Index: src/utils/SkTextureCompressor.cpp |
diff --git a/src/utils/SkTextureCompressor.cpp b/src/utils/SkTextureCompressor.cpp |
index fb41928269be4b98e006c83d702d25d6cd291849..3a7fcfb1d296d730491792a707c0f043c3e5be27 100644 |
--- a/src/utils/SkTextureCompressor.cpp |
+++ b/src/utils/SkTextureCompressor.cpp |
@@ -29,26 +29,12 @@ template <typename T> inline T abs_diff(const T &a, const T &b) { |
// |
//////////////////////////////////////////////////////////////////////////////// |
-// Return the squared minimum error cost of approximating 'pixel' using the |
-// provided palette. Return this in the middle 16 bits of the integer. Return |
-// the best index in the palette for this pixel in the bottom 8 bits. |
-static uint32_t compute_error(uint8_t pixel, uint8_t palette[8]) { |
- int minIndex = 0; |
- uint8_t error = abs_diff(palette[0], pixel); |
- for (int i = 1; i < 8; ++i) { |
- uint8_t diff = abs_diff(palette[i], pixel); |
- if (diff < error) { |
- minIndex = i; |
- error = diff; |
- } |
- } |
- uint16_t errSq = static_cast<uint16_t>(error) * static_cast<uint16_t>(error); |
- SkASSERT(minIndex >= 0 && minIndex < 8); |
- return (static_cast<uint32_t>(errSq) << 8) | static_cast<uint32_t>(minIndex); |
-} |
+// LATC compressed texels down into square 4x4 blocks |
+static const int kPaletteSize = 8; |
+static const int kLATCBlockSize = 4; |
+static const int kPixelsPerBlock = kLATCBlockSize * kLATCBlockSize; |
-// Compress LATC block. Each 4x4 block of pixels is decompressed by LATC from two |
-// values LUM0 and LUM1, and an index into the generated palette. LATC constructs |
+// Generates an LATC palette. LATC constructs |
// a palette of eight colors from LUM0 and LUM1 using the algorithm: |
// |
// LUM0, if lum0 > lum1 and code(x,y) == 0 |
@@ -68,142 +54,281 @@ static uint32_t compute_error(uint8_t pixel, uint8_t palette[8]) { |
// ( LUM0+4*LUM1)/5, if lum0 <= lum1 and code(x,y) == 5 |
// 0, if lum0 <= lum1 and code(x,y) == 6 |
// 255, if lum0 <= lum1 and code(x,y) == 7 |
-// |
-// We compute the LATC palette using the following simple algorithm: |
-// 1. Choose the minimum and maximum values in the block as LUM0 and LUM1 |
-// 2. Figure out which of the two possible palettes is better. |
-static uint64_t compress_latc_block(uint8_t block[16]) { |
- // Just do a simple min/max but choose which of the |
- // two palettes is better |
- uint8_t maxVal = 0; |
+static void generate_palette(uint8_t palette[], uint8_t lum0, uint8_t lum1) { |
+ palette[0] = lum0; |
+ palette[1] = lum1; |
+ if (lum0 > lum1) { |
+ for (int i = 1; i < 7; i++) { |
+ palette[i+1] = ((7-i)*lum0 + i*lum1) / 7; |
+ } |
+ } else { |
+ for (int i = 1; i < 5; i++) { |
+ palette[i+1] = ((5-i)*lum0 + i*lum1) / 5; |
+ } |
+ palette[6] = 0; |
+ palette[7] = 255; |
+ } |
+} |
+ |
+static bool is_extremal(uint8_t pixel) { |
+ return 0 == pixel || 255 == pixel; |
+} |
+ |
+// Compress a block by using the bounding box of the pixels. It is assumed that |
+// there are no extremal pixels in this block otherwise we would have used |
+// compressBlockBBIgnoreExtremal. |
+static uint64_t compress_block_bb(const uint8_t pixels[]) { |
uint8_t minVal = 255; |
- for (int i = 0; i < 16; ++i) { |
- maxVal = SkMax32(maxVal, block[i]); |
- minVal = SkMin32(minVal, block[i]); |
+ uint8_t maxVal = 0; |
+ for (int i = 0; i < kPixelsPerBlock; ++i) { |
+ minVal = SkTMin(pixels[i], minVal); |
+ maxVal = SkTMax(pixels[i], maxVal); |
} |
- // Generate palettes |
- uint8_t palettes[2][8]; |
+ SkASSERT(!is_extremal(minVal)); |
+ SkASSERT(!is_extremal(maxVal)); |
+ |
+ uint8_t palette[kPaletteSize]; |
