| Index: net/android/keystore_openssl.cc
|
| diff --git a/net/android/keystore_openssl.cc b/net/android/keystore_openssl.cc
|
| index dbb3b1c73f2394bbb697e3f2ba79d1fe54cf88cf..91c5b78fbe6abab07a2bd513694e45cc2a2a25bf 100644
|
| --- a/net/android/keystore_openssl.cc
|
| +++ b/net/android/keystore_openssl.cc
|
| @@ -6,16 +6,10 @@
|
|
|
| #include <jni.h>
|
| #include <openssl/bn.h>
|
| -// This include is required to get the ECDSA_METHOD structure definition
|
| -// which isn't currently part of the OpenSSL official ABI. This should
|
| -// not be a concern for Chromium which always links against its own
|
| -// version of the library on Android.
|
| -#include <openssl/crypto/ecdsa/ecs_locl.h>
|
| -// And this one is needed for the EC_GROUP definition.
|
| -#include <openssl/crypto/ec/ec_lcl.h>
|
| #include <openssl/dsa.h>
|
| #include <openssl/ec.h>
|
| #include <openssl/engine.h>
|
| +#include <openssl/err.h>
|
| #include <openssl/evp.h>
|
| #include <openssl/rsa.h>
|
|
|
| @@ -60,41 +54,10 @@
|
| // fields point to static methods used to implement the corresponding
|
| // RSA operation using platform Android APIs.
|
| //
|
| -// However, the platform APIs require a jobject JNI reference to work.
|
| -// It must be stored in the RSA instance, or made accessible when the
|
| -// custom RSA methods are called. This is done by using RSA_set_app_data()
|
| -// and RSA_get_app_data().
|
| -//
|
| -// One can thus _directly_ create a new EVP_PKEY that uses a custom RSA
|
| -// object with the following:
|
| -//
|
| -// RSA* rsa = RSA_new()
|
| -// RSA_set_method(&custom_rsa_method);
|
| -// RSA_set_app_data(rsa, jni_private_key);
|
| -//
|
| -// EVP_PKEY* pkey = EVP_PKEY_new();
|
| -// EVP_PKEY_assign_RSA(pkey, rsa);
|
| -//
|
| -// Note that because EVP_PKEY_assign_RSA() is used, instead of
|
| -// EVP_PKEY_set1_RSA(), the new EVP_PKEY now owns the RSA object, and
|
| -// will destroy it when it is itself destroyed.
|
| -//
|
| -// Unfortunately, such objects cannot be used with RSA_size(), which
|
| -// totally ignores the RSA_METHOD pointers. Instead, it is necessary
|
| -// to manually setup the modulus field (n) in the RSA object, with a
|
| -// value that matches the wrapped PrivateKey object. See GetRsaPkeyWrapper
|
| -// for full details.
|
| -//
|
| -// Similarly, custom DSA_METHOD and ECDSA_METHOD are defined by this source
|
| -// file, and appropriate field setups are performed to ensure that
|
| -// DSA_size() and ECDSA_size() work properly with the wrapper EVP_PKEY.
|
| -//
|
| -// Note that there is no need to define an OpenSSL ENGINE here. These
|
| -// are objects that can be used to expose custom methods (i.e. either
|
| -// RSA_METHOD, DSA_METHOD, ECDSA_METHOD, and a large number of other ones
|
| -// for types not related to this source file), and make them used by
|
| -// default for a lot of operations. Very fortunately, this is not needed
|
| -// here, which saves a lot of complexity.
|
| +// However, the platform APIs require a jobject JNI reference to work. It must
|
| +// be stored in the RSA instance, or made accessible when the custom RSA
|
| +// methods are called. This is done by storing it in a |KeyExData| structure
|
| +// that's referenced by the key using |EX_DATA|.
|
|
|
| using base::android::ScopedJavaGlobalRef;
|
| using base::android::ScopedJavaLocalRef;
|
| @@ -104,45 +67,127 @@ namespace android {
|
|
|
| namespace {
|
|
|
| -typedef crypto::ScopedOpenSSL<EC_GROUP, EC_GROUP_free>::Type ScopedEC_GROUP;
|
| -
|
| -// Custom RSA_METHOD that uses the platform APIs.
|
| -// Note that for now, only signing through RSA_sign() is really supported.
|
| -// all other method pointers are either stubs returning errors, or no-ops.
|
| -// See <openssl/rsa.h> for exact declaration of RSA_METHOD.
|
| +extern const RSA_METHOD android_rsa_method;
|
| +extern const ECDSA_METHOD android_ecdsa_method;
|
|
|
| -struct RsaAppData {
|
| +// KeyExData contains the data that is contained in the EX_DATA of the RSA, DSA
|
| +// and ECDSA objects that are created to wrap Android system keys.
|
| +struct KeyExData {
|
| + // private_key contains a reference to a Java, private-key object.
|
| jobject private_key;
|
| + // legacy_rsa, if not NULL, points to an RSA* in the system's OpenSSL (which
|
| + // might not be ABI compatible with Chromium).
|
| AndroidRSA* legacy_rsa;
|
| + // cached_size contains the "size" of the key. This is the size of the
|
| + // modulus (in bytes) for RSA, or the group order size for (EC)DSA. This
|
| + // avoids calling into Java to calculate the size.
