Chromium Code Reviews| Index: net/android/keystore_openssl.cc |
| diff --git a/net/android/keystore_openssl.cc b/net/android/keystore_openssl.cc |
| index dbb3b1c73f2394bbb697e3f2ba79d1fe54cf88cf..b9ebf28a0f184a0d3386b93f7d28098fded75a3a 100644 |
| --- a/net/android/keystore_openssl.cc |
| +++ b/net/android/keystore_openssl.cc |
| @@ -6,16 +6,11 @@ |
| #include <jni.h> |
| #include <openssl/bn.h> |
| -// This include is required to get the ECDSA_METHOD structure definition |
| -// which isn't currently part of the OpenSSL official ABI. This should |
| -// not be a concern for Chromium which always links against its own |
| -// version of the library on Android. |
| -#include <openssl/crypto/ecdsa/ecs_locl.h> |
| -// And this one is needed for the EC_GROUP definition. |
| -#include <openssl/crypto/ec/ec_lcl.h> |
| +#include <openssl/bytestring.h> |
|
davidben
2014/07/16 21:58:54
Nit: Is this include being used?
agl
2014/07/16 22:08:01
Good point. Was included to build an ASN.1 signatu
|
| #include <openssl/dsa.h> |
| #include <openssl/ec.h> |
| #include <openssl/engine.h> |
| +#include <openssl/err.h> |
| #include <openssl/evp.h> |
| #include <openssl/rsa.h> |
| @@ -60,41 +55,10 @@ |
| // fields point to static methods used to implement the corresponding |
| // RSA operation using platform Android APIs. |
| // |
| -// However, the platform APIs require a jobject JNI reference to work. |
| -// It must be stored in the RSA instance, or made accessible when the |
| -// custom RSA methods are called. This is done by using RSA_set_app_data() |
| -// and RSA_get_app_data(). |
| -// |
| -// One can thus _directly_ create a new EVP_PKEY that uses a custom RSA |
| -// object with the following: |
| -// |
| -// RSA* rsa = RSA_new() |
| -// RSA_set_method(&custom_rsa_method); |
| -// RSA_set_app_data(rsa, jni_private_key); |
| -// |
| -// EVP_PKEY* pkey = EVP_PKEY_new(); |
| -// EVP_PKEY_assign_RSA(pkey, rsa); |
| -// |
| -// Note that because EVP_PKEY_assign_RSA() is used, instead of |
| -// EVP_PKEY_set1_RSA(), the new EVP_PKEY now owns the RSA object, and |
| -// will destroy it when it is itself destroyed. |
| -// |
| -// Unfortunately, such objects cannot be used with RSA_size(), which |
| -// totally ignores the RSA_METHOD pointers. Instead, it is necessary |
| -// to manually setup the modulus field (n) in the RSA object, with a |
| -// value that matches the wrapped PrivateKey object. See GetRsaPkeyWrapper |
| -// for full details. |
| -// |
| -// Similarly, custom DSA_METHOD and ECDSA_METHOD are defined by this source |
| -// file, and appropriate field setups are performed to ensure that |
| -// DSA_size() and ECDSA_size() work properly with the wrapper EVP_PKEY. |
| -// |
| -// Note that there is no need to define an OpenSSL ENGINE here. These |
| -// are objects that can be used to expose custom methods (i.e. either |
| -// RSA_METHOD, DSA_METHOD, ECDSA_METHOD, and a large number of other ones |
| -// for types not related to this source file), and make them used by |
| -// default for a lot of operations. Very fortunately, this is not needed |
| -// here, which saves a lot of complexity. |
| +// However, the platform APIs require a jobject JNI reference to work. It must |
| +// be stored in the RSA instance, or made accessible when the custom RSA |
| +// methods are called. This is done by storing it in a |KeyExData| structure |
| +// that's referenced by the key using |EX_DATA|. |
| using base::android::ScopedJavaGlobalRef; |
| using base::android::ScopedJavaLocalRef; |
| @@ -104,45 +68,127 @@ namespace android { |
| namespace { |
| -typedef crypto::ScopedOpenSSL<EC_GROUP, EC_GROUP_free>::Type ScopedEC_GROUP; |
| - |
| -// Custom RSA_METHOD that uses the platform APIs. |
| -// Note that for now, only signing through RSA_sign() is really supported. |
| -// all other method pointers are either stubs returning errors, or no-ops. |
| -// See <openssl/rsa.h> for exact declaration of RSA_METHOD. |
| +extern const RSA_METHOD android_rsa_method; |
| +extern const ECDSA_METHOD android_ecdsa_method; |
| -struct RsaAppData { |
