_t tv = static_cast<time_t>(std::floor(time/msPerSecond)); | |
32 struct tm* t = localtime(&tv); | |
33 if (NULL == t) return ""; | |
34 return tzname[0]; // The location of the timezone string on Cygwin. | |
35 } | |
36 | |
37 | |
38 double OS::LocalTimeOffset(TimezoneCache* cache) { | |
39 // On Cygwin, struct tm does not contain a tm_gmtoff field. | |
40 time_t utc = time(NULL); | |
41 ASSERT(utc != -1); | |
42 struct tm* loc = localtime(&utc); | |
43 ASSERT(loc != NULL); | |
44 // time - localtime includes any daylight savings offset, so subtract it. | |
45 return static_cast<double>((mktime(loc) - utc) * msPerSecond - | |
46 (loc->tm_isdst > 0 ? 3600 * msPerSecond : 0)); | |
47 } | |
48 | |
49 | |
50 void* OS::Allocate(const size_t requested, | |
51 size_t* allocated, | |
52 bool is_executable) { | |
53 const size_t msize = RoundUp(requested, sysconf(_SC_PAGESIZE)); | |
54 int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0); | |
55 void* mbase = mmap(NULL, msize, prot, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); | |
56 if (mbase == MAP_FAILED) return NULL; | |
57 *allocated = msize; | |
58 return mbase; | |
59 } | |
60 | |
61 | |
62 class PosixMemoryMappedFile : public OS::MemoryMappedFile { | |
63 public: | |
64 PosixMemoryMappedFile(FILE* file, void* memory, int size) | |
65 : file_(file), memory_(memory), size_(size) { } | |
66 virtual ~PosixMemoryMappedFile(); | |
67 virtual void* memory() { return memory_; } | |
68 virtual int size() { return size_; } | |
69 private: | |
70 FILE* file_; | |
71 void* memory_; | |
72 int size_; | |
73 }; | |
74 | |
75 | |
76 OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) { | |
77 FILE* file = fopen(name, "r+"); | |
78 if (file == NULL) return NULL; | |
79 | |
80 fseek(file, 0, SEEK_END); | |
81 int size = ftell(file); | |
82 | |
83 void* memory = | |
84 mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0); | |
85 return new PosixMemoryMappedFile(file, memory, size); | |
86 } | |
87 | |
88 | |
89 OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size, | |
90 void* initial) { | |
91 FILE* file = fopen(name, "w+"); | |
92 if (file == NULL) return NULL; | |
93 int result = fwrite(initial, size, 1, file); | |
94 if (result < 1) { | |
95 fclose(file); | |
96 return NULL; | |
97 } | |
98 void* memory = | |
99 mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0); | |
100 return new PosixMemoryMappedFile(file, memory, size); | |
101 } | |
102 | |
103 | |
104 PosixMemoryMappedFile::~PosixMemoryMappedFile() { | |
105 if (memory_) munmap(memory_, size_); | |
106 fclose(file_); | |
107 } | |
108 | |
109 | |
110 std::vector<OS::SharedLibraryAddress> OS::GetSharedLibraryAddresses() { | |
111 std::vector<SharedLibraryAddresses> result; | |
112 // This function assumes that the layout of the file is as follows: | |
113 // hex_start_addr-hex_end_addr rwxp <unused data> [binary_file_name] | |
114 // If we encounter an unexpected situation we abort scanning further entries. | |
115 FILE* fp = fopen("/proc/self/maps", "r"); | |
116 if (fp == NULL) return result; | |
117 | |
118 // Allocate enough room to be able to store a full file name. | |
119 const int kLibNameLen = FILENAME_MAX + 1; | |
120 char* lib_name = reinterpret_cast<char*>(malloc(kLibNameLen)); | |
121 | |
122 // This loop will terminate once the scanning hits an EOF. | |
123 while (true) { | |
124 uintptr_t start, end; | |
125 char attr_r, attr_w, attr_x, attr_p; | |
126 // Parse the addresses and permission bits at the beginning of the line. | |
127 if (fscanf(fp, "%" V8PRIxPTR "-%" V8PRIxPTR, &start, &end) != 2) break; | |