|
| + size_t cached_size;
|
| };
|
|
|
| -int RsaMethodPubEnc(int flen,
|
| - const unsigned char* from,
|
| - unsigned char* to,
|
| - RSA* rsa,
|
| - int padding) {
|
| - NOTIMPLEMENTED();
|
| - RSAerr(RSA_F_RSA_PUBLIC_ENCRYPT, RSA_R_RSA_OPERATIONS_NOT_SUPPORTED);
|
| - return -1;
|
| +// ExDataDup is called when one of the RSA, DSA or EC_KEY objects is
|
| +// duplicated. We don't support this and it should never happen.
|
| +int ExDataDup(CRYPTO_EX_DATA* to,
|
| + const CRYPTO_EX_DATA* from,
|
| + void** from_d,
|
| + int index,
|
| + long argl,
|
| + void* argp) {
|
| + CHECK(false);
|
| + return 0;
|
| +}
|
| +
|
| +// ExDataFree is called when one of the RSA, DSA or EC_KEY object is freed.
|
| +void ExDataFree(void* parent,
|
| + void* ptr,
|
| + CRYPTO_EX_DATA* ad,
|
| + int index,
|
| + long argl,
|
| + void* argp) {
|
| + // Ensure the global JNI reference created with this wrapper is
|
| + // properly destroyed with it.
|
| + KeyExData *ex_data = reinterpret_cast<KeyExData*>(ptr);
|
| + if (ex_data != NULL) {
|
| + ReleaseKey(ex_data->private_key);
|
| + delete ex_data;
|
| + }
|
| }
|
|
|
| -int RsaMethodPubDec(int flen,
|
| - const unsigned char* from,
|
| - unsigned char* to,
|
| - RSA* rsa,
|
| - int padding) {
|
| +// BoringSSLEngine is a BoringSSL ENGINE that implements RSA, DSA and ECDSA by
|
| +// forwarding the requested operations to the Java libraries.
|
| +class BoringSSLEngine {
|
| + public:
|
| + BoringSSLEngine()
|
| + : rsa_index_(RSA_get_ex_new_index(0 /* argl */,
|
| + NULL /* argp */,
|
| + NULL /* new_func */,
|
| + ExDataDup,
|
| + ExDataFree)),
|
| + ec_key_index_(EC_KEY_get_ex_new_index(0 /* argl */,
|
| + NULL /* argp */,
|
| + NULL /* new_func */,
|
| + ExDataDup,
|
| + ExDataFree)),
|
| + engine_(ENGINE_new()) {
|
| + ENGINE_set_RSA_method(
|
| + engine_, &android_rsa_method, sizeof(android_rsa_method));
|
| + ENGINE_set_ECDSA_method(
|
| + engine_, &android_ecdsa_method, sizeof(android_ecdsa_method));
|
| + }
|
| +
|
| + int rsa_ex_index() const { return rsa_index_; }
|
| + int ec_key_ex_index() const { return ec_key_index_; }
|
| +
|
| + const ENGINE* engine() const { return engine_; }
|
| +
|
| + private:
|
| + const int rsa_index_;
|
| + const int ec_key_index_;
|
| + ENGINE* const engine_;
|
| +};
|
| +
|
| +base::LazyInstance<BoringSSLEngine>::Leaky global_boringssl_engine =
|
| + LAZY_INSTANCE_INITIALIZER;
|
| +
|
| +
|
| +// VectorBignumSize returns the number of bytes needed to represent the bignum
|
| +// given in |v|, i.e. the length of |v| less any leading zero bytes.
|
| +size_t VectorBignumSize(const std::vector<uint8>& v) {
|
| + size_t size = v.size();
|
| + // Ignore any leading zero bytes.
|
| + for (size_t i = 0; i < v.size() && v[i] == 0; i++) {
|
| + size--;
|
| + }
|
| + return size;
|
| +}
|
| +
|
| +KeyExData* RsaGetExData(const RSA* rsa) {
|
| + return reinterpret_cast<KeyExData*>(
|
| + RSA_get_ex_data(rsa, global_boringssl_engine.Get().rsa_ex_index()));
|
| +}
|
| +
|
| +size_t RsaMethodSize(const RSA *rsa) {
|
| + const KeyExData *ex_data = RsaGetExData(rsa);
|
| + return ex_data->cached_size;
|
| +}
|
| +
|
| +int RsaMethodEncrypt(RSA* rsa,
|
| + size_t* out_len,
|
| + uint8_t* out,
|
| + size_t max_out,
|
| + const uint8_t* in,
|
| + size_t in_len,
|
| + int padding) {
|
| NOTIMPLEMENTED();
|
| - RSAerr(RSA_F_RSA_PUBLIC_DECRYPT, RSA_R_RSA_OPERATIONS_NOT_SUPPORTED);
|
| - return -1;
|
| + OPENSSL_PUT_ERROR(RSA, encrypt, RSA_R_UNKNOWN_ALGORITHM_TYPE);
|
| + return 1;
|
| }
|
|
|
| -// See RSA_eay_private_encrypt in
|
| -// third_party/openssl/openssl/crypto/rsa/rsa_eay.c for the default
|
| -// implementation of this function.
|
| -int RsaMethodPrivEnc(int flen,
|
| - const unsigned char *from,
|
| - unsigned char *to,
|
| - RSA *rsa,
|
| +int RsaMethodSignRaw(RSA* rsa,
|
| + size_t* out_len,
|
| + uint8_t* out,
|
| + size_t max_out,
|
| + const uint8_t* in,
|
| + size_t in_len,
|
| int padding) {
|
| DCHECK_EQ(RSA_PKCS1_PADDING, padding);
|
| if (padding != RSA_PKCS1_PADDING) {
|
| @@ -153,22 +198,22 @@ int RsaMethodPrivEnc(int flen,
|
| // the same Android version as the "NONEwithRSA"
|
| // java.security.Signature algorithm, so the same version checks
|
| // for GetRsaLegacyKey should work.