| +// KeyExData contains the data that is contained in the EX_DATA of the RSA, DSA |
| +// and ECDSA objects that are created to wrap Android system keys. |
| +struct KeyExData { |
| + // private_key contains a reference to a Java, private-key object. |
| jobject private_key; |
| + // legacy_rsa, if not NULL, points to an RSA* in the system's OpenSSL (which |
| + // might not be ABI compatible with Chromium). |
| AndroidRSA* legacy_rsa; |
| + // cached_size contains the "size" of the key. This is the size of the |
| + // modulus (in bytes) for RSA, or the group order size for (EC)DSA. This |
| + // avoids calling into Java to calculate the size. |
| + size_t cached_size; |
| }; |
| -int RsaMethodPubEnc(int flen, |
| - const unsigned char* from, |
| - unsigned char* to, |
| - RSA* rsa, |
| - int padding) { |
| - NOTIMPLEMENTED(); |
| - RSAerr(RSA_F_RSA_PUBLIC_ENCRYPT, RSA_R_RSA_OPERATIONS_NOT_SUPPORTED); |
| - return -1; |
| +// ExDataDup is called when one of the RSA, DSA or EC_KEY objects is |
| +// duplicated. We don't support this and it should never happen. |
| +int ExDataDup(CRYPTO_EX_DATA* to, |
| + const CRYPTO_EX_DATA* from, |
| + void** from_d, |
| + int index, |
| + long argl, |
| + void* argp) { |
| + CHECK(false); |
| + return 0; |
| +} |
| + |
| +// ExDataFree is called when one of the RSA, DSA or EC_KEY object is freed. |
| +void ExDataFree(void* parent, |
| + void* ptr, |
| + CRYPTO_EX_DATA* ad, |
| + int index, |
| + long argl, |
| + void* argp) { |
| + // Ensure the global JNI reference created with this wrapper is |
| + // properly destroyed with it. |
| + KeyExData *ex_data = reinterpret_cast<KeyExData*>(ptr); |
| + if (ex_data != NULL) { |
| + ReleaseKey(ex_data->private_key); |
| + delete ex_data; |
| + } |
| } |
| -int RsaMethodPubDec(int flen, |
| - const unsigned char* from, |
| - unsigned char* to, |
| - RSA* rsa, |
| - int padding) { |
| +// BoringSSLEngine is a BoringSSL ENGINE that implements RSA, DSA and ECDSA by |
| +// forwarding the requested operations to the Java libraries. |
| +class BoringSSLEngine { |
| + public: |
| + BoringSSLEngine() |
| + : rsa_index_(RSA_get_ex_new_index(0 /* argl */, |
| + NULL /* argp */, |
| + NULL /* new_func */, |
| + ExDataDup, |
| + ExDataFree)), |
| + ec_key_index_(EC_KEY_get_ex_new_index(0 /* argl */, |
| + NULL /* argp */, |
| + NULL /* new_func */, |
| + ExDataDup, |
| + ExDataFree)), |
| + engine_(ENGINE_new()) { |
| + ENGINE_set_RSA_method( |
| + engine_, &android_rsa_method, sizeof(android_rsa_method)); |
| + ENGINE_set_ECDSA_method( |
| + engine_, &android_ecdsa_method, sizeof(android_ecdsa_method)); |
| + } |
| + |
| + int rsa_ex_index() const { return rsa_index_; } |
| + int ec_key_ex_index() const { return ec_key_index_; } |
| + |
| + const ENGINE* engine() const { return engine_; } |
| + |
| + private: |
| + const int rsa_index_; |
| + const int ec_key_index_; |
| + ENGINE* const engine_; |
| +}; |
| + |
| +base::LazyInstance<BoringSSLEngine>::Leaky global_boringssl_engine = |
| + LAZY_INSTANCE_INITIALIZER; |
| + |
| + |
| +// VectorBignumSize returns the number of bytes needed to represent the bignum |
| +// given in |v|, i.e. the length of |v| less any leading zero bytes. |
| +size_t VectorBignumSize(const std::vector<uint8>& v) { |
| + size_t size = v.size(); |
| + // Ignore any leading zero bytes. |
| + for (size_t i = 0; i < v.size() && v[i] == 0; i++) { |
| + size--; |
| + } |
| + return size; |
| +} |
| + |
| +KeyExData* RsaGetExData(const RSA* rsa) { |
| + return reinterpret_cast<KeyExData*>( |
| + RSA_get_ex_data(rsa, global_boringssl_engine.Get().rsa_ex_index())); |
| +} |
| + |
| +size_t RsaMethodSize(const RSA *rsa) { |
| + const KeyExData *ex_data = RsaGetExData(rsa); |
| + return ex_data->cached_size; |
| +} |
| + |
| +int RsaMethodEncrypt(RSA* rsa, |
| + size_t* out_len, |
| + uint8_t* out, |
| + size_t max_out, |
| + const uint8_t* in, |
| + size_t in_len, |
| + int padding) { |
| NOTIMPLEMENTED(); |
| - RSAerr(RSA_F_RSA_PUBLIC_DECRYPT, RSA_R_RSA_OPERATIONS_NOT_SUPPORTED); |
| - return -1; |
| + OPENSSL_PUT_ERROR(RSA, encrypt, RSA_R_UNKNOWN_ALGORITHM_TYPE); |
