| Index: src/utils/SkTextureCompressor.cpp
|
| diff --git a/src/utils/SkTextureCompressor.cpp b/src/utils/SkTextureCompressor.cpp
|
| index fb41928269be4b98e006c83d702d25d6cd291849..3a7fcfb1d296d730491792a707c0f043c3e5be27 100644
|
| --- a/src/utils/SkTextureCompressor.cpp
|
| +++ b/src/utils/SkTextureCompressor.cpp
|
| @@ -29,26 +29,12 @@ template <typename T> inline T abs_diff(const T &a, const T &b) {
|
| //
|
| ////////////////////////////////////////////////////////////////////////////////
|
|
|
| -// Return the squared minimum error cost of approximating 'pixel' using the
|
| -// provided palette. Return this in the middle 16 bits of the integer. Return
|
| -// the best index in the palette for this pixel in the bottom 8 bits.
|
| -static uint32_t compute_error(uint8_t pixel, uint8_t palette[8]) {
|
| - int minIndex = 0;
|
| - uint8_t error = abs_diff(palette[0], pixel);
|
| - for (int i = 1; i < 8; ++i) {
|
| - uint8_t diff = abs_diff(palette[i], pixel);
|
| - if (diff < error) {
|
| - minIndex = i;
|
| - error = diff;
|
| - }
|
| - }
|
| - uint16_t errSq = static_cast<uint16_t>(error) * static_cast<uint16_t>(error);
|
| - SkASSERT(minIndex >= 0 && minIndex < 8);
|
| - return (static_cast<uint32_t>(errSq) << 8) | static_cast<uint32_t>(minIndex);
|
| -}
|
| +// LATC compressed texels down into square 4x4 blocks
|
| +static const int kPaletteSize = 8;
|
| +static const int kLATCBlockSize = 4;
|
| +static const int kPixelsPerBlock = kLATCBlockSize * kLATCBlockSize;
|
|
|
| -// Compress LATC block. Each 4x4 block of pixels is decompressed by LATC from two
|
| -// values LUM0 and LUM1, and an index into the generated palette. LATC constructs
|
| +// Generates an LATC palette. LATC constructs
|
| // a palette of eight colors from LUM0 and LUM1 using the algorithm:
|
| //
|
| // LUM0, if lum0 > lum1 and code(x,y) == 0
|
| @@ -68,142 +54,281 @@ static uint32_t compute_error(uint8_t pixel, uint8_t palette[8]) {
|
| // ( LUM0+4*LUM1)/5, if lum0 <= lum1 and code(x,y) == 5
|
| // 0, if lum0 <= lum1 and code(x,y) == 6
|
| // 255, if lum0 <= lum1 and code(x,y) == 7
|
| -//
|
| -// We compute the LATC palette using the following simple algorithm:
|
| -// 1. Choose the minimum and maximum values in the block as LUM0 and LUM1
|
| -// 2. Figure out which of the two possible palettes is better.
|
|
|
| -static uint64_t compress_latc_block(uint8_t block[16]) {
|
| - // Just do a simple min/max but choose which of the
|
| - // two palettes is better
|
| - uint8_t maxVal = 0;
|
| +static void generate_palette(uint8_t palette[], uint8_t lum0, uint8_t lum1) {
|
| + palette[0] = lum0;
|
| + palette[1] = lum1;
|
| + if (lum0 > lum1) {
|
| + for (int i = 1; i < 7; i++) {
|
| + palette[i+1] = ((7-i)*lum0 + i*lum1) / 7;
|
| + }
|
| + } else {
|
| + for (int i = 1; i < 5; i++) {
|
| + palette[i+1] = ((5-i)*lum0 + i*lum1) / 5;
|
| + }
|
| + palette[6] = 0;
|
| + palette[7] = 255;
|
| + }
|
| +}
|
| +
|
| +static bool is_extremal(uint8_t pixel) {
|
| + return 0 == pixel || 255 == pixel;
|
| +}
|
| +
|
| +// Compress a block by using the bounding box of the pixels. It is assumed that
|
| +// there are no extremal pixels in this block otherwise we would have used
|
| +// compressBlockBBIgnoreExtremal.