|
| - RSAerr(RSA_F_RSA_PRIVATE_ENCRYPT, RSA_R_UNKNOWN_PADDING_TYPE);
|
| - return -1;
|
| + OPENSSL_PUT_ERROR(RSA, sign_raw, RSA_R_UNKNOWN_ALGORITHM_TYPE);
|
| + return 0;
|
| }
|
|
|
| // Retrieve private key JNI reference.
|
| - RsaAppData* app_data = static_cast<RsaAppData*>(RSA_get_app_data(rsa));
|
| - if (!app_data || !app_data->private_key) {
|
| + const KeyExData *ex_data = RsaGetExData(rsa);
|
| + if (!ex_data || !ex_data->private_key) {
|
| LOG(WARNING) << "Null JNI reference passed to RsaMethodPrivEnc!";
|
| - RSAerr(RSA_F_RSA_PRIVATE_ENCRYPT, ERR_R_INTERNAL_ERROR);
|
| - return -1;
|
| + OPENSSL_PUT_ERROR(RSA, sign_raw, ERR_R_INTERNAL_ERROR);
|
| + return 0;
|
| }
|
|
|
| // Pre-4.2 legacy codepath.
|
| - if (app_data->legacy_rsa) {
|
| - int ret = app_data->legacy_rsa->meth->rsa_priv_enc(
|
| - flen, from, to, app_data->legacy_rsa, ANDROID_RSA_PKCS1_PADDING);
|
| + if (ex_data->legacy_rsa) {
|
| + int ret = ex_data->legacy_rsa->meth->rsa_priv_enc(
|
| + in_len, in, out, ex_data->legacy_rsa, ANDROID_RSA_PKCS1_PADDING);
|
| if (ret < 0) {
|
| LOG(WARNING) << "Could not sign message in RsaMethodPrivEnc!";
|
| // System OpenSSL will use a separate error queue, so it is still
|
| @@ -178,126 +223,92 @@ int RsaMethodPrivEnc(int flen,
|
| // if there were some way to convince Java to do it. (Without going
|
| // through Java, it's difficult to get a handle on a system OpenSSL
|
| // function; dlopen loads a second copy.)
|
| - RSAerr(RSA_F_RSA_PRIVATE_ENCRYPT, ERR_R_INTERNAL_ERROR);
|
| - return -1;
|
| + OPENSSL_PUT_ERROR(RSA, sign_raw, ERR_R_INTERNAL_ERROR);
|
| + return 0;
|
| }
|
| - return ret;
|
| + *out_len = ret;
|
| + return 1;
|
| }
|
|
|
| - base::StringPiece from_piece(reinterpret_cast<const char*>(from), flen);
|
| + base::StringPiece from_piece(reinterpret_cast<const char*>(in), in_len);
|
| std::vector<uint8> result;
|
| // For RSA keys, this function behaves as RSA_private_encrypt with
|
| // PKCS#1 padding.
|
| - if (!RawSignDigestWithPrivateKey(app_data->private_key,
|
| - from_piece, &result)) {
|
| + if (!RawSignDigestWithPrivateKey(ex_data->private_key, from_piece, &result)) {
|
| LOG(WARNING) << "Could not sign message in RsaMethodPrivEnc!";
|
| - RSAerr(RSA_F_RSA_PRIVATE_ENCRYPT, ERR_R_INTERNAL_ERROR);
|
| - return -1;
|
| + OPENSSL_PUT_ERROR(RSA, sign_raw, ERR_R_INTERNAL_ERROR);
|
| + return 0;
|
| }
|
|
|
| size_t expected_size = static_cast<size_t>(RSA_size(rsa));
|
| if (result.size() > expected_size) {
|
| LOG(ERROR) << "RSA Signature size mismatch, actual: "
|
| << result.size() << ", expected <= " << expected_size;
|
| - RSAerr(RSA_F_RSA_PRIVATE_ENCRYPT, ERR_R_INTERNAL_ERROR);
|
| - return -1;
|
| + OPENSSL_PUT_ERROR(RSA, sign_raw, ERR_R_INTERNAL_ERROR);
|
| + return 0;
|
| + }
|
| +
|
| + if (max_out < expected_size) {
|
| + OPENSSL_PUT_ERROR(RSA, sign_raw, RSA_R_DATA_TOO_LARGE);
|
| + return 0;
|
| }
|
|
|
| // Copy result to OpenSSL-provided buffer. RawSignDigestWithPrivateKey
|
| // should pad with leading 0s, but if it doesn't, pad the result.
|
| size_t zero_pad = expected_size - result.size();
|
| - memset(to, 0, zero_pad);
|
| - memcpy(to + zero_pad, &result[0], result.size());
|
| + memset(out, 0, zero_pad);
|
| + memcpy(out + zero_pad, &result[0], result.size());
|
| + *out_len = expected_size;
|
|
|
| - return expected_size;
|
| + return 1;
|
| }
|
|
|
| -int RsaMethodPrivDec(int flen,
|
| - const unsigned char* from,
|
| - unsigned char* to,
|
| - RSA* rsa,
|
| +int RsaMethodDecrypt(RSA* rsa,
|
| + size_t* out_len,
|
| + uint8_t* out,
|
| + size_t max_out,
|
| + const uint8_t* in,
|
| + size_t in_len,
|
| int padding) {
|
| NOTIMPLEMENTED();
|
| - RSAerr(RSA_F_RSA_PRIVATE_DECRYPT, RSA_R_RSA_OPERATIONS_NOT_SUPPORTED);
|
| - return -1;
|
| -}
|
| -
|
| -int RsaMethodInit(RSA* rsa) {
|
| - return 0;
|
| + OPENSSL_PUT_ERROR(RSA, decrypt, RSA_R_UNKNOWN_PADDING_TYPE);
|
| + return 1;
|
| }
|
|
|
| -int RsaMethodFinish(RSA* rsa) {
|
| - // Ensure the global JNI reference created with this wrapper is
|
| - // properly destroyed with it.