| + return 1; |
| } |
| -// See RSA_eay_private_encrypt in |
| -// third_party/openssl/openssl/crypto/rsa/rsa_eay.c for the default |
| -// implementation of this function. |
| -int RsaMethodPrivEnc(int flen, |
| - const unsigned char *from, |
| - unsigned char *to, |
| - RSA *rsa, |
| +int RsaMethodSignRaw(RSA* rsa, |
| + size_t* out_len, |
| + uint8_t* out, |
| + size_t max_out, |
| + const uint8_t* in, |
| + size_t in_len, |
| int padding) { |
| DCHECK_EQ(RSA_PKCS1_PADDING, padding); |
| if (padding != RSA_PKCS1_PADDING) { |
| @@ -153,22 +199,22 @@ int RsaMethodPrivEnc(int flen, |
| // the same Android version as the "NONEwithRSA" |
| // java.security.Signature algorithm, so the same version checks |
| // for GetRsaLegacyKey should work. |
| - RSAerr(RSA_F_RSA_PRIVATE_ENCRYPT, RSA_R_UNKNOWN_PADDING_TYPE); |
| - return -1; |
| + OPENSSL_PUT_ERROR(RSA, sign_raw, RSA_R_UNKNOWN_ALGORITHM_TYPE); |
| + return 0; |
| } |
| // Retrieve private key JNI reference. |
| - RsaAppData* app_data = static_cast<RsaAppData*>(RSA_get_app_data(rsa)); |
| - if (!app_data || !app_data->private_key) { |
| + const KeyExData *ex_data = RsaGetExData(rsa); |
| + if (!ex_data || !ex_data->private_key) { |
| LOG(WARNING) << "Null JNI reference passed to RsaMethodPrivEnc!"; |
| - RSAerr(RSA_F_RSA_PRIVATE_ENCRYPT, ERR_R_INTERNAL_ERROR); |
| - return -1; |
| + OPENSSL_PUT_ERROR(RSA, sign_raw, ERR_R_INTERNAL_ERROR); |
| + return 0; |
| } |
| // Pre-4.2 legacy codepath. |
| - if (app_data->legacy_rsa) { |
| - int ret = app_data->legacy_rsa->meth->rsa_priv_enc( |
| - flen, from, to, app_data->legacy_rsa, ANDROID_RSA_PKCS1_PADDING); |
| + if (ex_data->legacy_rsa) { |
| + int ret = ex_data->legacy_rsa->meth->rsa_priv_enc( |
| + in_len, in, out, ex_data->legacy_rsa, ANDROID_RSA_PKCS1_PADDING); |
| if (ret < 0) { |
| LOG(WARNING) << "Could not sign message in RsaMethodPrivEnc!"; |
| // System OpenSSL will use a separate error queue, so it is still |
| @@ -178,126 +224,92 @@ int RsaMethodPrivEnc(int flen, |
| // if there were some way to convince Java to do it. (Without going |
| // through Java, it's difficult to get a handle on a system OpenSSL |
| // function; dlopen loads a second copy.) |
| - RSAerr(RSA_F_RSA_PRIVATE_ENCRYPT, ERR_R_INTERNAL_ERROR); |
| - return -1; |
| + OPENSSL_PUT_ERROR(RSA, sign_raw, ERR_R_INTERNAL_ERROR); |
| + return 0; |
| } |
| - return ret; |
| + *out_len = ret; |
| + return 1; |
| } |
| - base::StringPiece from_piece(reinterpret_cast<const char*>(from), flen); |
| + base::StringPiece from_piece(reinterpret_cast<const char*>(in), in_len); |
| std::vector<uint8> result; |
| // For RSA keys, this function behaves as RSA_private_encrypt with |
| // PKCS#1 padding. |
| - if (!RawSignDigestWithPrivateKey(app_data->private_key, |
| - from_piece, &result)) { |
| + if (!RawSignDigestWithPrivateKey(ex_data->private_key, from_piece, &result)) { |
| LOG(WARNING) << "Could not sign message in RsaMethodPrivEnc!"; |
| - RSAerr(RSA_F_RSA_PRIVATE_ENCRYPT, ERR_R_INTERNAL_ERROR); |
| - return -1; |
| + OPENSSL_PUT_ERROR(RSA, sign_raw, ERR_R_INTERNAL_ERROR); |
| + return 0; |
| } |
| size_t expected_size = static_cast<size_t>(RSA_size(rsa)); |
| if (result.size() > expected_size) { |
| LOG(ERROR) << "RSA Signature size mismatch, actual: " |
| << result.size() << ", expected <= " << expected_size; |
| - RSAerr(RSA_F_RSA_PRIVATE_ENCRYPT, ERR_R_INTERNAL_ERROR); |
| - return -1; |
| + OPENSSL_PUT_ERROR(RSA, sign_raw, ERR_R_INTERNAL_ERROR); |
| + return 0; |
| + } |
| + |
| + if (max_out < expected_size) { |
| + OPENSSL_PUT_ERROR(RSA, sign_raw, RSA_R_DATA_TOO_LARGE); |
| + return 0; |
| } |
| // Copy result to OpenSSL-provided buffer. RawSignDigestWithPrivateKey |
| // should pad with leading 0s, but if it doesn't, pad the result. |
| size_t zero_pad = expected_size - result.size(); |
| - memset(to, 0, zero_pad); |
| - memcpy(to + zero_pad, &result[0], result.size()); |
| + memset(out, 0, zero_pad); |
| + memcpy(out + zero_pad, &result[0], result.size()); |
| + *out_len = expected_size; |
| - return expected_size; |