+ generate_palette(palette, maxVal, minVal); |
- // Straight linear ramp |
- palettes[0][0] = maxVal; |
- palettes[0][1] = minVal; |
- for (int i = 1; i < 7; ++i) { |
- palettes[0][i+1] = ((7-i)*maxVal + i*minVal) / 7; |
+ uint64_t indices = 0; |
+ for (int i = kPixelsPerBlock - 1; i >= 0; --i) { |
+ |
+ // Find the best palette index |
+ uint8_t bestError = abs_diff(pixels[i], palette[0]); |
+ uint8_t idx = 0; |
+ for (int j = 1; j < kPaletteSize; ++j) { |
+ uint8_t error = abs_diff(pixels[i], palette[j]); |
+ if (error < bestError) { |
+ bestError = error; |
+ idx = j; |
+ } |
+ } |
+ |
+ indices <<= 3; |
+ indices |= idx; |
} |
- // Smaller linear ramp with min and max byte values at the end. |
- palettes[1][0] = minVal; |
- palettes[1][1] = maxVal; |
- for (int i = 1; i < 5; ++i) { |
- palettes[1][i+1] = ((5-i)*maxVal + i*minVal) / 5; |
+ return |
+ SkEndian_SwapLE64( |
+ static_cast<uint64_t>(maxVal) | |
+ (static_cast<uint64_t>(minVal) << 8) | |
+ (indices << 16)); |
+} |
+ |
+// Compress a block by using the bounding box of the pixels without taking into |
+// account the extremal values. The generated palette will contain extremal values |
+// and fewer points along the line segment to interpolate. |
+static uint64_t compress_block_bb_ignore_extremal(const uint8_t pixels[]) { |
+ uint8_t minVal = 255; |
+ uint8_t maxVal = 0; |
+ for (int i = 0; i < kPixelsPerBlock; ++i) { |
+ if (is_extremal(pixels[i])) { |
+ continue; |
+ } |
+ |
+ minVal = SkTMin(pixels[i], minVal); |
+ maxVal = SkTMax(pixels[i], maxVal); |
} |
- palettes[1][6] = 0; |
- palettes[1][7] = 255; |
- |
- // Figure out which of the two is better: |
- // - accumError holds the accumulated error for each pixel from |
- // the associated palette |
- // - indices holds the best indices for each palette in the |
- // bottom 48 (16*3) bits. |
- uint32_t accumError[2] = { 0, 0 }; |
- uint64_t indices[2] = { 0, 0 }; |
- for (int i = 15; i >= 0; --i) { |
- // For each palette: |
- // 1. Retreive the result of this pixel |
- // 2. Store the error in accumError |
- // 3. Store the minimum palette index in indices. |
- for (int p = 0; p < 2; ++p) { |
- uint32_t result = compute_error(block[i], palettes[p]); |
- accumError[p] += (result >> 8); |
- indices[p] <<= 3; |
- indices[p] |= result & 7; |
+ |
+ SkASSERT(!is_extremal(minVal)); |
+ SkASSERT(!is_extremal(maxVal)); |
+ |
+ uint8_t palette[kPaletteSize]; |
+ generate_palette(palette, minVal, maxVal); |
+ |
+ uint64_t indices = 0; |
+ for (int i = kPixelsPerBlock - 1; i >= 0; --i) { |
+ |
+ // Find the best palette index |
+ uint8_t idx = 0; |
+ if (is_extremal(pixels[i])) { |
+ if (0xFF == pixels[i]) { |
+ idx = 7; |
+ } else if (0 == pixels[i]) { |
+ idx = 6; |
+ } else { |
+ SkFAIL("Pixel is extremal but not really?!"); |
+ } |
+ } else { |
+ uint8_t bestError = abs_diff(pixels[i], palette[0]); |
+ for (int j = 1; j < kPaletteSize - 2; ++j) { |
+ uint8_t error = abs_diff(pixels[i], palette[j]); |
+ if (error < bestError) { |
+ bestError = error; |
+ idx = j; |
+ } |
+ } |
} |
+ |
+ indices <<= 3; |
+ indices |= idx; |
} |
- SkASSERT(indices[0] < (static_cast<uint64_t>(1) << 48)); |
- SkASSERT(indices[1] < (static_cast<uint64_t>(1) << 48)); |
+ return |
+ SkEndian_SwapLE64( |
+ static_cast<uint64_t>(minVal) | |
+ (static_cast<uint64_t>(maxVal) << 8) | |
+ (indices << 16)); |
+} |
- uint8_t paletteIdx = (accumError[0] > accumError[1]) ? 0 : 1; |
- // Assemble the compressed block. |
- uint64_t result = 0; |
+// Compress LATC block. Each 4x4 block of pixels is decompressed by LATC from two |
+// values LUM0 and LUM1, and an index into the generated palette. Details of how |