|
| - RsaAppData* app_data = static_cast<RsaAppData*>(RSA_get_app_data(rsa));
|
| - if (app_data != NULL) {
|
| - RSA_set_app_data(rsa, NULL);
|
| - ReleaseKey(app_data->private_key);
|
| - delete app_data;
|
| - }
|
| - // Actual return value is ignored by OpenSSL. There are no docs
|
| - // explaining what this is supposed to be.
|
| - return 0;
|
| +int RsaMethodVerifyRaw(RSA* rsa,
|
| + size_t* out_len,
|
| + uint8_t* out,
|
| + size_t max_out,
|
| + const uint8_t* in,
|
| + size_t in_len,
|
| + int padding) {
|
| + NOTIMPLEMENTED();
|
| + OPENSSL_PUT_ERROR(RSA, verify_raw, RSA_R_UNKNOWN_ALGORITHM_TYPE);
|
| + return 1;
|
| }
|
|
|
| const RSA_METHOD android_rsa_method = {
|
| - /* .name = */ "Android signing-only RSA method",
|
| - /* .rsa_pub_enc = */ RsaMethodPubEnc,
|
| - /* .rsa_pub_dec = */ RsaMethodPubDec,
|
| - /* .rsa_priv_enc = */ RsaMethodPrivEnc,
|
| - /* .rsa_priv_dec = */ RsaMethodPrivDec,
|
| - /* .rsa_mod_exp = */ NULL,
|
| - /* .bn_mod_exp = */ NULL,
|
| - /* .init = */ RsaMethodInit,
|
| - /* .finish = */ RsaMethodFinish,
|
| - // This flag is necessary to tell OpenSSL to avoid checking the content
|
| - // (i.e. internal fields) of the private key. Otherwise, it will complain
|
| - // it's not valid for the certificate.
|
| - /* .flags = */ RSA_METHOD_FLAG_NO_CHECK,
|
| - /* .app_data = */ NULL,
|
| - /* .rsa_sign = */ NULL,
|
| - /* .rsa_verify = */ NULL,
|
| - /* .rsa_keygen = */ NULL,
|
| + {
|
| + 0 /* references */,
|
| + 1 /* is_static */
|
| + } /* common */,
|
| + NULL /* app_data */,
|
| +
|
| + NULL /* init */,
|
| + NULL /* finish */,
|
| + RsaMethodSize,
|
| + NULL /* sign */,
|
| + NULL /* verify */,
|
| + RsaMethodEncrypt,
|
| + RsaMethodSignRaw,
|
| + RsaMethodDecrypt,
|
| + RsaMethodVerifyRaw,
|
| + NULL /* mod_exp */,
|
| + NULL /* bn_mod_exp */,
|
| + 0 /* flags */,
|
| + NULL /* keygen */,
|
| };
|
|
|
| -// Copy the contents of an encoded big integer into an existing BIGNUM.
|
| -// This function modifies |*num| in-place.
|
| -// |new_bytes| is the byte encoding of the new value.
|
| -// |num| points to the BIGNUM which will be assigned with the new value.
|
| -// Returns true on success, false otherwise. On failure, |*num| is
|
| -// not modified.
|
| -bool CopyBigNumFromBytes(const std::vector<uint8>& new_bytes,
|
| - BIGNUM* num) {
|
| - BIGNUM* ret = BN_bin2bn(
|
| - reinterpret_cast<const unsigned char*>(&new_bytes[0]),
|
| - static_cast<int>(new_bytes.size()),
|
| - num);
|
| - return (ret != NULL);
|
| -}
|
| -
|
| -// Decode the contents of an encoded big integer and either create a new
|
| -// BIGNUM object (if |*num_ptr| is NULL on input) or copy it (if
|
| -// |*num_ptr| is not NULL).
|
| -// |new_bytes| is the byte encoding of the new value.
|
| -// |num_ptr| is the address of a BIGNUM pointer. |*num_ptr| can be NULL.
|
| -// Returns true on success, false otherwise. On failure, |*num_ptr| is
|
| -// not modified. On success, |*num_ptr| will always be non-NULL and
|
| -// point to a valid BIGNUM object.
|
| -bool SwapBigNumPtrFromBytes(const std::vector<uint8>& new_bytes,
|
| - BIGNUM** num_ptr) {
|
| - BIGNUM* old_num = *num_ptr;
|
| - BIGNUM* new_num = BN_bin2bn(
|
| - reinterpret_cast<const unsigned char*>(&new_bytes[0]),
|
| - static_cast<int>(new_bytes.size()),
|
| - old_num);
|
| - if (new_num == NULL)
|
| - return false;
|
| -
|
| - if (old_num == NULL)
|
| - *num_ptr = new_num;
|
| - return true;
|
| -}
|
| -
|
| // Setup an EVP_PKEY to wrap an existing platform RSA PrivateKey object.
