Chromium Code Reviews| Index: src/utils/SkTextureCompressor.cpp |
| diff --git a/src/utils/SkTextureCompressor.cpp b/src/utils/SkTextureCompressor.cpp |
| index fb41928269be4b98e006c83d702d25d6cd291849..81ff49765248bae15216baf46ea4f3e40b2a6a43 100644 |
| --- a/src/utils/SkTextureCompressor.cpp |
| +++ b/src/utils/SkTextureCompressor.cpp |
| @@ -29,26 +29,12 @@ template <typename T> inline T abs_diff(const T &a, const T &b) { |
| // |
| //////////////////////////////////////////////////////////////////////////////// |
| -// Return the squared minimum error cost of approximating 'pixel' using the |
| -// provided palette. Return this in the middle 16 bits of the integer. Return |
| -// the best index in the palette for this pixel in the bottom 8 bits. |
| -static uint32_t compute_error(uint8_t pixel, uint8_t palette[8]) { |
| - int minIndex = 0; |
| - uint8_t error = abs_diff(palette[0], pixel); |
| - for (int i = 1; i < 8; ++i) { |
| - uint8_t diff = abs_diff(palette[i], pixel); |
| - if (diff < error) { |
| - minIndex = i; |
| - error = diff; |
| - } |
| - } |
| - uint16_t errSq = static_cast<uint16_t>(error) * static_cast<uint16_t>(error); |
| - SkASSERT(minIndex >= 0 && minIndex < 8); |
| - return (static_cast<uint32_t>(errSq) << 8) | static_cast<uint32_t>(minIndex); |
| -} |
| +// LATC compressed texels down into square 4x4 blocks |
| +static const int kPaletteSize = 8; |
| +static const int kLATCBlockSize = 4; |
| +static const int kPixelsPerBlock = kLATCBlockSize * kLATCBlockSize; |
| -// Compress LATC block. Each 4x4 block of pixels is decompressed by LATC from two |
| -// values LUM0 and LUM1, and an index into the generated palette. LATC constructs |
| +// Generates an LATC palette. LATC constructs |
| // a palette of eight colors from LUM0 and LUM1 using the algorithm: |
| // |
| // LUM0, if lum0 > lum1 and code(x,y) == 0 |
| @@ -68,142 +54,277 @@ static uint32_t compute_error(uint8_t pixel, uint8_t palette[8]) { |
| // ( LUM0+4*LUM1)/5, if lum0 <= lum1 and code(x,y) == 5 |
| // 0, if lum0 <= lum1 and code(x,y) == 6 |
| // 255, if lum0 <= lum1 and code(x,y) == 7 |
| -// |
| -// We compute the LATC palette using the following simple algorithm: |
| -// 1. Choose the minimum and maximum values in the block as LUM0 and LUM1 |
| -// 2. Figure out which of the two possible palettes is better. |
| -static uint64_t compress_latc_block(uint8_t block[16]) { |
| - // Just do a simple min/max but choose which of the |
| - // two palettes is better |
| - uint8_t maxVal = 0; |
| +static void generatePalette(uint8_t palette[], uint8_t lum0, uint8_t lum1) { |
| + palette[0] = lum0; |
| + palette[1] = lum1; |
| + if (lum0 > lum1) { |
| + for (int i = 1; i < 7; i++) { |
| + palette[i+1] = ((7-i)*lum0 + i*lum1) / 7; |
| + } |
| + } else { |
| + for (int i = 1; i < 5; i++) { |
| + palette[i+1] = ((5-i)*lum0 + i*lum1) / 5; |
| + } |
| + palette[6] = 0; |
| + palette[7] = 255; |
| + } |
| +} |
| + |
| +static bool isExtremal(uint8_t pixel) { |
| + return pixel == 0 || pixel == 255; |
|
bsalomon
2014/06/19 19:19:05
we usually write "<rvalue> == <lvalue>"
krajcevski
2014/06/19 20:56:56
Done.