|
| +static uint64_t compress_block_bb(const uint8_t pixels[]) {
|
| uint8_t minVal = 255;
|
| - for (int i = 0; i < 16; ++i) {
|
| - maxVal = SkMax32(maxVal, block[i]);
|
| - minVal = SkMin32(minVal, block[i]);
|
| + uint8_t maxVal = 0;
|
| + for (int i = 0; i < kPixelsPerBlock; ++i) {
|
| + minVal = SkTMin(pixels[i], minVal);
|
| + maxVal = SkTMax(pixels[i], maxVal);
|
| }
|
|
|
| - // Generate palettes
|
| - uint8_t palettes[2][8];
|
| + SkASSERT(!is_extremal(minVal));
|
| + SkASSERT(!is_extremal(maxVal));
|
| +
|
| + uint8_t palette[kPaletteSize];
|
| + generate_palette(palette, maxVal, minVal);
|
|
|
| - // Straight linear ramp
|
| - palettes[0][0] = maxVal;
|
| - palettes[0][1] = minVal;
|
| - for (int i = 1; i < 7; ++i) {
|
| - palettes[0][i+1] = ((7-i)*maxVal + i*minVal) / 7;
|
| + uint64_t indices = 0;
|
| + for (int i = kPixelsPerBlock - 1; i >= 0; --i) {
|
| +
|
| + // Find the best palette index
|
| + uint8_t bestError = abs_diff(pixels[i], palette[0]);
|
| + uint8_t idx = 0;
|
| + for (int j = 1; j < kPaletteSize; ++j) {
|
| + uint8_t error = abs_diff(pixels[i], palette[j]);
|
| + if (error < bestError) {
|
| + bestError = error;
|
| + idx = j;
|
| + }
|
| + }
|
| +
|
| + indices <<= 3;
|
| + indices |= idx;
|
| }
|
|
|
| - // Smaller linear ramp with min and max byte values at the end.
|
| - palettes[1][0] = minVal;
|
| - palettes[1][1] = maxVal;
|
| - for (int i = 1; i < 5; ++i) {
|
| - palettes[1][i+1] = ((5-i)*maxVal + i*minVal) / 5;
|
| + return
|
| + SkEndian_SwapLE64(
|
| + static_cast<uint64_t>(maxVal) |
|
| + (static_cast<uint64_t>(minVal) << 8) |
|
| + (indices << 16));
|
| +}
|
| +
|
| +// Compress a block by using the bounding box of the pixels without taking into
|
| +// account the extremal values. The generated palette will contain extremal values
|
| +// and fewer points along the line segment to interpolate.
|
| +static uint64_t compress_block_bb_ignore_extremal(const uint8_t pixels[]) {
|
| + uint8_t minVal = 255;
|
| + uint8_t maxVal = 0;
|
| + for (int i = 0; i < kPixelsPerBlock; ++i) {
|
| + if (is_extremal(pixels[i])) {
|
| + continue;
|
| + }
|
| +
|
| + minVal = SkTMin(pixels[i], minVal);
|
| + maxVal = SkTMax(pixels[i], maxVal);
|
| }
|
| - palettes[1][6] = 0;
|
| - palettes[1][7] = 255;
|
| -
|
| - // Figure out which of the two is better:
|
| - // - accumError holds the accumulated error for each pixel from
|
| - // the associated palette
|
| - // - indices holds the best indices for each palette in the
|
| - // bottom 48 (16*3) bits.
|
| - uint32_t accumError[2] = { 0, 0 };
|
| - uint64_t indices[2] = { 0, 0 };
|
| - for (int i = 15; i >= 0; --i) {
|
| - // For each palette:
|
| - // 1. Retreive the result of this pixel
|
| - // 2. Store the error in accumError
|
| - // 3. Store the minimum palette index in indices.