+// the palette is generated can be found in the comments of generatePalette above. |
+// |
+// We choose which palette type to use based on whether or not 'pixels' contains |
+// any extremal values (0 or 255). If there are extremal values, then we use the |
+// palette that has the extremal values built in. Otherwise, we use the full bounding |
+// box. |
+ |
+static uint64_t compress_block(const uint8_t pixels[]) { |
+ // Collect unique pixels |
+ int nUniquePixels = 0; |
+ uint8_t uniquePixels[kPixelsPerBlock]; |
+ for (int i = 0; i < kPixelsPerBlock; ++i) { |
+ bool foundPixel = false; |
+ for (int j = 0; j < nUniquePixels; ++j) { |
+ foundPixel = foundPixel || uniquePixels[j] == pixels[i]; |
+ } |
- // Jam the first two palette entries into the bottom 16 bits of |
- // a 64 bit integer. Based on the palette that we chose, one will |
- // be larger than the other and it will select the proper palette. |
- result |= static_cast<uint64_t>(palettes[paletteIdx][0]); |
- result |= static_cast<uint64_t>(palettes[paletteIdx][1]) << 8; |
+ if (!foundPixel) { |
+ uniquePixels[nUniquePixels] = pixels[i]; |
+ ++nUniquePixels; |
+ } |
+ } |
- // Jam the indices into the top 48 bits. |
- result |= indices[paletteIdx] << 16; |
+ // If there's only one unique pixel, then our compression is easy. |
+ if (1 == nUniquePixels) { |
+ return SkEndian_SwapLE64(pixels[0] | (pixels[0] << 8)); |
+ |
+ // Similarly, if there are only two unique pixels, then our compression is |
+ // easy again: place the pixels in the block header, and assign the indices |
+ // with one or zero depending on which pixel they belong to. |
+ } else if (2 == nUniquePixels) { |
+ uint64_t outBlock = 0; |
+ for (int i = kPixelsPerBlock - 1; i >= 0; --i) { |
+ int idx = 0; |
+ if (pixels[i] == uniquePixels[1]) { |
+ idx = 1; |
+ } |
+ |
+ outBlock <<= 3; |
+ outBlock |= idx; |
+ } |
+ outBlock <<= 16; |
+ outBlock |= (uniquePixels[0] | (uniquePixels[1] << 8)); |
+ return SkEndian_SwapLE64(outBlock); |
+ } |
- // We assume everything is little endian, if it's not then make it so. |
- return SkEndian_SwapLE64(result); |
-} |
+ // Count non-maximal pixel values |
+ int nonExtremalPixels = 0; |
+ for (int i = 0; i < nUniquePixels; ++i) { |
+ if (!is_extremal(uniquePixels[i])) { |
+ ++nonExtremalPixels; |
+ } |
+ } |
-static SkData *compress_a8_to_latc(const SkBitmap &bm) { |
- // LATC compressed texels down into square 4x4 blocks |
- static const int kLATCBlockSize = 4; |
+ // If all the pixels are nonmaximal then compute the palette using |
+ // the bounding box of all the pixels. |
+ if (nonExtremalPixels == nUniquePixels) { |
+ // This is really just for correctness, in all of my tests we |
+ // never take this step. We don't lose too much perf here because |
+ // most of the processing in this function is worth it for the |
+ // 1 == nUniquePixels optimization. |
+ return compress_block_bb(pixels); |
+ } else { |
+ return compress_block_bb_ignore_extremal(pixels); |
+ } |
+} |
+static bool compress_a8_to_latc(uint8_t* dst, const uint8_t* src, |
+ int width, int height, int rowBytes) { |
// Make sure that our data is well-formed enough to be |
// considered for LATC compression |
- if (bm.width() == 0 || bm.height() == 0 || |
- (bm.width() % kLATCBlockSize) != 0 || |
- (bm.height() % kLATCBlockSize) != 0 || |
- (bm.colorType() != kAlpha_8_SkColorType)) { |
- return NULL; |
+ if (0 == width || 0 == height || |
+ (width % kLATCBlockSize) != 0 || (height % kLATCBlockSize) != 0) { |
+ return false; |
} |
- // The LATC format is 64 bits per 4x4 block. |
- static const int kLATCEncodedBlockSize = 8; |
- |