|
| +} |
| + |
| +// Compress a block by using the bounding box of the pixels. It is assumed that |
| +// there are no extremal pixels in this block otherwise we would have used |
| +// compressBlockBBIgnoreExtremal. |
| +static uint64_t compressBlockBB(const uint8_t pixels[]) { |
| uint8_t minVal = 255; |
| - for (int i = 0; i < 16; ++i) { |
| - maxVal = SkMax32(maxVal, block[i]); |
| - minVal = SkMin32(minVal, block[i]); |
| + uint8_t maxVal = 0; |
| + for (int i = 0; i < kPixelsPerBlock; ++i) { |
| + minVal = SkTMin(pixels[i], minVal); |
| + maxVal = SkTMax(pixels[i], maxVal); |
| } |
| - // Generate palettes |
| - uint8_t palettes[2][8]; |
| + SkASSERT(!isExtremal(minVal)); |
| + SkASSERT(!isExtremal(maxVal)); |
| + |
| + uint8_t palette[kPaletteSize]; |
| + generatePalette(palette, maxVal, minVal); |
| - // Straight linear ramp |
| - palettes[0][0] = maxVal; |
| - palettes[0][1] = minVal; |
| - for (int i = 1; i < 7; ++i) { |
| - palettes[0][i+1] = ((7-i)*maxVal + i*minVal) / 7; |
| + uint64_t indices = 0; |
| + for (int i = kPixelsPerBlock - 1; i >= 0; --i) { |
| + |
| + // Find the best palette index |
| + uint8_t bestError = abs_diff(pixels[i], palette[0]); |
| + uint8_t idx = 0; |
| + for (int j = 1; j < kPaletteSize; ++j) { |
| + uint8_t error = abs_diff(pixels[i], palette[j]); |
| + if (error < bestError) { |
| + bestError = error; |
| + idx = j; |
| + } |
| + } |
| + |
| + indices <<= 3; |
| + indices |= idx; |
| } |
| - // Smaller linear ramp with min and max byte values at the end. |
| - palettes[1][0] = minVal; |
| - palettes[1][1] = maxVal; |
| - for (int i = 1; i < 5; ++i) { |
| - palettes[1][i+1] = ((5-i)*maxVal + i*minVal) / 5; |
| + return |
| + SkEndian_SwapLE64( |
| + static_cast<uint64_t>(maxVal) | |
| + (static_cast<uint64_t>(minVal) << 8) | |
| + (indices << 16)); |
| +} |
| + |
| +// Compress a block by using the bounding box of the pixels without taking into |
| +// account the extremal values. The generated palette will contain extremal values |
| +// and fewer points along the line segment to interpolate. |
| +static uint64_t compressBlockBBIgnoreExtremal(const uint8_t pixels[]) { |
| + uint8_t minVal = 255; |
| + uint8_t maxVal = 0; |
| + for (int i = 0; i < kPixelsPerBlock; ++i) { |
| + minVal = SkTMin(pixels[i]-1, minVal-1)+1; |
| + maxVal = SkTMax(pixels[i]+1, maxVal+1)-1; |
| } |
| - palettes[1][6] = 0; |
| - palettes[1][7] = 255; |
| - |
| - // Figure out which of the two is better: |
| - // - accumError holds the accumulated error for each pixel from |
| - // the associated palette |
| - // - indices holds the best indices for each palette in the |
| - // bottom 48 (16*3) bits. |
| - uint32_t accumError[2] = { 0, 0 }; |
| - uint64_t indices[2] = { 0, 0 }; |
| - for (int i = 15; i >= 0; --i) { |
| - // For each palette: |
| - // 1. Retreive the result of this pixel |
| - // 2. Store the error in accumError |
| - // 3. Store the minimum palette index in indices. |
| - for (int p = 0; p < 2; ++p) { |
| - uint32_t result = compute_error(block[i], palettes[p]); |
| - accumError[p] += (result >> 8); |
| - indices[p] <<= 3; |
