OLD | NEW |
---|---|
(Empty) | |
1 // Copyright (c) 2014 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #ifndef NET_SPDY_SPDY_PRIORITY_TREE_H_ | |
6 #define NET_SPDY_SPDY_PRIORITY_TREE_H_ | |
7 | |
8 #include <cmath> | |
9 #include <list> | |
10 #include <map> | |
11 #include <queue> | |
12 #include <set> | |
13 | |
14 #include "base/basictypes.h" | |
15 #include "base/containers/hash_tables.h" | |
16 #include "base/logging.h" | |
17 #include "base/memory/scoped_ptr.h" | |
18 | |
19 namespace net { | |
20 | |
21 // This data structure implements the HTTP2 prioritization data structure | |
22 // defined in this document: http://go/http2-spec | |
Ryan Hamilton
2014/06/25 23:22:58
Consider a public URL here.
Johnny
2014/06/26 16:09:37
Done.
| |
23 // | |
24 // Nodes can be added and removed, and dependencies between them defined. Each | |
25 // node can have at most one parent and at most one child (forming a list), but | |
26 // there can be multiple lists, with each list root having its own priority. | |
27 // Individual nodes can also be marked as ready to read/write, and then the | |
28 // whole structure can be queried to pick the next node to read/write out of | |
29 // those ready. | |
30 // | |
31 // The NodeId type must be a POD that supports comparison (most | |
32 // likely, it will be a number). | |
33 | |
34 namespace test { | |
35 template <typename NodeId> | |
36 class SpdyPriorityTreePeer; | |
37 } | |
38 | |
39 const int kRootNodeId = 0; | |
40 const int kDefaultWeight = 16; | |
41 const int kMinWeight = 1; | |
42 const int kMaxWeight = 256; | |
43 | |
44 template <typename NodeId> | |
45 class SpdyPriorityTree { | |
46 typedef std::vector<std::pair<NodeId, float> > PriorityNodeList; | |
47 | |
48 public: | |
49 SpdyPriorityTree(); | |
50 ~SpdyPriorityTree(); | |
51 | |
52 typedef std::list<NodeId> List; | |
53 struct Node { | |
54 Node(); | |
55 ~Node(); | |
56 | |
57 NodeId id; | |
58 NodeId parent_id; | |
59 int weight; // Weights can range between 1 and 256 (inclusive). | |
60 // The total weight of this node's direct descendants. | |
61 int total_child_weights; | |
62 // The total weight of direct descendants that are writeable | |
63 // (ready to write and not blocked). This value does not necessarily | |
64 // reflect the current state of the tree; instead, we lazily update it | |
65 // on calls to PropagateNodeState(node.id). | |
66 int total_writeable_child_weights; | |
67 List* child_list; // node ID's of children, if any | |
68 bool blocked; // Is the associated stream write-blocked? | |
69 bool ready; // Does the stream have data ready for writing? | |
70 float priority; // The fraction of resources to dedicate to this node. | |
71 }; | |
72 | |
73 // Orders in descending order of priority. | |
74 struct NodePriorityComparator { | |
75 bool operator ()(const std::pair<NodeId, float>& lhs, | |
76 const std::pair<NodeId, float>& rhs); | |
77 }; | |
78 | |
79 friend class test::SpdyPriorityTreePeer<NodeId>; | |
80 | |
81 // Return the number of nodes currently in the tree. | |
82 int num_nodes() const; | |
Ryan Hamilton
2014/06/25 23:22:58
Should this be size_t?