| + return 1; |
| } |
| -int RsaMethodPrivDec(int flen, |
| - const unsigned char* from, |
| - unsigned char* to, |
| - RSA* rsa, |
| +int RsaMethodDecrypt(RSA* rsa, |
| + size_t* out_len, |
| + uint8_t* out, |
| + size_t max_out, |
| + const uint8_t* in, |
| + size_t in_len, |
| int padding) { |
| NOTIMPLEMENTED(); |
| - RSAerr(RSA_F_RSA_PRIVATE_DECRYPT, RSA_R_RSA_OPERATIONS_NOT_SUPPORTED); |
| - return -1; |
| -} |
| - |
| -int RsaMethodInit(RSA* rsa) { |
| - return 0; |
| + OPENSSL_PUT_ERROR(RSA, decrypt, RSA_R_UNKNOWN_PADDING_TYPE); |
| + return 1; |
| } |
| -int RsaMethodFinish(RSA* rsa) { |
| - // Ensure the global JNI reference created with this wrapper is |
| - // properly destroyed with it. |
| - RsaAppData* app_data = static_cast<RsaAppData*>(RSA_get_app_data(rsa)); |
| - if (app_data != NULL) { |
| - RSA_set_app_data(rsa, NULL); |
| - ReleaseKey(app_data->private_key); |
| - delete app_data; |
| - } |
| - // Actual return value is ignored by OpenSSL. There are no docs |
| - // explaining what this is supposed to be. |
| - return 0; |
| +int RsaMethodVerifyRaw(RSA* rsa, |
| + size_t* out_len, |
| + uint8_t* out, |
| + size_t max_out, |
| + const uint8_t* in, |
| + size_t in_len, |
| + int padding) { |
| + NOTIMPLEMENTED(); |
| + OPENSSL_PUT_ERROR(RSA, verify_raw, RSA_R_UNKNOWN_ALGORITHM_TYPE); |
| + return 1; |
| } |
| const RSA_METHOD android_rsa_method = { |
| - /* .name = */ "Android signing-only RSA method", |
| - /* .rsa_pub_enc = */ RsaMethodPubEnc, |
| - /* .rsa_pub_dec = */ RsaMethodPubDec, |
| - /* .rsa_priv_enc = */ RsaMethodPrivEnc, |
| - /* .rsa_priv_dec = */ RsaMethodPrivDec, |
| - /* .rsa_mod_exp = */ NULL, |
| - /* .bn_mod_exp = */ NULL, |
| - /* .init = */ RsaMethodInit, |
| - /* .finish = */ RsaMethodFinish, |
| - // This flag is necessary to tell OpenSSL to avoid checking the content |
| - // (i.e. internal fields) of the private key. Otherwise, it will complain |
| - // it's not valid for the certificate. |
| - /* .flags = */ RSA_METHOD_FLAG_NO_CHECK, |
| - /* .app_data = */ NULL, |
| - /* .rsa_sign = */ NULL, |
| - /* .rsa_verify = */ NULL, |
| - /* .rsa_keygen = */ NULL, |
| + { |
| + 0 /* references */, |
| + 1 /* is_static */ |
| + } /* common */, |
| + NULL /* app_data */, |
| + |
| + NULL /* init */, |
| + NULL /* finish */, |
| + RsaMethodSize, |
| + NULL /* sign */, |
| + NULL /* verify */, |
| + RsaMethodEncrypt, |
| + RsaMethodSignRaw, |
| + RsaMethodDecrypt, |
| + RsaMethodVerifyRaw, |
| + NULL /* mod_exp */, |
| + NULL /* bn_mod_exp */, |
| + 0 /* flags */, |
| + NULL /* keygen */, |
| }; |
| -// Copy the contents of an encoded big integer into an existing BIGNUM. |
| -// This function modifies |*num| in-place. |
| -// |new_bytes| is the byte encoding of the new value. |
| -// |num| points to the BIGNUM which will be assigned with the new value. |
| -// Returns true on success, false otherwise. On failure, |*num| is |
| -// not modified. |
| -bool CopyBigNumFromBytes(const std::vector<uint8>& new_bytes, |
| - BIGNUM* num) { |
| - BIGNUM* ret = BN_bin2bn( |
| - reinterpret_cast<const unsigned char*>(&new_bytes[0]), |
| - static_cast<int>(new_bytes.size()), |
| - num); |
| - return (ret != NULL); |
| -} |
| - |
| -// Decode the contents of an encoded big integer and either create a new |
| -// BIGNUM object (if |*num_ptr| is NULL on input) or copy it (if |
| -// |*num_ptr| is not NULL). |
| -// |new_bytes| is the byte encoding of the new value. |
| -// |num_ptr| is the address of a BIGNUM pointer. |*num_ptr| can be NULL. |
| -// Returns true on success, false otherwise. On failure, |*num_ptr| is |
| -// not modified. On success, |*num_ptr| will always be non-NULL and |
| -// point to a valid BIGNUM object. |
| -bool SwapBigNumPtrFromBytes(const std::vector<uint8>& new_bytes, |
| - BIGNUM** num_ptr) { |
| - BIGNUM* old_num = *num_ptr; |
| - BIGNUM* new_num = BN_bin2bn( |
| - reinterpret_cast<const unsigned char*>(&new_bytes[0]), |
| - static_cast<int>(new_bytes.size()), |
| - old_num); |
| - if (new_num == NULL) |
| - return false; |
| - |
| - if (old_num == NULL) |
| - *num_ptr = new_num; |