128 if (fscanf(fp, " %c%c%c%c", &attr_r, &attr_w, &attr_x, &attr_p) != 4) break; | |
129 | |
130 int c; | |
131 if (attr_r == 'r' && attr_w != 'w' && attr_x == 'x') { | |
132 // Found a read-only executable entry. Skip characters until we reach | |
133 // the beginning of the filename or the end of the line. | |
134 do { | |
135 c = getc(fp); | |
136 } while ((c != EOF) && (c != '\n') && (c != '/')); | |
137 if (c == EOF) break; // EOF: Was unexpected, just exit. | |
138 | |
139 // Process the filename if found. | |
140 if (c == '/') { | |
141 ungetc(c, fp); // Push the '/' back into the stream to be read below. | |
142 | |
143 // Read to the end of the line. Exit if the read fails. | |
144 if (fgets(lib_name, kLibNameLen, fp) == NULL) break; | |
145 | |
146 // Drop the newline character read by fgets. We do not need to check | |
147 // for a zero-length string because we know that we at least read the | |
148 // '/' character. | |
149 lib_name[strlen(lib_name) - 1] = '\0'; | |
150 } else { | |
151 // No library name found, just record the raw address range. | |
152 snprintf(lib_name, kLibNameLen, | |
153 "%08" V8PRIxPTR "-%08" V8PRIxPTR, start, end); | |
154 } | |
155 result.push_back(SharedLibraryAddress(lib_name, start, end)); | |
156 } else { | |
157 // Entry not describing executable data. Skip to end of line to set up | |
158 // reading the next entry. | |
159 do { | |
160 c = getc(fp); | |
161 } while ((c != EOF) && (c != '\n')); | |
162 if (c == EOF) break; | |
163 } | |
164 } | |
165 free(lib_name); | |
166 fclose(fp); | |
167 return result; | |
168 } | |
169 | |
170 | |
171 void OS::SignalCodeMovingGC() { | |
172 // Nothing to do on Cygwin. | |
173 } | |
174 | |
175 | |
176 // The VirtualMemory implementation is taken from platform-win32.cc. | |
177 // The mmap-based virtual memory implementation as it is used on most posix | |
178 // platforms does not work well because Cygwin does not support MAP_FIXED. | |
179 // This causes VirtualMemory::Commit to not always commit the memory region | |
180 // specified. | |
181 | |
182 static void* GetRandomAddr() { | |
183 Isolate* isolate = Isolate::UncheckedCurrent(); | |
184 // Note that the current isolate isn't set up in a call path via | |
185 // CpuFeatures::Probe. We don't care about randomization in this case because | |
186 // the code page is immediately freed. | |
187 if (isolate != NULL) { | |
188 // The address range used to randomize RWX allocations in OS::Allocate | |
189 // Try not to map pages into the default range that windows loads DLLs | |
190 // Use a multiple of 64k to prevent committing unused memory. | |
191 // Note: This does not guarantee RWX regions will be within the | |
192 // range kAllocationRandomAddressMin to kAllocationRandomAddressMax | |
193 #ifdef V8_HOST_ARCH_64_BIT | |
194 static const intptr_t kAllocationRandomAddressMin = 0x0000000080000000; | |
195 static const intptr_t kAllocationRandomAddressMax = 0x000003FFFFFF0000; | |
196 #else | |
197 static const intptr_t kAllocationRandomAddressMin = 0x04000000; | |
198 static const intptr_t kAllocationRandomAddressMax = 0x3FFF0000; | |
199 #endif | |
200 uintptr_t address = | |
201 (isolate->random_number_generator()->NextInt() << kPageSizeBits) | | |
202 kAllocationRandomAddressMin; | |
203 address &= kAllocationRandomAddressMax; | |
204 return reinterpret_cast<void *>(address); | |
205 } | |
206 return NULL; | |
207 } | |
208 | |
209 | |
210 static void* RandomizedVirtualAlloc(size_t size, int action, int protection) { | |
211 LPVOID base = NULL; | |
212 | |
213 if (protection == PAGE_EXECUTE_READWRITE || protection == PAGE_NOACCESS) { | |