Johnny
2014/06/26 16:09:37
I also think it ought to be, but am leaving as-is
| |
83 | |
84 // Return true if the tree contains a node with the given ID. | |
85 bool NodeExists(NodeId node_id) const; | |
86 | |
87 // Add a new node with the given weight and parent. Non-exclusive nodes | |
88 // simply get added below the parent node. If exclusive = true, the node | |
89 // becomes the parent's sole child and the parent's previous children | |
90 // become the children of the new node. | |
91 // Returns true on success. Returns false if the node already exists | |
92 // in the tree, or if the parent node does not exist. | |
93 bool AddNode(NodeId node_id, NodeId parent_id, int weight, bool exclusive); | |
94 | |
95 // Remove an existing node from the tree. Returns true on success, or | |
96 // false if the node doesn't exist. | |
97 bool RemoveNode(NodeId node_id); | |
98 | |
99 // Get the weight of the given node. | |
100 int GetWeight(NodeId node_id) const; | |
101 | |
102 // Get the parent of the given node. If the node doesn't exist, or is a root | |
103 // node (and thus has no parent), returns NodeId(). | |
104 NodeId GetParent(NodeId node_id) const; | |
105 | |
106 // Get the child list of the given node. If the node doesn't exist, or has no | |
107 // child, returns NULL. | |
108 std::list<NodeId>* GetChildren(NodeId node_id) const; | |
109 | |
110 // Set the priority of the given node. | |
111 bool SetWeight(NodeId node_id, int weight); | |
112 | |
113 // Set the parent of the given node. Returns true on success. | |
114 // Returns false and has no effect if the node and/or the parent doesn't | |
115 // exist. If the new parent is a descendant of the node (i.e. this would have | |
116 // created a cycle) then we rearrange the topology of the tree as described | |
117 // in the HTTP2 spec. | |
118 bool SetParent(NodeId node_id, NodeId parent_id, bool exclusive); | |
119 | |
120 // Returns true if the node parent_id has child_id in its child_list. | |
121 bool HasChild(NodeId parent_id, NodeId child_id) const; | |
122 | |
123 // Mark a node as blocked or unblocked. Return true on success, or false | |
124 // if unable to mark the specified node. | |
125 bool SetBlocked(NodeId node_id, bool blocked); | |
126 | |
127 // Mark whether or not a node is ready to write; i.e. whether there is | |
128 // buffered data for the associated stream. Return true on success, or false | |
129 // if unable to mark the specified node. | |
130 bool SetReady(NodeId node_id, bool ready); | |
131 | |
132 // Return true if all internal invariants hold (useful for unit tests). | |
133 // Unless there are bugs, this should always return true. | |
134 bool ValidateInvariantsForTests() const; | |
135 | |
136 // Get the given node, or return NULL if it doesn't exist. | |
137 const Node* FindNode(NodeId node_id) const; | |
138 | |
139 // Returns an ordered list of writeable nodes and their priorities. | |
140 // Priority is calculated as: | |
141 // parent's priority * (node's weight / sum of sibling weights) | |
142 PriorityNodeList GetPriorityList(); | |
143 | |
144 protected: | |
145 // Update the value of total_writeable_child_weights for the given node | |
146 // to reflect the current state of the tree. | |
147 void PropagateNodeState(NodeId node); | |
148 | |
149 private: | |
150 typedef base::hash_map<NodeId, Node> NodeMap; | |
151 | |
152 NodeMap all_nodes_; // maps from node IDs to Node objects | |
153 | |
154 DISALLOW_COPY_AND_ASSIGN(SpdyPriorityTree); | |
155 }; | |
156 | |
157 template <typename NodeId> | |
158 SpdyPriorityTree<NodeId>::SpdyPriorityTree() { | |
159 Node* root_node = &all_nodes_[kRootNodeId]; | |