- int blocksX = bm.width() / kLATCBlockSize; |
- int blocksY = bm.height() / kLATCBlockSize; |
- |
- int compressedDataSize = blocksX * blocksY * kLATCEncodedBlockSize; |
- uint64_t* dst = reinterpret_cast<uint64_t*>(sk_malloc_throw(compressedDataSize)); |
+ int blocksX = width / kLATCBlockSize; |
+ int blocksY = height / kLATCBlockSize; |
uint8_t block[16]; |
- const uint8_t* row = reinterpret_cast<const uint8_t*>(bm.getPixels()); |
- uint64_t* encPtr = dst; |
+ uint64_t* encPtr = reinterpret_cast<uint64_t*>(dst); |
for (int y = 0; y < blocksY; ++y) { |
for (int x = 0; x < blocksX; ++x) { |
- memcpy(block, row + (kLATCBlockSize * x), 4); |
- memcpy(block + 4, row + bm.rowBytes() + (kLATCBlockSize * x), 4); |
- memcpy(block + 8, row + 2*bm.rowBytes() + (kLATCBlockSize * x), 4); |
- memcpy(block + 12, row + 3*bm.rowBytes() + (kLATCBlockSize * x), 4); |
- |
- *encPtr = compress_latc_block(block); |
+ // Load block |
+ static const int kBS = kLATCBlockSize; |
+ for (int k = 0; k < kBS; ++k) { |
+ memcpy(block + k*kBS, src + k*rowBytes + (kBS * x), kBS); |
+ } |
+ |
+ // Compress it |
+ *encPtr = compress_block(block); |
++encPtr; |
} |
- row += kLATCBlockSize * bm.rowBytes(); |
+ src += kLATCBlockSize * rowBytes; |
} |
- return SkData::NewFromMalloc(dst, compressedDataSize); |
+ return true; |
} |
//////////////////////////////////////////////////////////////////////////////// |
namespace SkTextureCompressor { |
-typedef SkData *(*CompressBitmapProc)(const SkBitmap &bitmap); |
+static size_t get_compressed_data_size(Format fmt, int width, int height) { |
+ switch (fmt) { |
+ case kLATC_Format: |
+ { |
+ // The LATC format is 64 bits per 4x4 block. |
+ static const int kLATCEncodedBlockSize = 8; |
-SkData *CompressBitmapToFormat(const SkBitmap &bitmap, Format format) { |
- SkAutoLockPixels alp(bitmap); |
+ int blocksX = width / kLATCBlockSize; |
+ int blocksY = height / kLATCBlockSize; |
- CompressBitmapProc kProcMap[kLastEnum_SkColorType + 1][kFormatCnt]; |
- memset(kProcMap, 0, sizeof(kProcMap)); |
+ return blocksX * blocksY * kLATCEncodedBlockSize; |
+ } |
+ |
+ default: |
+ SkFAIL("Unknown compressed format!"); |
+ return 0; |
+ } |
+} |
- // Map available bitmap configs to compression functions |
- kProcMap[kAlpha_8_SkColorType][kLATC_Format] = compress_a8_to_latc; |
+typedef bool (*CompressBitmapProc)(uint8_t* dst, const uint8_t* src, |
+ int width, int height, int rowBytes); |
+ |
+bool CompressBufferToFormat(uint8_t* dst, const uint8_t* src, SkColorType srcColorType, |
+ int width, int height, int rowBytes, Format format) { |
+ |
+ CompressBitmapProc kProcMap[kFormatCnt][kLastEnum_SkColorType + 1]; |
+ memset(kProcMap, 0, sizeof(kProcMap)); |
- CompressBitmapProc proc = kProcMap[bitmap.colorType()][format]; |
+ kProcMap[kLATC_Format][kAlpha_8_SkColorType] = compress_a8_to_latc; |
+ |
+ CompressBitmapProc proc = kProcMap[format][srcColorType]; |
if (NULL != proc) { |
- return proc(bitmap); |
+ return proc(dst, src, width, height, rowBytes); |
+ } |
+ |
+ return false; |
+} |
+ |
+SkData *CompressBitmapToFormat(const SkBitmap &bitmap, Format format) { |
+ SkAutoLockPixels alp(bitmap); |
+ |
+ int compressedDataSize = get_compressed_data_size(format, bitmap.width(), bitmap.height()); |
+ const uint8_t* src = reinterpret_cast<const uint8_t*>(bitmap.getPixels()); |
+ uint8_t* dst = reinterpret_cast<uint8_t*>(sk_malloc_throw(compressedDataSize)); |
+ if (CompressBufferToFormat(dst, src, bitmap.colorType(), bitmap.width(), bitmap.height(), |
+ bitmap.rowBytes(), format)) { |
+ return SkData::NewFromMalloc(dst, compressedDataSize); |
} |
+ sk_free(dst); |
return NULL; |
} |