| - return true; |
| -} |
| - |
| // Setup an EVP_PKEY to wrap an existing platform RSA PrivateKey object. |
| // |private_key| is the JNI reference (local or global) to the object. |
| // |legacy_rsa|, if non-NULL, is a pointer to the system OpenSSL RSA object |
| @@ -311,24 +323,8 @@ bool SwapBigNumPtrFromBytes(const std::vector<uint8>& new_bytes, |
| bool GetRsaPkeyWrapper(jobject private_key, |
| AndroidRSA* legacy_rsa, |
| EVP_PKEY* pkey) { |
| - crypto::ScopedRSA rsa(RSA_new()); |
| - RSA_set_method(rsa.get(), &android_rsa_method); |
| - |
| - // HACK: RSA_size() doesn't work with custom RSA_METHODs. To ensure that |
| - // it will return the right value, set the 'n' field of the RSA object |
| - // to match the private key's modulus. |
| - // |
| - // TODO(davidben): After switching to BoringSSL, consider making RSA_size call |
| - // into an RSA_METHOD hook. |
| - std::vector<uint8> modulus; |
| - if (!GetRSAKeyModulus(private_key, &modulus)) { |
| - LOG(ERROR) << "Failed to get private key modulus"; |
| - return false; |
| - } |
| - if (!SwapBigNumPtrFromBytes(modulus, &rsa.get()->n)) { |
| - LOG(ERROR) << "Failed to decode private key modulus"; |
| - return false; |
| - } |
| + crypto::ScopedRSA rsa( |
| + RSA_new_method(global_boringssl_engine.Get().engine())); |
| ScopedJavaGlobalRef<jobject> global_key; |
| global_key.Reset(NULL, private_key); |
| @@ -336,10 +332,19 @@ bool GetRsaPkeyWrapper(jobject private_key, |
| LOG(ERROR) << "Could not create global JNI reference"; |
| return false; |
| } |
| - RsaAppData* app_data = new RsaAppData(); |
| - app_data->private_key = global_key.Release(); |
| - app_data->legacy_rsa = legacy_rsa; |
| - RSA_set_app_data(rsa.get(), app_data); |
| + |
| + std::vector<uint8> modulus; |
| + if (!GetRSAKeyModulus(private_key, &modulus)) { |
| + LOG(ERROR) << "Failed to get private key modulus"; |
| + return false; |
| + } |
| + |
| + KeyExData* ex_data = new KeyExData; |
| + ex_data->private_key = global_key.Release(); |
| + ex_data->legacy_rsa = legacy_rsa; |
| + ex_data->cached_size = VectorBignumSize(modulus); |
| + RSA_set_ex_data( |
| + rsa.get(), global_boringssl_engine.Get().rsa_ex_index(), ex_data); |
| EVP_PKEY_assign_RSA(pkey, rsa.release()); |
| return true; |
| } |
| @@ -398,7 +403,7 @@ EVP_PKEY* GetRsaLegacyKey(jobject private_key) { |
| if (sys_rsa->engine) { |
| // |private_key| may not have an engine if the PrivateKey did not come |
| // from the key store, such as in unit tests. |
| - if (!strcmp(sys_rsa->engine->id, "keystore")) { |
| + if (strcmp(sys_rsa->engine->id, "keystore") == 0) { |
| LeakEngine(private_key); |
| } else { |
| NOTREACHED(); |
| @@ -431,266 +436,67 @@ EVP_PKEY* GetRsaLegacyKey(jobject private_key) { |
| return pkey; |
| } |
| -// Custom DSA_METHOD that uses the platform APIs. |
| -// Note that for now, only signing through DSA_sign() is really supported. |
| -// all other method pointers are either stubs returning errors, or no-ops. |
| -// See <openssl/dsa.h> for exact declaration of DSA_METHOD. |
| -// |
| -// Note: There is no DSA_set_app_data() and DSA_get_app_data() functions, |
| -// but RSA_set_app_data() is defined as a simple macro that calls |
| -// RSA_set_ex_data() with a hard-coded index of 0, so this code |
| -// does the same thing here. |
| - |
| -DSA_SIG* DsaMethodDoSign(const unsigned char* dgst, |
| - int dlen, |
| - DSA* dsa) { |
| - // Extract the JNI reference to the PrivateKey object. |
| - jobject private_key = reinterpret_cast<jobject>(DSA_get_ex_data(dsa, 0)); |
| - if (private_key == NULL) |
| - return NULL; |
| - |
| - // Sign the message with it, calling platform APIs. |
| - std::vector<uint8> signature; |
| - if (!RawSignDigestWithPrivateKey( |
| - private_key, |
| - base::StringPiece( |
| - reinterpret_cast<const char*>(dgst), |
| - static_cast<size_t>(dlen)), |
| - &signature)) { |
| - return NULL; |
| - } |
| - |
| - // Note: With DSA, the actual signature might be smaller than DSA_size(). |
| - size_t max_expected_size = static_cast<size_t>(DSA_size(dsa)); |
| - if (signature.size() > max_expected_size) { |