160 root_node->id = kRootNodeId; | |
161 root_node->weight = kDefaultWeight; | |
162 root_node->parent_id = static_cast<NodeId>(kRootNodeId); | |
163 root_node->child_list = new std::list<NodeId>; | |
164 root_node->priority = 1.0; | |
165 root_node->ready = true; | |
166 } | |
167 | |
168 template <typename NodeId> | |
169 SpdyPriorityTree<NodeId>::~SpdyPriorityTree() {} | |
170 | |
171 template <typename NodeId> | |
172 SpdyPriorityTree<NodeId>::Node::Node() : | |
173 parent_id(kRootNodeId), | |
174 weight(kDefaultWeight), | |
175 total_child_weights(0), | |
176 total_writeable_child_weights(0), | |
177 child_list(), | |
178 blocked(false), | |
179 ready(false), | |
180 priority(0) { | |
181 } | |
182 | |
183 template <typename NodeId> | |
184 SpdyPriorityTree<NodeId>::Node::~Node() { | |
185 delete child_list; | |
186 } | |
187 | |
188 template <typename NodeId> | |
189 bool SpdyPriorityTree<NodeId>::NodePriorityComparator::operator ()( | |
190 const std::pair<NodeId, float>& lhs, | |
191 const std::pair<NodeId, float>& rhs) { | |
192 return lhs.second > rhs.second; | |
193 } | |
194 | |
195 template <typename NodeId> | |
196 int SpdyPriorityTree<NodeId>::num_nodes() const { | |
197 return all_nodes_.size(); | |
198 } | |
199 | |
200 template <typename NodeId> | |
201 bool SpdyPriorityTree<NodeId>::NodeExists(NodeId node_id) const { | |
202 return all_nodes_.count(node_id) != 0; | |
203 } | |
204 | |
205 template <typename NodeId> | |
206 bool SpdyPriorityTree<NodeId>::AddNode(NodeId node_id, | |
207 NodeId parent_id, | |
208 int weight, | |
209 bool exclusive) { | |
210 if (NodeExists(node_id) || !NodeExists(parent_id)) { | |
211 return false; | |
212 } | |
213 if (weight < kMinWeight || weight > kMaxWeight) { | |
214 return false; | |
215 } | |
216 Node* parent = &all_nodes_[parent_id]; | |
217 Node* new_node = &all_nodes_[node_id]; | |
218 new_node->id = node_id; | |
219 new_node->weight = weight; | |
220 new_node->parent_id = parent_id; | |
221 if (exclusive) { | |
222 // Move the parent's current children below the new node. | |
223 new_node->child_list = parent->child_list; | |
224 new_node->total_child_weights = parent->total_child_weights; | |
225 // Update each child's parent_id. | |
226 for (typename List::iterator it = new_node->child_list->begin(); | |
227 it != new_node->child_list->end(); ++it) { | |
228 Node* child = &all_nodes_[*it]; | |
229 child->parent_id = node_id; | |
230 } | |
231 // Clear parent's old child data. | |
232 parent->child_list = new std::list<NodeId>; | |
233 parent->total_child_weights = 0; | |
234 } else { | |
235 new_node->child_list = new std::list<NodeId>; | |
236 } | |
237 // Add new node to parent. | |
238 parent->child_list->push_back(node_id); | |
239 parent->total_child_weights += weight; | |
240 return true; | |
241 } | |
242 | |
243 template <typename NodeId> | |
244 bool SpdyPriorityTree<NodeId>::RemoveNode(NodeId node_id) { | |
245 if (node_id == static_cast<NodeId>(kRootNodeId) || !NodeExists(node_id)) { | |
246 return false; | |
247 } | |
248 const Node& node = all_nodes_[node_id]; | |
249 | |
250 DCHECK(NodeExists(node.parent_id)); | |
251 Node* parent = &all_nodes_[node.parent_id]; | |
252 // Remove the node id from parent's child list. | |
253 parent->child_list->remove(node_id); | |
254 parent->total_child_weights -= node.weight; | |
255 | |
256 // Move the node's children to the parent's child list. | |
257 if (node.child_list != NULL) { | |
258 // Update each child's parent_id and weight. | |
259 for (typename List::iterator it = node.child_list->begin(); | |
260 it != node.child_list->end(); ++it) { | |