| - indices[p] |= result & 7; |
| + |
| + SkASSERT(!isExtremal(minVal)); |
| + SkASSERT(!isExtremal(maxVal)); |
| + |
| + uint8_t palette[kPaletteSize]; |
| + generatePalette(palette, minVal, maxVal); |
| + |
| + uint64_t indices = 0; |
| + for (int i = kPixelsPerBlock - 1; i >= 0; --i) { |
| + |
| + // Find the best palette index |
| + uint8_t idx = 0; |
| + if (isExtremal(pixels[i])) { |
| + if (0xFF == pixels[i]) { |
| + idx = 7; |
| + } else if (0 == pixels[i]) { |
| + idx = 6; |
| + } else { |
| + SkFAIL("Pixel is extremal but not really?!"); |
| + } |
| + } else { |
| + uint8_t bestError = abs_diff(pixels[i], palette[0]); |
| + for (int j = 1; j < kPaletteSize - 2; ++j) { |
| + uint8_t error = abs_diff(pixels[i], palette[j]); |
| + if (error < bestError) { |
| + bestError = error; |
| + idx = j; |
| + } |
| + } |
| } |
| + |
| + indices <<= 3; |
| + indices |= idx; |
| } |
| - SkASSERT(indices[0] < (static_cast<uint64_t>(1) << 48)); |
| - SkASSERT(indices[1] < (static_cast<uint64_t>(1) << 48)); |
| + return |
| + SkEndian_SwapLE64( |
| + static_cast<uint64_t>(minVal) | |
| + (static_cast<uint64_t>(maxVal) << 8) | |
| + (indices << 16)); |
| +} |
| - uint8_t paletteIdx = (accumError[0] > accumError[1]) ? 0 : 1; |
| - // Assemble the compressed block. |
| - uint64_t result = 0; |
| +// Compress LATC block. Each 4x4 block of pixels is decompressed by LATC from two |
| +// values LUM0 and LUM1, and an index into the generated palette. Details of how |
| +// the palette is generated can be found in the comments of generatePalette above. |
| +// |
| +// We choose which palette type to use based on whether or not 'pixels' contains |
| +// any extremal values (0 or 255). If there are extremal values, then we use the |
| +// palette that has the extremal values built in. Otherwise, we use the full bounding |
| +// box. |
| + |
| +static uint64_t compressBlock(const uint8_t pixels[]) { |
|
bsalomon
2014/06/19 19:19:05
our (mot consistently enforced) naming convention
krajcevski
2014/06/19 20:56:56
Done.
|
| + // Collect unique pixels |
| + int nUniquePixels = 0; |
| + uint8_t uniquePixels[kPixelsPerBlock]; |
| + for (int i = 0; i < kPixelsPerBlock; ++i) { |
| + bool foundPixel = false; |
| + for (int j = 0; j < nUniquePixels; ++j) { |
| + foundPixel = foundPixel || uniquePixels[j] == pixels[i]; |
| + } |
| - // Jam the first two palette entries into the bottom 16 bits of |
| - // a 64 bit integer. Based on the palette that we chose, one will |
| - // be larger than the other and it will select the proper palette. |
| - result |= static_cast<uint64_t>(palettes[paletteIdx][0]); |
| - result |= static_cast<uint64_t>(palettes[paletteIdx][1]) << 8; |
| + if (!foundPixel) { |
| + uniquePixels[nUniquePixels] = pixels[i]; |
| + ++nUniquePixels; |
| + } |
| + } |
| - // Jam the indices into the top 48 bits. |
| - result |= indices[paletteIdx] << 16; |
| + // If there's only one unique pixel, then our compression is easy. |
| + if (1 == nUniquePixels) { |
| + return SkEndian_SwapLE64(pixels[0] | (pixels[0] << 8)); |
| + |
| + // Similarly, if there are only two unique pixels, then our compression is |