|
| // |private_key| is the JNI reference (local or global) to the object.
|
| // |legacy_rsa|, if non-NULL, is a pointer to the system OpenSSL RSA object
|
| @@ -311,24 +322,8 @@ bool SwapBigNumPtrFromBytes(const std::vector<uint8>& new_bytes,
|
| bool GetRsaPkeyWrapper(jobject private_key,
|
| AndroidRSA* legacy_rsa,
|
| EVP_PKEY* pkey) {
|
| - crypto::ScopedRSA rsa(RSA_new());
|
| - RSA_set_method(rsa.get(), &android_rsa_method);
|
| -
|
| - // HACK: RSA_size() doesn't work with custom RSA_METHODs. To ensure that
|
| - // it will return the right value, set the 'n' field of the RSA object
|
| - // to match the private key's modulus.
|
| - //
|
| - // TODO(davidben): After switching to BoringSSL, consider making RSA_size call
|
| - // into an RSA_METHOD hook.
|
| - std::vector<uint8> modulus;
|
| - if (!GetRSAKeyModulus(private_key, &modulus)) {
|
| - LOG(ERROR) << "Failed to get private key modulus";
|
| - return false;
|
| - }
|
| - if (!SwapBigNumPtrFromBytes(modulus, &rsa.get()->n)) {
|
| - LOG(ERROR) << "Failed to decode private key modulus";
|
| - return false;
|
| - }
|
| + crypto::ScopedRSA rsa(
|
| + RSA_new_method(global_boringssl_engine.Get().engine()));
|
|
|
| ScopedJavaGlobalRef<jobject> global_key;
|
| global_key.Reset(NULL, private_key);
|
| @@ -336,10 +331,19 @@ bool GetRsaPkeyWrapper(jobject private_key,
|
| LOG(ERROR) << "Could not create global JNI reference";
|
| return false;
|
| }
|
| - RsaAppData* app_data = new RsaAppData();
|
| - app_data->private_key = global_key.Release();
|
| - app_data->legacy_rsa = legacy_rsa;
|
| - RSA_set_app_data(rsa.get(), app_data);
|
| +
|
| + std::vector<uint8> modulus;
|
| + if (!GetRSAKeyModulus(private_key, &modulus)) {
|
| + LOG(ERROR) << "Failed to get private key modulus";
|
| + return false;
|
| + }
|
| +
|
| + KeyExData* ex_data = new KeyExData;
|
| + ex_data->private_key = global_key.Release();
|
| + ex_data->legacy_rsa = legacy_rsa;
|
| + ex_data->cached_size = VectorBignumSize(modulus);
|
| + RSA_set_ex_data(
|
| + rsa.get(), global_boringssl_engine.Get().rsa_ex_index(), ex_data);
|
| EVP_PKEY_assign_RSA(pkey, rsa.release());
|
| return true;
|
| }
|
| @@ -398,7 +402,7 @@ EVP_PKEY* GetRsaLegacyKey(jobject private_key) {
|
| if (sys_rsa->engine) {
|
| // |private_key| may not have an engine if the PrivateKey did not come
|
| // from the key store, such as in unit tests.
|
| - if (!strcmp(sys_rsa->engine->id, "keystore")) {
|
| + if (strcmp(sys_rsa->engine->id, "keystore") == 0) {
|
| LeakEngine(private_key);
|
| } else {
|
| NOTREACHED();
|
| @@ -431,266 +435,67 @@ EVP_PKEY* GetRsaLegacyKey(jobject private_key) {
|
| return pkey;
|
| }
|
|
|
| -// Custom DSA_METHOD that uses the platform APIs.
|
| -// Note that for now, only signing through DSA_sign() is really supported.
|
| -// all other method pointers are either stubs returning errors, or no-ops.
|
| -// See <openssl/dsa.h> for exact declaration of DSA_METHOD.
|
| -//
|
| -// Note: There is no DSA_set_app_data() and DSA_get_app_data() functions,
|
| -// but RSA_set_app_data() is defined as a simple macro that calls
|
| -// RSA_set_ex_data() with a hard-coded index of 0, so this code
|
| -// does the same thing here.
|
| -
|
| -DSA_SIG* DsaMethodDoSign(const unsigned char* dgst,
|
| - int dlen,
|
| - DSA* dsa) {
|
| - // Extract the JNI reference to the PrivateKey object.
|
| - jobject private_key = reinterpret_cast<jobject>(DSA_get_ex_data(dsa, 0));
|
| - if (private_key == NULL)
|
| - return NULL;
|
| -
|
| - // Sign the message with it, calling platform APIs.
|
| - std::vector<uint8> signature;
|
| - if (!RawSignDigestWithPrivateKey(
|
| - private_key,
|
| - base::StringPiece(
|
| - reinterpret_cast<const char*>(dgst),
|
| - static_cast<size_t>(dlen)),
|
| - &signature)) {
|
| - return NULL;
|
| - }
|
| -
|
| - // Note: With DSA, the actual signature might be smaller than DSA_size().
|
| - size_t max_expected_size = static_cast<size_t>(DSA_size(dsa));
|
| - if (signature.size() > max_expected_size) {
|
| - LOG(ERROR) << "DSA Signature size mismatch, actual: "
|
| - << signature.size() << ", expected <= "
|
| - << max_expected_size;
|
| - return NULL;
|
| - }
|
| -
|
| - // Convert the signature into a DSA_SIG object.