261 Node* child = &all_nodes_[*it]; | |
262 child->parent_id = node.parent_id; | |
263 // Divide the removed node's weight among its children, rounding to the | |
264 // nearest valid weight. | |
265 float float_weight = node.weight * static_cast<float>(child->weight) / | |
266 static_cast<float>(node.total_child_weights); | |
267 int new_weight = std::floor(float_weight + 0.5); | |
268 if (new_weight == 0) { | |
269 new_weight = 1; | |
270 } | |
271 child->weight = new_weight; | |
272 parent->total_child_weights += child->weight; | |
273 } | |
274 parent->child_list->splice(parent->child_list->end(), *node.child_list); | |
275 } | |
276 | |
277 // Delete the node. | |
278 all_nodes_.erase(node_id); | |
279 return true; | |
280 } | |
281 | |
282 template <typename NodeId> | |
283 int SpdyPriorityTree<NodeId>::GetWeight(NodeId node_id) const { | |
284 const Node* node = FindNode(node_id); | |
285 if (node != NULL) { | |
286 return node->weight; | |
287 } | |
288 return 0; | |
289 } | |
290 | |
291 template <typename NodeId> | |
292 NodeId SpdyPriorityTree<NodeId>::GetParent(NodeId node_id) const { | |
293 const Node* node = FindNode(node_id); | |
294 if (node != NULL && node->id != static_cast<NodeId>(kRootNodeId)) { | |
295 return node->parent_id; | |
296 } | |
297 return static_cast<NodeId>(kRootNodeId); | |
298 } | |
299 | |
300 template <typename NodeId> | |
301 std::list<NodeId>* SpdyPriorityTree<NodeId>::GetChildren(NodeId node_id) const { | |
302 const Node* node = FindNode(node_id); | |
303 if (node != NULL) { | |
304 return node->child_list; | |
305 } | |
306 return NULL; | |
307 } | |
308 | |
309 template <typename NodeId> | |
310 bool SpdyPriorityTree<NodeId>::SetWeight( | |
311 NodeId node_id, int weight) { | |
312 if (!NodeExists(node_id)) { | |
313 return false; | |
314 } | |
315 if (weight < kMinWeight || weight > kMaxWeight) { | |
316 return false; | |
317 } | |
318 | |
319 Node* node = &all_nodes_[node_id]; | |
320 Node* parent = &all_nodes_[node->parent_id]; | |
321 | |
322 parent->total_child_weights += (weight - node->weight); | |
323 node->weight = weight; | |
324 | |
325 return true; | |
326 } | |
327 | |
328 | |
329 template <typename NodeId> | |
330 bool SpdyPriorityTree<NodeId>::SetParent( | |
331 NodeId node_id, NodeId parent_id, bool exclusive) { | |
332 if (!NodeExists(node_id) || !NodeExists(parent_id)) { | |
333 return false; | |
334 } | |
335 if (node_id == parent_id) return false; | |
336 | |
337 Node* node = &all_nodes_[node_id]; | |
338 Node* new_parent = &all_nodes_[parent_id]; | |
339 // If the new parent is already the node's parent, we're done. | |
340 if (node->parent_id == parent_id) { | |
341 return true; | |
342 } | |
343 | |
344 // Next, check to see if the new parent is currently a descendant | |
345 // of the node. | |
346 Node* last = new_parent; | |
347 NodeId last_id = parent_id; | |
348 bool cycle_exists = false; | |
349 while (last->parent_id != static_cast<NodeId>(kRootNodeId)) { | |
350 if (last->parent_id == node_id) { | |
351 cycle_exists = true; | |
352 break; | |
353 } | |
354 last_id = last->parent_id; | |
355 DCHECK(NodeExists(last_id)); | |
356 last = &all_nodes_[last_id]; | |
357 } | |
358 | |
359 if (cycle_exists) { | |
360 // The new parent moves to the level of the current node. | |
361 SetParent(parent_id, node->parent_id, false); | |
362 } | |
363 | |
364 // Remove node from old parent's child list. | |
365 const NodeId old_parent_id = node->parent_id; | |
366 DCHECK(NodeExists(old_parent_id)); | |
367 Node* old_parent = &all_nodes_[old_parent_id]; | |
368 old_parent->child_list->remove(node_id); | |