| - LOG(ERROR) << "DSA Signature size mismatch, actual: " |
| - << signature.size() << ", expected <= " |
| - << max_expected_size; |
| - return NULL; |
| - } |
| - |
| - // Convert the signature into a DSA_SIG object. |
| - const unsigned char* sigbuf = |
| - reinterpret_cast<const unsigned char*>(&signature[0]); |
| - int siglen = static_cast<size_t>(signature.size()); |
| - DSA_SIG* dsa_sig = d2i_DSA_SIG(NULL, &sigbuf, siglen); |
| - return dsa_sig; |
| -} |
| - |
| -int DsaMethodSignSetup(DSA* dsa, |
| - BN_CTX* ctx_in, |
| - BIGNUM** kinvp, |
| - BIGNUM** rp) { |
| - NOTIMPLEMENTED(); |
| - DSAerr(DSA_F_DSA_SIGN_SETUP, DSA_R_INVALID_DIGEST_TYPE); |
| - return -1; |
| -} |
| - |
| -int DsaMethodDoVerify(const unsigned char* dgst, |
| - int dgst_len, |
| - DSA_SIG* sig, |
| - DSA* dsa) { |
| - NOTIMPLEMENTED(); |
| - DSAerr(DSA_F_DSA_DO_VERIFY, DSA_R_INVALID_DIGEST_TYPE); |
| - return -1; |
| -} |
| - |
| -int DsaMethodFinish(DSA* dsa) { |
| - // Free the global JNI reference that was created with this |
| - // wrapper key. |
| - jobject key = reinterpret_cast<jobject>(DSA_get_ex_data(dsa,0)); |
| - if (key != NULL) { |
| - DSA_set_ex_data(dsa, 0, NULL); |
| - ReleaseKey(key); |
| - } |
| - // Actual return value is ignored by OpenSSL. There are no docs |
| - // explaining what this is supposed to be. |
| - return 0; |
| -} |
| - |
| -const DSA_METHOD android_dsa_method = { |
| - /* .name = */ "Android signing-only DSA method", |
| - /* .dsa_do_sign = */ DsaMethodDoSign, |
| - /* .dsa_sign_setup = */ DsaMethodSignSetup, |
| - /* .dsa_do_verify = */ DsaMethodDoVerify, |
| - /* .dsa_mod_exp = */ NULL, |
| - /* .bn_mod_exp = */ NULL, |
| - /* .init = */ NULL, // nothing to do here. |
| - /* .finish = */ DsaMethodFinish, |
| - /* .flags = */ 0, |
| - /* .app_data = */ NULL, |
| - /* .dsa_paramgem = */ NULL, |
| - /* .dsa_keygen = */ NULL |
| -}; |
| - |
| -// Setup an EVP_PKEY to wrap an existing DSA platform PrivateKey object. |
| -// |private_key| is a JNI reference (local or global) to the object. |
| -// |pkey| is the EVP_PKEY to setup as a wrapper. |
| -// Returns true on success, false otherwise. |
| -// On success, this creates a global JNI reference to the same object |
| -// that will be owned by and destroyed with the EVP_PKEY. |
| -bool GetDsaPkeyWrapper(jobject private_key, EVP_PKEY* pkey) { |
| - crypto::ScopedDSA dsa(DSA_new()); |
| - DSA_set_method(dsa.get(), &android_dsa_method); |
| - |
| - // DSA_size() doesn't work with custom DSA_METHODs. To ensure it |
| - // returns the right value, set the 'q' field in the DSA object to |
| - // match the parameter from the platform key. |
| - std::vector<uint8> q; |
| - if (!GetDSAKeyParamQ(private_key, &q)) { |
| - LOG(ERROR) << "Can't extract Q parameter from DSA private key"; |
| - return false; |
| - } |
| - if (!SwapBigNumPtrFromBytes(q, &dsa.get()->q)) { |
| - LOG(ERROR) << "Can't decode Q parameter from DSA private key"; |
| - return false; |
| - } |
| - |
| - ScopedJavaGlobalRef<jobject> global_key; |
| - global_key.Reset(NULL, private_key); |
| - if (global_key.is_null()) { |
| - LOG(ERROR) << "Could not create global JNI reference"; |
| - return false; |
| - } |
| - DSA_set_ex_data(dsa.get(), 0, global_key.Release()); |
| - EVP_PKEY_assign_DSA(pkey, dsa.release()); |
| - return true; |
| -} |
| - |
| // Custom ECDSA_METHOD that uses the platform APIs. |
| // Note that for now, only signing through ECDSA_sign() is really supported. |
| // all other method pointers are either stubs returning errors, or no-ops. |
| -// |
| -// Note: The ECDSA_METHOD structure doesn't have init/finish |
| -// methods. As such, the only way to to ensure the global |
| -// JNI reference is properly released when the EVP_PKEY is |
| -// destroyed is to use a custom EX_DATA type. |
| - |
| -// Used to ensure that the global JNI reference associated with a custom |
| -// EC_KEY + ECDSA_METHOD wrapper is released when its EX_DATA is destroyed |
| -// (this function is called when EVP_PKEY_free() is called on the wrapper). |
| -void ExDataFree(void* parent, |
| - void* ptr, |