|
| - for (int p = 0; p < 2; ++p) {
|
| - uint32_t result = compute_error(block[i], palettes[p]);
|
| - accumError[p] += (result >> 8);
|
| - indices[p] <<= 3;
|
| - indices[p] |= result & 7;
|
| +
|
| + SkASSERT(!is_extremal(minVal));
|
| + SkASSERT(!is_extremal(maxVal));
|
| +
|
| + uint8_t palette[kPaletteSize];
|
| + generate_palette(palette, minVal, maxVal);
|
| +
|
| + uint64_t indices = 0;
|
| + for (int i = kPixelsPerBlock - 1; i >= 0; --i) {
|
| +
|
| + // Find the best palette index
|
| + uint8_t idx = 0;
|
| + if (is_extremal(pixels[i])) {
|
| + if (0xFF == pixels[i]) {
|
| + idx = 7;
|
| + } else if (0 == pixels[i]) {
|
| + idx = 6;
|
| + } else {
|
| + SkFAIL("Pixel is extremal but not really?!");
|
| + }
|
| + } else {
|
| + uint8_t bestError = abs_diff(pixels[i], palette[0]);
|
| + for (int j = 1; j < kPaletteSize - 2; ++j) {
|
| + uint8_t error = abs_diff(pixels[i], palette[j]);
|
| + if (error < bestError) {
|
| + bestError = error;
|
| + idx = j;
|
| + }
|
| + }
|
| }
|
| +
|
| + indices <<= 3;
|
| + indices |= idx;
|
| }
|
|
|
| - SkASSERT(indices[0] < (static_cast<uint64_t>(1) << 48));
|
| - SkASSERT(indices[1] < (static_cast<uint64_t>(1) << 48));
|
| + return
|
| + SkEndian_SwapLE64(
|
| + static_cast<uint64_t>(minVal) |
|
| + (static_cast<uint64_t>(maxVal) << 8) |
|
| + (indices << 16));
|
| +}
|
|
|
| - uint8_t paletteIdx = (accumError[0] > accumError[1]) ? 0 : 1;
|
|
|
| - // Assemble the compressed block.
|
| - uint64_t result = 0;
|
| +// Compress LATC block. Each 4x4 block of pixels is decompressed by LATC from two
|
| +// values LUM0 and LUM1, and an index into the generated palette. Details of how
|
| +// the palette is generated can be found in the comments of generatePalette above.
|
| +//
|
| +// We choose which palette type to use based on whether or not 'pixels' contains
|
| +// any extremal values (0 or 255). If there are extremal values, then we use the
|
| +// palette that has the extremal values built in. Otherwise, we use the full bounding
|
| +// box.
|
| +
|
| +static uint64_t compress_block(const uint8_t pixels[]) {
|
| + // Collect unique pixels
|
| + int nUniquePixels = 0;
|
| + uint8_t uniquePixels[kPixelsPerBlock];
|
| + for (int i = 0; i < kPixelsPerBlock; ++i) {
|
| + bool foundPixel = false;
|
| + for (int j = 0; j < nUniquePixels; ++j) {
|
| + foundPixel = foundPixel || uniquePixels[j] == pixels[i];
|
| + }
|
|
|
| - // Jam the first two palette entries into the bottom 16 bits of
|
| - // a 64 bit integer. Based on the palette that we chose, one will
|
| - // be larger than the other and it will select the proper palette.
|
| - result |= static_cast<uint64_t>(palettes[paletteIdx][0]);
|
| - result |= static_cast<uint64_t>(palettes[paletteIdx][1]) << 8;
|
| + if (!foundPixel) {
|
| + uniquePixels[nUniquePixels] = pixels[i];
|
| + ++nUniquePixels;
|
| + }
|
| + }
|
|
|
| - // Jam the indices into the top 48 bits.
|
| - result |= indices[paletteIdx] << 16;
|
| + // If there's only one unique pixel, then our compression is easy.
|
| + if (1 == nUniquePixels) {
|
| + return SkEndian_SwapLE64(pixels[0] | (pixels[0] << 8));
|
| +
|
| + // Similarly, if there are only two unique pixels, then our compression is
|
| + // easy again: place the pixels in the block header, and assign the indices
|
| + // with one or zero depending on which pixel they belong to.