| + // easy again: place the pixels in the block header, and assign the indices |
| + // with one or zero depending on which pixel they belong to. |
| + } else if (2 == nUniquePixels) { |
| + uint64_t outBlock = 0; |
| + for (int i = kPixelsPerBlock - 1; i >= 0; --i) { |
| + int idx = 0; |
| + if (pixels[i] == uniquePixels[1]) { |
| + idx = 1; |
| + } |
| + |
| + outBlock <<= 3; |
| + outBlock |= idx; |
| + } |
| + outBlock <<= 16; |
| + outBlock |= (uniquePixels[0] | (uniquePixels[1] << 8)); |
| + return SkEndian_SwapLE64(outBlock); |
| + } |
| - // We assume everything is little endian, if it's not then make it so. |
| - return SkEndian_SwapLE64(result); |
| -} |
| + // Count non-maximal pixel values |
| + int nonExtremalPixels = 0; |
| + for (int i = 0; i < nUniquePixels; ++i) { |
| + if (!isExtremal(uniquePixels[i])) { |
| + ++nonExtremalPixels; |
| + } |
| + } |
| -static SkData *compress_a8_to_latc(const SkBitmap &bm) { |
| - // LATC compressed texels down into square 4x4 blocks |
| - static const int kLATCBlockSize = 4; |
| + // If all the pixels are nonmaximal then compute the palette using |
| + // the bounding box of all the pixels. |
| + if (nonExtremalPixels == nUniquePixels) { |
| + // This is really just for correctness, in all of my tests we |
| + // never take this step. We don't lose too much perf here because |
| + // most of the processing in this function is worth it for the |
| + // 1 == nUniquePixels optimization. |
| + return compressBlockBB(pixels); |
| + } else { |
| + return compressBlockBBIgnoreExtremal(pixels); |
| + } |
| +} |
| +static bool compress_a8_to_latc(uint8_t* dst, const uint8_t* src, |
| + int width, int height, int rowBytes) { |
| // Make sure that our data is well-formed enough to be |
| // considered for LATC compression |
| - if (bm.width() == 0 || bm.height() == 0 || |
| - (bm.width() % kLATCBlockSize) != 0 || |
| - (bm.height() % kLATCBlockSize) != 0 || |
| - (bm.colorType() != kAlpha_8_SkColorType)) { |
| - return NULL; |
| + if (width == 0 || height == 0 || |
| + (width % kLATCBlockSize) != 0 || (height % kLATCBlockSize) != 0) { |
| + return false; |
| } |
| - // The LATC format is 64 bits per 4x4 block. |
| - static const int kLATCEncodedBlockSize = 8; |
| - |
| - int blocksX = bm.width() / kLATCBlockSize; |
| - int blocksY = bm.height() / kLATCBlockSize; |
| - |
| - int compressedDataSize = blocksX * blocksY * kLATCEncodedBlockSize; |
| - uint64_t* dst = reinterpret_cast<uint64_t*>(sk_malloc_throw(compressedDataSize)); |
| + int blocksX = width / kLATCBlockSize; |
| + int blocksY = height / kLATCBlockSize; |
| uint8_t block[16]; |
| - const uint8_t* row = reinterpret_cast<const uint8_t*>(bm.getPixels()); |
| - uint64_t* encPtr = dst; |
| + uint64_t* encPtr = reinterpret_cast<uint64_t*>(dst); |
| for (int y = 0; y < blocksY; ++y) { |
| for (int x = 0; x < blocksX; ++x) { |
| - memcpy(block, row + (kLATCBlockSize * x), 4); |
| - memcpy(block + 4, row + bm.rowBytes() + (kLATCBlockSize * x), 4); |
| - memcpy(block + 8, row + 2*bm.rowBytes() + (kLATCBlockSize * x), 4); |
| - memcpy(block + 12, row + 3*bm.rowBytes() + (kLATCBlockSize * x), 4); |