| - CRYPTO_EX_DATA* ad, |
| - int idx, |
| - long argl, |
| - void* argp) { |
| - jobject private_key = reinterpret_cast<jobject>(ptr); |
| - if (private_key == NULL) |
| - return; |
| - CRYPTO_set_ex_data(ad, idx, NULL); |
| - ReleaseKey(private_key); |
| -} |
| - |
| -int ExDataDup(CRYPTO_EX_DATA* to, |
| - CRYPTO_EX_DATA* from, |
| - void* from_d, |
| - int idx, |
| - long argl, |
| - void* argp) { |
| - // This callback shall never be called with the current OpenSSL |
| - // implementation (the library only ever duplicates EX_DATA items |
| - // for SSL and BIO objects). But provide this to catch regressions |
| - // in the future. |
| - CHECK(false) << "ExDataDup was called for ECDSA custom key !?"; |
| - // Return value is currently ignored by OpenSSL. |
| - return 0; |
| +jobject EcKeyGetKey(const EC_KEY* ec_key) { |
| + KeyExData* ex_data = reinterpret_cast<KeyExData*>(EC_KEY_get_ex_data( |
| + ec_key, global_boringssl_engine.Get().ec_key_ex_index())); |
| + return ex_data->private_key; |
| } |
| -class EcdsaExDataIndex { |
| -public: |
| - int ex_data_index() { return ex_data_index_; } |
| - |
| - EcdsaExDataIndex() { |
| - ex_data_index_ = ECDSA_get_ex_new_index(0, // argl |
| - NULL, // argp |
| - NULL, // new_func |
| - ExDataDup, // dup_func |
| - ExDataFree); // free_func |
| - } |
| - |
| -private: |
| - int ex_data_index_; |
| -}; |
| - |
| -// Returns the index of the custom EX_DATA used to store the JNI reference. |
| -int EcdsaGetExDataIndex(void) { |
| - // Use a LazyInstance to perform thread-safe lazy initialization. |
| - // Use a leaky one, since OpenSSL doesn't provide a way to release |
| - // allocated EX_DATA indices. |
| - static base::LazyInstance<EcdsaExDataIndex>::Leaky s_instance = |
| - LAZY_INSTANCE_INITIALIZER; |
| - return s_instance.Get().ex_data_index(); |
| +size_t EcdsaMethodGroupOrderSize(const EC_KEY* key) { |
| + KeyExData* ex_data = reinterpret_cast<KeyExData*>(EC_KEY_get_ex_data( |
| + key, global_boringssl_engine.Get().ec_key_ex_index())); |
| + return ex_data->cached_size; |
| } |
| -ECDSA_SIG* EcdsaMethodDoSign(const unsigned char* dgst, |
| - int dgst_len, |
| - const BIGNUM* inv, |
| - const BIGNUM* rp, |
| - EC_KEY* eckey) { |
| +int EcdsaMethodSign(const uint8_t* digest, |
| + size_t digest_len, |
| + uint8_t* sig, |
| + unsigned int* sig_len, |
| + EC_KEY* eckey) { |
| // Retrieve private key JNI reference. |
| - jobject private_key = reinterpret_cast<jobject>( |
| - ECDSA_get_ex_data(eckey, EcdsaGetExDataIndex())); |
| + jobject private_key = EcKeyGetKey(eckey); |
| if (!private_key) { |
| - LOG(WARNING) << "Null JNI reference passed to EcdsaMethodDoSign!"; |
| - return NULL; |
| + LOG(WARNING) << "Null JNI reference passed to EcdsaMethodSign!"; |
| + return 0; |
| } |
| // Sign message with it through JNI. |
| std::vector<uint8> signature; |
| - base::StringPiece digest( |
| - reinterpret_cast<const char*>(dgst), |
| - static_cast<size_t>(dgst_len)); |
| - if (!RawSignDigestWithPrivateKey( |
| - private_key, digest, &signature)) { |
| - LOG(WARNING) << "Could not sign message in EcdsaMethodDoSign!"; |
| - return NULL; |
| + base::StringPiece digest_sp(reinterpret_cast<const char*>(digest), |
| + digest_len); |
| + if (!RawSignDigestWithPrivateKey(private_key, digest_sp, &signature)) { |
| + LOG(WARNING) << "Could not sign message in EcdsaMethodSign!"; |
| + return 0; |
| } |
| // Note: With ECDSA, the actual signature may be smaller than |
| // ECDSA_size(). |
| - size_t max_expected_size = static_cast<size_t>(ECDSA_size(eckey)); |
| + size_t max_expected_size = ECDSA_size(eckey); |
| if (signature.size() > max_expected_size) { |
| LOG(ERROR) << "ECDSA Signature size mismatch, actual: " |
| << signature.size() << ", expected <= " |
| << max_expected_size; |
| - return NULL; |
| + return 0; |
| } |
| - // Convert signature to ECDSA_SIG object |
| - const unsigned char* sigbuf = |
| - reinterpret_cast<const unsigned char*>(&signature[0]); |
| - long siglen = static_cast<long>(signature.size()); |
| - return d2i_ECDSA_SIG(NULL, &sigbuf, siglen); |