|
| - const unsigned char* sigbuf =
|
| - reinterpret_cast<const unsigned char*>(&signature[0]);
|
| - int siglen = static_cast<size_t>(signature.size());
|
| - DSA_SIG* dsa_sig = d2i_DSA_SIG(NULL, &sigbuf, siglen);
|
| - return dsa_sig;
|
| -}
|
| -
|
| -int DsaMethodSignSetup(DSA* dsa,
|
| - BN_CTX* ctx_in,
|
| - BIGNUM** kinvp,
|
| - BIGNUM** rp) {
|
| - NOTIMPLEMENTED();
|
| - DSAerr(DSA_F_DSA_SIGN_SETUP, DSA_R_INVALID_DIGEST_TYPE);
|
| - return -1;
|
| -}
|
| -
|
| -int DsaMethodDoVerify(const unsigned char* dgst,
|
| - int dgst_len,
|
| - DSA_SIG* sig,
|
| - DSA* dsa) {
|
| - NOTIMPLEMENTED();
|
| - DSAerr(DSA_F_DSA_DO_VERIFY, DSA_R_INVALID_DIGEST_TYPE);
|
| - return -1;
|
| -}
|
| -
|
| -int DsaMethodFinish(DSA* dsa) {
|
| - // Free the global JNI reference that was created with this
|
| - // wrapper key.
|
| - jobject key = reinterpret_cast<jobject>(DSA_get_ex_data(dsa,0));
|
| - if (key != NULL) {
|
| - DSA_set_ex_data(dsa, 0, NULL);
|
| - ReleaseKey(key);
|
| - }
|
| - // Actual return value is ignored by OpenSSL. There are no docs
|
| - // explaining what this is supposed to be.
|
| - return 0;
|
| -}
|
| -
|
| -const DSA_METHOD android_dsa_method = {
|
| - /* .name = */ "Android signing-only DSA method",
|
| - /* .dsa_do_sign = */ DsaMethodDoSign,
|
| - /* .dsa_sign_setup = */ DsaMethodSignSetup,
|
| - /* .dsa_do_verify = */ DsaMethodDoVerify,
|
| - /* .dsa_mod_exp = */ NULL,
|
| - /* .bn_mod_exp = */ NULL,
|
| - /* .init = */ NULL, // nothing to do here.
|
| - /* .finish = */ DsaMethodFinish,
|
| - /* .flags = */ 0,
|
| - /* .app_data = */ NULL,
|
| - /* .dsa_paramgem = */ NULL,
|
| - /* .dsa_keygen = */ NULL
|
| -};
|
| -
|
| -// Setup an EVP_PKEY to wrap an existing DSA platform PrivateKey object.
|
| -// |private_key| is a JNI reference (local or global) to the object.
|
| -// |pkey| is the EVP_PKEY to setup as a wrapper.
|
| -// Returns true on success, false otherwise.
|
| -// On success, this creates a global JNI reference to the same object
|
| -// that will be owned by and destroyed with the EVP_PKEY.
|
| -bool GetDsaPkeyWrapper(jobject private_key, EVP_PKEY* pkey) {
|
| - crypto::ScopedDSA dsa(DSA_new());
|
| - DSA_set_method(dsa.get(), &android_dsa_method);
|
| -
|
| - // DSA_size() doesn't work with custom DSA_METHODs. To ensure it
|
| - // returns the right value, set the 'q' field in the DSA object to
|
| - // match the parameter from the platform key.
|
| - std::vector<uint8> q;
|
| - if (!GetDSAKeyParamQ(private_key, &q)) {
|
| - LOG(ERROR) << "Can't extract Q parameter from DSA private key";
|
| - return false;
|
| - }
|
| - if (!SwapBigNumPtrFromBytes(q, &dsa.get()->q)) {
|
| - LOG(ERROR) << "Can't decode Q parameter from DSA private key";
|
| - return false;
|
| - }
|
| -
|
| - ScopedJavaGlobalRef<jobject> global_key;
|
| - global_key.Reset(NULL, private_key);
|
| - if (global_key.is_null()) {
|
| - LOG(ERROR) << "Could not create global JNI reference";
|
| - return false;
|
| - }
|
| - DSA_set_ex_data(dsa.get(), 0, global_key.Release());
|
| - EVP_PKEY_assign_DSA(pkey, dsa.release());
|
| - return true;
|
| -}
|
| -
|
| // Custom ECDSA_METHOD that uses the platform APIs.
|
| // Note that for now, only signing through ECDSA_sign() is really supported.
|
| // all other method pointers are either stubs returning errors, or no-ops.
|
| -//
|
| -// Note: The ECDSA_METHOD structure doesn't have init/finish
|
| -// methods. As such, the only way to to ensure the global
|
| -// JNI reference is properly released when the EVP_PKEY is
|
| -// destroyed is to use a custom EX_DATA type.
|
| -
|
| -// Used to ensure that the global JNI reference associated with a custom
|
| -// EC_KEY + ECDSA_METHOD wrapper is released when its EX_DATA is destroyed
|
| -// (this function is called when EVP_PKEY_free() is called on the wrapper).
|
| -void ExDataFree(void* parent,
|
| - void* ptr,
|
| - CRYPTO_EX_DATA* ad,
|
| - int idx,
|
| - long argl,
|
| - void* argp) {
|
| - jobject private_key = reinterpret_cast<jobject>(ptr);
|
| - if (private_key == NULL)
|
| - return;
|
|
|
| - CRYPTO_set_ex_data(ad, idx, NULL);
|
| - ReleaseKey(private_key);
|
| -}
|
| -
|
| -int ExDataDup(CRYPTO_EX_DATA* to,
|
| - CRYPTO_EX_DATA* from,
|
| - void* from_d,
|
| - int idx,
|
| - long argl,
|
| - void* argp) {
|
| - // This callback shall never be called with the current OpenSSL
|
| - // implementation (the library only ever duplicates EX_DATA items
|
| - // for SSL and BIO objects). But provide this to catch regressions
|
| - // in the future.