|
| + } else if (2 == nUniquePixels) {
|
| + uint64_t outBlock = 0;
|
| + for (int i = kPixelsPerBlock - 1; i >= 0; --i) {
|
| + int idx = 0;
|
| + if (pixels[i] == uniquePixels[1]) {
|
| + idx = 1;
|
| + }
|
| +
|
| + outBlock <<= 3;
|
| + outBlock |= idx;
|
| + }
|
| + outBlock <<= 16;
|
| + outBlock |= (uniquePixels[0] | (uniquePixels[1] << 8));
|
| + return SkEndian_SwapLE64(outBlock);
|
| + }
|
|
|
| - // We assume everything is little endian, if it's not then make it so.
|
| - return SkEndian_SwapLE64(result);
|
| -}
|
| + // Count non-maximal pixel values
|
| + int nonExtremalPixels = 0;
|
| + for (int i = 0; i < nUniquePixels; ++i) {
|
| + if (!is_extremal(uniquePixels[i])) {
|
| + ++nonExtremalPixels;
|
| + }
|
| + }
|
|
|
| -static SkData *compress_a8_to_latc(const SkBitmap &bm) {
|
| - // LATC compressed texels down into square 4x4 blocks
|
| - static const int kLATCBlockSize = 4;
|
| + // If all the pixels are nonmaximal then compute the palette using
|
| + // the bounding box of all the pixels.
|
| + if (nonExtremalPixels == nUniquePixels) {
|
| + // This is really just for correctness, in all of my tests we
|
| + // never take this step. We don't lose too much perf here because
|
| + // most of the processing in this function is worth it for the
|
| + // 1 == nUniquePixels optimization.
|
| + return compress_block_bb(pixels);
|
| + } else {
|
| + return compress_block_bb_ignore_extremal(pixels);
|
| + }
|
| +}
|
|
|
| +static bool compress_a8_to_latc(uint8_t* dst, const uint8_t* src,
|
| + int width, int height, int rowBytes) {
|
| // Make sure that our data is well-formed enough to be
|
| // considered for LATC compression
|
| - if (bm.width() == 0 || bm.height() == 0 ||
|
| - (bm.width() % kLATCBlockSize) != 0 ||
|
| - (bm.height() % kLATCBlockSize) != 0 ||
|
| - (bm.colorType() != kAlpha_8_SkColorType)) {
|
| - return NULL;
|
| + if (0 == width || 0 == height ||
|
| + (width % kLATCBlockSize) != 0 || (height % kLATCBlockSize) != 0) {
|
| + return false;
|
| }
|
|
|
| - // The LATC format is 64 bits per 4x4 block.
|
| - static const int kLATCEncodedBlockSize = 8;
|
| -
|
| - int blocksX = bm.width() / kLATCBlockSize;
|
| - int blocksY = bm.height() / kLATCBlockSize;
|
| -
|
| - int compressedDataSize = blocksX * blocksY * kLATCEncodedBlockSize;
|
| - uint64_t* dst = reinterpret_cast<uint64_t*>(sk_malloc_throw(compressedDataSize));
|
| + int blocksX = width / kLATCBlockSize;
|
| + int blocksY = height / kLATCBlockSize;
|
|
|
| uint8_t block[16];
|
| - const uint8_t* row = reinterpret_cast<const uint8_t*>(bm.getPixels());
|
| - uint64_t* encPtr = dst;
|
| + uint64_t* encPtr = reinterpret_cast<uint64_t*>(dst);
|
| for (int y = 0; y < blocksY; ++y) {
|
| for (int x = 0; x < blocksX; ++x) {
|
| - memcpy(block, row + (kLATCBlockSize * x), 4);
|
| - memcpy(block + 4, row + bm.rowBytes() + (kLATCBlockSize * x), 4);
|
| - memcpy(block + 8, row + 2*bm.rowBytes() + (kLATCBlockSize * x), 4);
|
| - memcpy(block + 12, row + 3*bm.rowBytes() + (kLATCBlockSize * x), 4);
|
| -
|
| - *encPtr = compress_latc_block(block);
|
| + // Load block
|
| + static const int kBS = kLATCBlockSize;
|
| + for (int k = 0; k < kBS; ++k) {
|
| + memcpy(block + k*kBS, src + k*rowBytes + (kBS * x), kBS);
|
| + }
|
| +
|
| + // Compress it
|
| + *encPtr = compress_block(block);
|
| ++encPtr;
|
| }
|
| - row += kLATCBlockSize * bm.rowBytes();
|
| + src += kLATCBlockSize * rowBytes;
|
| }
|
|
|
| - return SkData::NewFromMalloc(dst, compressedDataSize);
|
| + return true;
|
| }
|
|
|
| ////////////////////////////////////////////////////////////////////////////////
|
|
|
| namespace SkTextureCompressor {
|
|
|
| -typedef SkData *(*CompressBitmapProc)(const SkBitmap &bitmap);
|
| +static size_t get_compressed_data_size(Format fmt, int width, int height) {
|
| + switch (fmt) {
|
| + case kLATC_Format:
|
| + {
|
| + // The LATC format is 64 bits per 4x4 block.