| - |
| - *encPtr = compress_latc_block(block); |
| + // Load block |
| + static const int kBS = kLATCBlockSize; |
| + for (int k = 0; k < kBS; ++k) { |
| + memcpy(block + k*kBS, src + k*rowBytes + (kBS * x), kBS); |
| + } |
| + |
| + // Compress it |
| + *encPtr = compressBlock(block); |
| ++encPtr; |
| } |
| - row += kLATCBlockSize * bm.rowBytes(); |
| + src += kLATCBlockSize * rowBytes; |
| } |
| - return SkData::NewFromMalloc(dst, compressedDataSize); |
| + return true; |
| } |
| //////////////////////////////////////////////////////////////////////////////// |
| namespace SkTextureCompressor { |
| -typedef SkData *(*CompressBitmapProc)(const SkBitmap &bitmap); |
| +static size_t get_compressed_data_size(Format fmt, int width, int height) { |
| + switch (fmt) { |
| + case kLATC_Format: |
| + { |
| + // The LATC format is 64 bits per 4x4 block. |
| + static const int kLATCEncodedBlockSize = 8; |
| -SkData *CompressBitmapToFormat(const SkBitmap &bitmap, Format format) { |
| - SkAutoLockPixels alp(bitmap); |
| + int blocksX = width / kLATCBlockSize; |
|
bsalomon
2014/06/19 19:19:05
Are the width and height always multiples of the b
krajcevski
2014/06/19 20:56:56
I check that the width/height are the proper size
|
| + int blocksY = height / kLATCBlockSize; |
| - CompressBitmapProc kProcMap[kLastEnum_SkColorType + 1][kFormatCnt]; |
| - memset(kProcMap, 0, sizeof(kProcMap)); |
| + return blocksX * blocksY * kLATCEncodedBlockSize; |
| + } |
| + |
| + default: |
| + SkFAIL("Unknown compressed format!"); |
| + return 0; |
| + } |
| +} |
| - // Map available bitmap configs to compression functions |
| - kProcMap[kAlpha_8_SkColorType][kLATC_Format] = compress_a8_to_latc; |
| +typedef bool (*CompressBitmapProc)(uint8_t* dst, const uint8_t* src, |
| + int width, int height, int rowBytes); |
| + |
| +bool CompressBufferToFormat(uint8_t* dst, const uint8_t* src, SkColorType srcColorType, |
| + int width, int height, int rowBytes, Format format) { |
| + |
| + CompressBitmapProc kProcMap[kFormatCnt][kLastEnum_SkColorType + 1]; |
| + memset(kProcMap, 0, sizeof(kProcMap)); |
| - CompressBitmapProc proc = kProcMap[bitmap.colorType()][format]; |
| + kProcMap[kLATC_Format][kAlpha_8_SkColorType] = compress_a8_to_latc; |
| + |
| + CompressBitmapProc proc = kProcMap[format][srcColorType]; |
| if (NULL != proc) { |
| - return proc(bitmap); |
| + return proc(dst, src, width, height, rowBytes); |
| + } |
| + |
| + return false; |
| +} |
| + |
| +SkData *CompressBitmapToFormat(const SkBitmap &bitmap, Format format) { |
| + SkAutoLockPixels alp(bitmap); |
| + |
| + int compressedDataSize = get_compressed_data_size(format, bitmap.width(), bitmap.height()); |
| + const uint8_t* src = reinterpret_cast<const uint8_t*>(bitmap.getPixels()); |
| + uint8_t* dst = reinterpret_cast<uint8_t*>(sk_malloc_throw(compressedDataSize)); |
| + if (CompressBufferToFormat(dst, src, bitmap.colorType(), bitmap.width(), bitmap.height(), |
| + bitmap.rowBytes(), format)) { |
| + return SkData::NewFromMalloc(dst, compressedDataSize); |
| } |
| + sk_free(dst); |
| return NULL; |
| } |