|
| - CHECK(false) << "ExDataDup was called for ECDSA custom key !?";
|
| - // Return value is currently ignored by OpenSSL.
|
| - return 0;
|
| +jobject EcKeyGetKey(const EC_KEY* ec_key) {
|
| + KeyExData* ex_data = reinterpret_cast<KeyExData*>(EC_KEY_get_ex_data(
|
| + ec_key, global_boringssl_engine.Get().ec_key_ex_index()));
|
| + return ex_data->private_key;
|
| }
|
|
|
| -class EcdsaExDataIndex {
|
| -public:
|
| - int ex_data_index() { return ex_data_index_; }
|
| -
|
| - EcdsaExDataIndex() {
|
| - ex_data_index_ = ECDSA_get_ex_new_index(0, // argl
|
| - NULL, // argp
|
| - NULL, // new_func
|
| - ExDataDup, // dup_func
|
| - ExDataFree); // free_func
|
| - }
|
| -
|
| -private:
|
| - int ex_data_index_;
|
| -};
|
| -
|
| -// Returns the index of the custom EX_DATA used to store the JNI reference.
|
| -int EcdsaGetExDataIndex(void) {
|
| - // Use a LazyInstance to perform thread-safe lazy initialization.
|
| - // Use a leaky one, since OpenSSL doesn't provide a way to release
|
| - // allocated EX_DATA indices.
|
| - static base::LazyInstance<EcdsaExDataIndex>::Leaky s_instance =
|
| - LAZY_INSTANCE_INITIALIZER;
|
| - return s_instance.Get().ex_data_index();
|
| +size_t EcdsaMethodGroupOrderSize(const EC_KEY* key) {
|
| + KeyExData* ex_data = reinterpret_cast<KeyExData*>(EC_KEY_get_ex_data(
|
| + key, global_boringssl_engine.Get().ec_key_ex_index()));
|
| + return ex_data->cached_size;
|
| }
|
|
|
| -ECDSA_SIG* EcdsaMethodDoSign(const unsigned char* dgst,
|
| - int dgst_len,
|
| - const BIGNUM* inv,
|
| - const BIGNUM* rp,
|
| - EC_KEY* eckey) {
|
| +int EcdsaMethodSign(const uint8_t* digest,
|
| + size_t digest_len,
|
| + uint8_t* sig,
|
| + unsigned int* sig_len,
|
| + EC_KEY* eckey) {
|
| // Retrieve private key JNI reference.
|
| - jobject private_key = reinterpret_cast<jobject>(
|
| - ECDSA_get_ex_data(eckey, EcdsaGetExDataIndex()));
|
| + jobject private_key = EcKeyGetKey(eckey);
|
| if (!private_key) {
|
| - LOG(WARNING) << "Null JNI reference passed to EcdsaMethodDoSign!";
|
| - return NULL;
|
| + LOG(WARNING) << "Null JNI reference passed to EcdsaMethodSign!";
|
| + return 0;
|
| }
|
| // Sign message with it through JNI.
|
| std::vector<uint8> signature;
|
| - base::StringPiece digest(
|
| - reinterpret_cast<const char*>(dgst),
|
| - static_cast<size_t>(dgst_len));
|
| - if (!RawSignDigestWithPrivateKey(
|
| - private_key, digest, &signature)) {
|
| - LOG(WARNING) << "Could not sign message in EcdsaMethodDoSign!";
|
| - return NULL;
|
| + base::StringPiece digest_sp(reinterpret_cast<const char*>(digest),
|
| + digest_len);
|
| + if (!RawSignDigestWithPrivateKey(private_key, digest_sp, &signature)) {
|
| + LOG(WARNING) << "Could not sign message in EcdsaMethodSign!";
|
| + return 0;
|
| }
|
|
|
| // Note: With ECDSA, the actual signature may be smaller than
|
| // ECDSA_size().