|
| + static const int kLATCEncodedBlockSize = 8;
|
|
|
| -SkData *CompressBitmapToFormat(const SkBitmap &bitmap, Format format) {
|
| - SkAutoLockPixels alp(bitmap);
|
| + int blocksX = width / kLATCBlockSize;
|
| + int blocksY = height / kLATCBlockSize;
|
|
|
| - CompressBitmapProc kProcMap[kLastEnum_SkColorType + 1][kFormatCnt];
|
| - memset(kProcMap, 0, sizeof(kProcMap));
|
| + return blocksX * blocksY * kLATCEncodedBlockSize;
|
| + }
|
| +
|
| + default:
|
| + SkFAIL("Unknown compressed format!");
|
| + return 0;
|
| + }
|
| +}
|
|
|
| - // Map available bitmap configs to compression functions
|
| - kProcMap[kAlpha_8_SkColorType][kLATC_Format] = compress_a8_to_latc;
|
| +typedef bool (*CompressBitmapProc)(uint8_t* dst, const uint8_t* src,
|
| + int width, int height, int rowBytes);
|
| +
|
| +bool CompressBufferToFormat(uint8_t* dst, const uint8_t* src, SkColorType srcColorType,
|
| + int width, int height, int rowBytes, Format format) {
|
| +
|
| + CompressBitmapProc kProcMap[kFormatCnt][kLastEnum_SkColorType + 1];
|
| + memset(kProcMap, 0, sizeof(kProcMap));
|
|
|
| - CompressBitmapProc proc = kProcMap[bitmap.colorType()][format];
|
| + kProcMap[kLATC_Format][kAlpha_8_SkColorType] = compress_a8_to_latc;
|
| +
|
| + CompressBitmapProc proc = kProcMap[format][srcColorType];
|
| if (NULL != proc) {
|
| - return proc(bitmap);
|
| + return proc(dst, src, width, height, rowBytes);
|
| + }
|
| +
|
| + return false;
|
| +}
|
| +
|
| +SkData *CompressBitmapToFormat(const SkBitmap &bitmap, Format format) {
|
| + SkAutoLockPixels alp(bitmap);
|
| +
|
| + int compressedDataSize = get_compressed_data_size(format, bitmap.width(), bitmap.height());
|
| + const uint8_t* src = reinterpret_cast<const uint8_t*>(bitmap.getPixels());
|
| + uint8_t* dst = reinterpret_cast<uint8_t*>(sk_malloc_throw(compressedDataSize));
|
| + if (CompressBufferToFormat(dst, src, bitmap.colorType(), bitmap.width(), bitmap.height(),
|
| + bitmap.rowBytes(), format)) {
|
| + return SkData::NewFromMalloc(dst, compressedDataSize);
|
| }
|
|
|
| + sk_free(dst);
|
| return NULL;
|
| }
|
|
|
|
|