214 // For exectutable pages try and randomize the allocation address | |
215 for (size_t attempts = 0; base == NULL && attempts < 3; ++attempts) { | |
216 base = VirtualAlloc(GetRandomAddr(), size, action, protection); | |
217 } | |
218 } | |
219 | |
220 // After three attempts give up and let the OS find an address to use. | |
221 if (base == NULL) base = VirtualAlloc(NULL, size, action, protection); | |
222 | |
223 return base; | |
224 } | |
225 | |
226 | |
227 VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { } | |
228 | |
229 | |
230 VirtualMemory::VirtualMemory(size_t size) | |
231 : address_(ReserveRegion(size)), size_(size) { } | |
232 | |
233 | |
234 VirtualMemory::VirtualMemory(size_t size, size_t alignment) | |
235 : address_(NULL), size_(0) { | |
236 ASSERT(IsAligned(alignment, static_cast<intptr_t>(OS::AllocateAlignment()))); | |
237 size_t request_size = RoundUp(size + alignment, | |
238 static_cast<intptr_t>(OS::AllocateAlignment())); | |
239 void* address = ReserveRegion(request_size); | |
240 if (address == NULL) return; | |
241 uint8_t* base = RoundUp(static_cast<uint8_t*>(address), alignment); | |
242 // Try reducing the size by freeing and then reallocating a specific area. | |
243 bool result = ReleaseRegion(address, request_size); | |
244 USE(result); | |
245 ASSERT(result); | |
246 address = VirtualAlloc(base, size, MEM_RESERVE, PAGE_NOACCESS); | |
247 if (address != NULL) { | |
248 request_size = size; | |
249 ASSERT(base == static_cast<uint8_t*>(address)); | |
250 } else { | |
251 // Resizing failed, just go with a bigger area. | |
252 address = ReserveRegion(request_size); | |
253 if (address == NULL) return; | |
254 } | |
255 address_ = address; | |
256 size_ = request_size; | |
257 } | |
258 | |
259 | |
260 VirtualMemory::~VirtualMemory() { | |
261 if (IsReserved()) { | |
262 bool result = ReleaseRegion(address_, size_); | |
263 ASSERT(result); | |
264 USE(result); | |
265 } | |
266 } | |
267 | |
268 | |
269 bool VirtualMemory::IsReserved() { | |
270 return address_ != NULL; | |
271 } | |
272 | |
273 | |
274 void VirtualMemory::Reset() { | |
275 address_ = NULL; | |
276 size_ = 0; | |
277 } | |
278 | |
279 | |
280 bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) { | |
281 return CommitRegion(address, size, is_executable); | |
282 } | |
283 | |
284 | |
285 bool VirtualMemory::Uncommit(void* address, size_t size) { | |
286 ASSERT(IsReserved()); | |
287 return UncommitRegion(address, size); | |
288 } | |
289 | |
290 | |
291 void* VirtualMemory::ReserveRegion(size_t size) { | |
292 return RandomizedVirtualAlloc(size, MEM_RESERVE, PAGE_NOACCESS); | |
293 } | |
294 | |
295 | |
296 bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) { | |
297 int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE; | |
298 if (NULL == VirtualAlloc(base, size, MEM_COMMIT, prot)) { | |
299 return false; | |
300 } | |
301 return true; | |
302 } | |
303 | |
304 | |
305 bool VirtualMemory::Guard(void* address) { | |
306 if (NULL == VirtualAlloc(address, | |
307 OS::CommitPageSize(), | |
308 MEM_COMMIT, | |
309 PAGE_NOACCESS)) { | |
310 return false; | |
311 } | |
312 return true; | |
313 } | |
314 | |
315 | |
316 bool VirtualMemory::UncommitRegion(void* base, size_t size) { | |
317 return VirtualFree(base, size, MEM_DECOMMIT) != 0; | |
318 } | |
319 | |
320 | |
321 bool VirtualMemory::ReleaseRegion(void* base, size_t size) { | |
322 return VirtualFree(base, 0, MEM_RELEASE) != 0; | |
323 } | |
324 | |
325 | |
326 bool VirtualMemory::HasLazyCommits() { | |
327 // TODO(alph): implement for the platform. | |
328 return false; | |
329 } | |
330 | |
331 } } // namespace v8::internal | |
OLD | NEW |