|
| - size_t max_expected_size = static_cast<size_t>(ECDSA_size(eckey));
|
| + size_t max_expected_size = ECDSA_size(eckey);
|
| if (signature.size() > max_expected_size) {
|
| LOG(ERROR) << "ECDSA Signature size mismatch, actual: "
|
| << signature.size() << ", expected <= "
|
| << max_expected_size;
|
| - return NULL;
|
| + return 0;
|
| }
|
|
|
| - // Convert signature to ECDSA_SIG object
|
| - const unsigned char* sigbuf =
|
| - reinterpret_cast<const unsigned char*>(&signature[0]);
|
| - long siglen = static_cast<long>(signature.size());
|
| - return d2i_ECDSA_SIG(NULL, &sigbuf, siglen);
|
| + memcpy(sig, &signature[0], signature.size());
|
| + *sig_len = signature.size();
|
| + return 1;
|
| }
|
|
|
| -int EcdsaMethodSignSetup(EC_KEY* eckey,
|
| - BN_CTX* ctx,
|
| - BIGNUM** kinv,
|
| - BIGNUM** r) {
|
| +int EcdsaMethodVerify(const uint8_t* digest,
|
| + size_t digest_len,
|
| + const uint8_t* sig,
|
| + size_t sig_len,
|
| + EC_KEY* eckey) {
|
| NOTIMPLEMENTED();
|
| - ECDSAerr(ECDSA_F_ECDSA_SIGN_SETUP, ECDSA_R_ERR_EC_LIB);
|
| - return -1;
|
| -}
|
| -
|
| -int EcdsaMethodDoVerify(const unsigned char* dgst,
|
| - int dgst_len,
|
| - const ECDSA_SIG* sig,
|
| - EC_KEY* eckey) {
|
| - NOTIMPLEMENTED();
|
| - ECDSAerr(ECDSA_F_ECDSA_DO_VERIFY, ECDSA_R_ERR_EC_LIB);
|
| - return -1;
|
| + OPENSSL_PUT_ERROR(ECDSA, ECDSA_do_verify, ECDSA_R_NOT_IMPLEMENTED);
|
| + return 0;
|
| }
|
|
|
| -const ECDSA_METHOD android_ecdsa_method = {
|
| - /* .name = */ "Android signing-only ECDSA method",
|
| - /* .ecdsa_do_sign = */ EcdsaMethodDoSign,
|
| - /* .ecdsa_sign_setup = */ EcdsaMethodSignSetup,
|
| - /* .ecdsa_do_verify = */ EcdsaMethodDoVerify,
|
| - /* .flags = */ 0,
|
| - /* .app_data = */ NULL,
|
| -};
|
| -
|
| // Setup an EVP_PKEY to wrap an existing platform PrivateKey object.
|
| // |private_key| is the JNI reference (local or global) to the object.
|
| // |pkey| is the EVP_PKEY to setup as a wrapper.
|
| @@ -699,26 +504,8 @@ const ECDSA_METHOD android_ecdsa_method = {
|
| // is owned by and destroyed with the EVP_PKEY. I.e. the caller shall
|
| // always free |private_key| after the call.
|
| bool GetEcdsaPkeyWrapper(jobject private_key, EVP_PKEY* pkey) {
|
| - crypto::ScopedEC_KEY eckey(EC_KEY_new());
|
| - ECDSA_set_method(eckey.get(), &android_ecdsa_method);
|
| -
|
| - // To ensure that ECDSA_size() works properly, craft a custom EC_GROUP
|
| - // that has the same order than the private key.
|
| - std::vector<uint8> order;
|
| - if (!GetECKeyOrder(private_key, &order)) {
|
| - LOG(ERROR) << "Can't extract order parameter from EC private key";
|
| - return false;
|
| - }
|
| - ScopedEC_GROUP group(EC_GROUP_new(EC_GFp_nist_method()));
|
| - if (!group.get()) {
|
| - LOG(ERROR) << "Can't create new EC_GROUP";
|
| - return false;
|
| - }
|
| - if (!CopyBigNumFromBytes(order, &group.get()->order)) {
|
| - LOG(ERROR) << "Can't decode order from PrivateKey";
|
| - return false;
|
| - }
|
| - EC_KEY_set_group(eckey.get(), group.release());
|
| + crypto::ScopedEC_KEY eckey(
|
| + EC_KEY_new_method(global_boringssl_engine.Get().engine()));
|
|
|
| ScopedJavaGlobalRef<jobject> global_key;
|
| global_key.Reset(NULL, private_key);
|
| @@ -726,14 +513,39 @@ bool GetEcdsaPkeyWrapper(jobject private_key, EVP_PKEY* pkey) {
|
| LOG(ERROR) << "Can't create global JNI reference";
|
| return false;
|
| }
|
| - ECDSA_set_ex_data(eckey.get(),
|
| - EcdsaGetExDataIndex(),
|
| - global_key.Release());
|
| +
|
| + std::vector<uint8> order;
|
| + if (!GetECKeyOrder(private_key, &order)) {
|
| + LOG(ERROR) << "Can't extract order parameter from EC private key";
|
| + return false;
|
| + }
|
| +
|
| + KeyExData* ex_data = new KeyExData;
|
| + ex_data->private_key = global_key.Release();
|
| + ex_data->legacy_rsa = NULL;
|
| + ex_data->cached_size = VectorBignumSize(order);
|
| +
|
| + EC_KEY_set_ex_data(
|
| + eckey.get(), global_boringssl_engine.Get().ec_key_ex_index(), ex_data);
|
|
|
| EVP_PKEY_assign_EC_KEY(pkey, eckey.release());
|
| return true;
|
| }
|
|
|
| +const ECDSA_METHOD android_ecdsa_method = {
|
| + {
|
| + 0 /* references */,
|
| + 1 /* is_static */
|
| + } /* common */,
|
| + NULL /* app_data */,
|
| +
|
| + NULL /* init */,
|
| + NULL /* finish */,
|
| + EcdsaMethodGroupOrderSize,
|
| + EcdsaMethodSign,
|
| + EcdsaMethodVerify,
|
| +};
|
| +
|
| } // namespace
|
|
|
| EVP_PKEY* GetOpenSSLPrivateKeyWrapper(jobject private_key) {
|
| @@ -765,10 +577,6 @@ EVP_PKEY* GetOpenSSLPrivateKeyWrapper(jobject private_key) {
|
| }
|
| }
|
| break;
|
| - case PRIVATE_KEY_TYPE_DSA:
|
| - if (!GetDsaPkeyWrapper(private_key, pkey.get()))
|
| - return NULL;
|
| - break;
|
| case PRIVATE_KEY_TYPE_ECDSA:
|
| if (!GetEcdsaPkeyWrapper(private_key, pkey.get()))
|
| return NULL;
|
|
|