369 old_parent->total_child_weights -= node->weight; | |
370 | |
371 // Make the change. | |
372 node->parent_id = parent_id; | |
373 new_parent->child_list->push_back(node_id); | |
374 new_parent->total_child_weights += node->weight; | |
375 return true; | |
376 } | |
377 | |
378 template <typename NodeId> | |
379 bool SpdyPriorityTree<NodeId>::SetBlocked(NodeId node_id, bool blocked) { | |
380 if (!NodeExists(node_id)) { | |
381 return false; | |
382 } | |
383 | |
384 Node* node = &all_nodes_[node_id]; | |
385 node->blocked = blocked; | |
386 return true; | |
387 } | |
388 | |
389 template <typename NodeId> | |
390 bool SpdyPriorityTree<NodeId>::SetReady(NodeId node_id, bool ready) { | |
391 if (!NodeExists(node_id)) { | |
392 return false; | |
393 } | |
394 Node* node = &all_nodes_[node_id]; | |
395 node->ready = ready; | |
396 return true; | |
397 } | |
398 | |
399 template <typename NodeId> | |
400 void SpdyPriorityTree<NodeId>::PropagateNodeState(NodeId node_id) { | |
401 // Reset total_writeable_child_weights to its maximum value. | |
402 Node* node = &all_nodes_[node_id]; | |
403 node->total_writeable_child_weights = node->total_child_weights; | |
404 for (typename List::iterator it = node->child_list->begin(); | |
405 it != node->child_list->end(); ++it) { | |
406 PropagateNodeState(*it); | |
407 } | |
408 if (node->total_writeable_child_weights == 0 && | |
409 (node->blocked || !node->ready)) { | |
410 // Tell the parent that this entire subtree is unwriteable. | |
411 Node* parent = &all_nodes_[node->parent_id]; | |
412 parent->total_writeable_child_weights -= node->weight; | |
413 } | |
414 } | |
415 | |
416 template <typename NodeId> | |
417 const typename SpdyPriorityTree<NodeId>::Node* | |
418 SpdyPriorityTree<NodeId>::FindNode(NodeId node_id) const { | |
419 typename NodeMap::const_iterator iter = all_nodes_.find(node_id); | |
420 if (iter == all_nodes_.end()) { | |
421 return NULL; | |
422 } | |
423 return &iter->second; | |
424 } | |
425 | |
426 template <typename NodeId> | |
427 bool SpdyPriorityTree<NodeId>::HasChild(NodeId parent_id, | |
428 NodeId child_id) const { | |
429 const Node* parent = FindNode(parent_id); | |
430 return parent->child_list->end() != | |
431 std::find(parent->child_list->begin(), | |
432 parent->child_list->end(), | |
433 child_id); | |
434 } | |
435 | |
436 template <typename NodeId> | |
437 std::vector<std::pair<NodeId, float> > | |
438 SpdyPriorityTree<NodeId>::GetPriorityList() { | |
439 typedef std::pair<NodeId, float> PriorityNode; | |
440 typedef std::vector<PriorityNode> PriorityList; | |
441 PriorityList priority_list; | |
442 | |
443 // Update total_writeable_child_weights to reflect the current | |
444 // state of the tree. | |
445 PropagateNodeState(kRootNodeId); | |
446 | |
447 List queue; | |
448 const Node* root_node = FindNode(kRootNodeId); | |
449 DCHECK(root_node->priority == 1.0); | |
450 // Start by examining our top-level nodes. | |
451 for (typename List::iterator it = root_node->child_list->begin(); | |
452 it != root_node->child_list->end(); ++it) { | |
453 queue.push_back(*it); | |
454 } | |
455 while (!queue.empty()) { | |
456 NodeId current_node_id = queue.front(); | |
457 Node* current_node = &all_nodes_[current_node_id]; | |
458 const Node* parent_node = FindNode(current_node->parent_id); | |
459 if (current_node->blocked || !current_node->ready) { | |
460 if (current_node->total_writeable_child_weights > 0) { | |
461 // This node isn't writeable, but it has writeable children. | |
462 // Calculate the total fraction of resources we can allot | |
463 // to this subtree. | |
464 current_node->priority = parent_node->priority * | |