| + memcpy(sig, &signature[0], signature.size()); |
| + *sig_len = signature.size(); |
| + return 1; |
| } |
| -int EcdsaMethodSignSetup(EC_KEY* eckey, |
| - BN_CTX* ctx, |
| - BIGNUM** kinv, |
| - BIGNUM** r) { |
| +int EcdsaMethodVerify(const uint8_t* digest, |
| + size_t digest_len, |
| + const uint8_t* sig, |
| + size_t sig_len, |
| + EC_KEY* eckey) { |
| NOTIMPLEMENTED(); |
| - ECDSAerr(ECDSA_F_ECDSA_SIGN_SETUP, ECDSA_R_ERR_EC_LIB); |
| - return -1; |
| -} |
| - |
| -int EcdsaMethodDoVerify(const unsigned char* dgst, |
| - int dgst_len, |
| - const ECDSA_SIG* sig, |
| - EC_KEY* eckey) { |
| - NOTIMPLEMENTED(); |
| - ECDSAerr(ECDSA_F_ECDSA_DO_VERIFY, ECDSA_R_ERR_EC_LIB); |
| - return -1; |
| + OPENSSL_PUT_ERROR(ECDSA, ECDSA_do_verify, ECDSA_R_NOT_IMPLEMENTED); |
| + return 0; |
| } |
| -const ECDSA_METHOD android_ecdsa_method = { |
| - /* .name = */ "Android signing-only ECDSA method", |
| - /* .ecdsa_do_sign = */ EcdsaMethodDoSign, |
| - /* .ecdsa_sign_setup = */ EcdsaMethodSignSetup, |
| - /* .ecdsa_do_verify = */ EcdsaMethodDoVerify, |
| - /* .flags = */ 0, |
| - /* .app_data = */ NULL, |
| -}; |
| - |
| // Setup an EVP_PKEY to wrap an existing platform PrivateKey object. |
| // |private_key| is the JNI reference (local or global) to the object. |
| // |pkey| is the EVP_PKEY to setup as a wrapper. |
| @@ -699,26 +505,8 @@ const ECDSA_METHOD android_ecdsa_method = { |
| // is owned by and destroyed with the EVP_PKEY. I.e. the caller shall |
| // always free |private_key| after the call. |
| bool GetEcdsaPkeyWrapper(jobject private_key, EVP_PKEY* pkey) { |
| - crypto::ScopedEC_KEY eckey(EC_KEY_new()); |
| - ECDSA_set_method(eckey.get(), &android_ecdsa_method); |
| - |
| - // To ensure that ECDSA_size() works properly, craft a custom EC_GROUP |
| - // that has the same order than the private key. |
| - std::vector<uint8> order; |
| - if (!GetECKeyOrder(private_key, &order)) { |
| - LOG(ERROR) << "Can't extract order parameter from EC private key"; |
| - return false; |
| - } |
| - ScopedEC_GROUP group(EC_GROUP_new(EC_GFp_nist_method())); |
| - if (!group.get()) { |
| - LOG(ERROR) << "Can't create new EC_GROUP"; |
| - return false; |
| - } |
| - if (!CopyBigNumFromBytes(order, &group.get()->order)) { |
| - LOG(ERROR) << "Can't decode order from PrivateKey"; |
| - return false; |
| - } |
| - EC_KEY_set_group(eckey.get(), group.release()); |
| + crypto::ScopedEC_KEY eckey( |
| + EC_KEY_new_method(global_boringssl_engine.Get().engine())); |
| ScopedJavaGlobalRef<jobject> global_key; |
| global_key.Reset(NULL, private_key); |
| @@ -726,14 +514,39 @@ bool GetEcdsaPkeyWrapper(jobject private_key, EVP_PKEY* pkey) { |
| LOG(ERROR) << "Can't create global JNI reference"; |
| return false; |
| } |
| - ECDSA_set_ex_data(eckey.get(), |
| - EcdsaGetExDataIndex(), |
| - global_key.Release()); |
| + |
| + std::vector<uint8> order; |
| + if (!GetECKeyOrder(private_key, &order)) { |
| + LOG(ERROR) << "Can't extract order parameter from EC private key"; |
| + return false; |
| + } |
| + |
| + KeyExData* ex_data = new KeyExData; |
| + ex_data->private_key = global_key.Release(); |
| + ex_data->legacy_rsa = NULL; |
| + ex_data->cached_size = VectorBignumSize(order); |
| + |
| + EC_KEY_set_ex_data( |
| + eckey.get(), global_boringssl_engine.Get().ec_key_ex_index(), ex_data); |
| EVP_PKEY_assign_EC_KEY(pkey, eckey.release()); |
| return true; |
| } |
| +const ECDSA_METHOD android_ecdsa_method = { |
| + { |
| + 0 /* references */, |
| + 1 /* is_static */ |
| + } /* common */, |
| + NULL /* app_data */, |
| + |
| + NULL /* init */, |
| + NULL /* finish */, |
| + EcdsaMethodGroupOrderSize, |
| + EcdsaMethodSign, |
| + EcdsaMethodVerify, |
| +}; |
| + |
| } // namespace |
| EVP_PKEY* GetOpenSSLPrivateKeyWrapper(jobject private_key) { |
| @@ -765,10 +578,6 @@ EVP_PKEY* GetOpenSSLPrivateKeyWrapper(jobject private_key) { |
| } |
| } |
| break; |
| - case PRIVATE_KEY_TYPE_DSA: |
| - if (!GetDsaPkeyWrapper(private_key, pkey.get())) |
| - return NULL; |
| - break; |
| case PRIVATE_KEY_TYPE_ECDSA: |
| if (!GetEcdsaPkeyWrapper(private_key, pkey.get())) |
| return NULL; |