465 (static_cast<float>(current_node->weight) / | |
466 static_cast<float>(parent_node->total_writeable_child_weights)); | |
467 // Examine the children. | |
468 for (typename List::iterator it = current_node->child_list->begin(); | |
469 it != current_node->child_list->end(); ++it) { | |
470 queue.push_back(*it); | |
471 } | |
472 } else { | |
473 // There's nothing to see in this subtree. | |
474 current_node->priority = 0; | |
475 } | |
476 } else { | |
477 // This node is writeable; calculate its priority. | |
478 current_node->priority = parent_node->priority * | |
479 (static_cast<float>(current_node->weight) / | |
480 static_cast<float>(parent_node->total_writeable_child_weights)); | |
481 // Add this node to the priority list. | |
482 priority_list.push_back(PriorityNode(current_node_id, | |
483 current_node->priority)); | |
484 } | |
485 // Remove this node from the queue. | |
486 queue.pop_front(); | |
487 } | |
488 | |
489 // Sort the nodes in descending order of priority. | |
490 std::sort(priority_list.begin(), priority_list.end(), | |
491 NodePriorityComparator()); | |
492 | |
493 return priority_list; | |
494 } | |
495 | |
496 template <typename NodeId> | |
497 bool SpdyPriorityTree<NodeId>::ValidateInvariantsForTests() const { | |
498 int total_nodes = 0; | |
499 int nodes_visited = 0; | |
500 // Iterate through all nodes in the map. | |
501 for (typename NodeMap::const_iterator iter = all_nodes_.begin(); | |
502 iter != all_nodes_.end(); ++iter) { | |
503 ++total_nodes; | |
504 ++nodes_visited; | |
505 const Node& node = iter->second; | |
506 // All nodes except the root should have a parent, and should appear in | |
507 // the child_list of that parent. | |
508 if (node.id != static_cast<NodeId>(kRootNodeId) && | |
509 (!NodeExists(node.parent_id) || | |
510 !HasChild(node.parent_id, node.id))) { | |
511 DLOG(INFO) << "Parent node " << node.parent_id | |
512 << " does not exist, or does not list node " << node.id | |
513 << " as its child."; | |
514 return false; | |
515 } | |
516 | |
517 if (!node.child_list->empty()) { | |
518 int total_child_weights = 0; | |
519 // Iterate through the node's children. | |
520 for (typename List::iterator it = node.child_list->begin(); | |
521 it != node.child_list->end(); ++it) { | |
522 ++nodes_visited; | |
523 // Each node in the list should exist and should have this node | |
524 // set as its parent. | |
525 if (!NodeExists(*it) || node.id != GetParent(*it)) { | |
526 DLOG(INFO) << "Child node " << *it << " does not exist, " | |
527 << "or does not list " << node.id << " as its parent."; | |
528 return false; | |
529 } | |
530 const Node* child = FindNode(*it); | |
531 total_child_weights += child->weight; | |
532 } | |
533 // Verify that total_child_weights is correct. | |
534 if (total_child_weights != node.total_child_weights) { | |
535 DLOG(INFO) << "Child weight totals do not agree. For node " << node.id | |
536 << " total_child_weights has value " | |
537 << node.total_child_weights | |
538 << ", expected " << total_child_weights; | |
539 return false; | |
540 } | |
541 } | |
542 } | |
543 | |
544 // Make sure num_nodes reflects the total number of nodes the map contains. | |
545 if (total_nodes != num_nodes()) { | |
546 DLOG(INFO) << "Map contains incorrect number of nodes."; | |
547 return false; | |
548 } | |
549 // Validate the validation function; we should have visited each node twice | |
550 // (except for the root) | |
551 DCHECK(nodes_visited == 2*num_nodes() - 1); | |
552 return true; | |
553 } | |
554 | |
555 } // namespace net | |
556 | |
557 #endif // NET_SPDY_SPDY_PRIORITY_TREE_H_ | |
OLD | NEW |