| OLD | NEW |
| 1 /* | 1 /* |
| 2 * Copyright (C) 2005 Frerich Raabe <raabe@kde.org> | 2 * Copyright (C) 2005 Frerich Raabe <raabe@kde.org> |
| 3 * Copyright (C) 2006, 2009 Apple Inc. All rights reserved. | 3 * Copyright (C) 2006, 2009 Apple Inc. All rights reserved. |
| 4 * Copyright (C) 2007 Alexey Proskuryakov <ap@webkit.org> | 4 * Copyright (C) 2007 Alexey Proskuryakov <ap@webkit.org> |
| 5 * | 5 * |
| 6 * Redistribution and use in source and binary forms, with or without | 6 * Redistribution and use in source and binary forms, with or without |
| 7 * modification, are permitted provided that the following conditions | 7 * modification, are permitted provided that the following conditions |
| 8 * are met: | 8 * are met: |
| 9 * | 9 * |
| 10 * 1. Redistributions of source code must retain the above copyright | 10 * 1. Redistributions of source code must retain the above copyright |
| (...skipping 47 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 58 | 58 |
| 59 void Step::trace(Visitor* visitor) | 59 void Step::trace(Visitor* visitor) |
| 60 { | 60 { |
| 61 visitor->trace(m_nodeTest); | 61 visitor->trace(m_nodeTest); |
| 62 visitor->trace(m_predicates); | 62 visitor->trace(m_predicates); |
| 63 ParseNode::trace(visitor); | 63 ParseNode::trace(visitor); |
| 64 } | 64 } |
| 65 | 65 |
| 66 void Step::optimize() | 66 void Step::optimize() |
| 67 { | 67 { |
| 68 // Evaluate predicates as part of node test if possible to avoid building un
necessary NodeSets. | 68 // Evaluate predicates as part of node test if possible to avoid building |
| 69 // E.g., there is no need to build a set of all "foo" nodes to evaluate "foo
[@bar]", we can check the predicate while enumerating. | 69 // unnecessary NodeSets. |
| 70 // This optimization can be applied to predicates that are not context node
list sensitive, or to first predicate that is only context position sensitive, e
.g. foo[position() mod 2 = 0]. | 70 // E.g., there is no need to build a set of all "foo" nodes to evaluate |
| 71 // "foo[@bar]", we can check the predicate while enumerating. |
| 72 // This optimization can be applied to predicates that are not context node |
| 73 // list sensitive, or to first predicate that is only context position |
| 74 // sensitive, e.g. foo[position() mod 2 = 0]. |
| 71 WillBeHeapVector<OwnPtrWillBeMember<Predicate> > remainingPredicates; | 75 WillBeHeapVector<OwnPtrWillBeMember<Predicate> > remainingPredicates; |
| 72 for (size_t i = 0; i < m_predicates.size(); ++i) { | 76 for (size_t i = 0; i < m_predicates.size(); ++i) { |
| 73 OwnPtrWillBeRawPtr<Predicate> predicate(m_predicates[i].release()); | 77 OwnPtrWillBeRawPtr<Predicate> predicate(m_predicates[i].release()); |
| 74 if ((!predicate->isContextPositionSensitive() || nodeTest().mergedPredic
ates().isEmpty()) && !predicate->isContextSizeSensitive() && remainingPredicates
.isEmpty()) { | 78 if ((!predicate->isContextPositionSensitive() || nodeTest().mergedPredic
ates().isEmpty()) && !predicate->isContextSizeSensitive() && remainingPredicates
.isEmpty()) { |
| 75 nodeTest().mergedPredicates().append(predicate.release()); | 79 nodeTest().mergedPredicates().append(predicate.release()); |
| 76 } else { | 80 } else { |
| 77 remainingPredicates.append(predicate.release()); | 81 remainingPredicates.append(predicate.release()); |
| 78 } | 82 } |
| 79 } | 83 } |
| 80 swap(remainingPredicates, m_predicates); | 84 swap(remainingPredicates, m_predicates); |
| 81 } | 85 } |
| 82 | 86 |
| 83 void optimizeStepPair(Step* first, Step* second, bool& dropSecondStep) | 87 void optimizeStepPair(Step* first, Step* second, bool& dropSecondStep) |
| 84 { | 88 { |
| 85 dropSecondStep = false; | 89 dropSecondStep = false; |
| 86 | 90 |
| 87 if (first->m_axis == Step::DescendantOrSelfAxis | 91 if (first->m_axis == Step::DescendantOrSelfAxis |
| 88 && first->nodeTest().kind() == Step::NodeTest::AnyNodeTest | 92 && first->nodeTest().kind() == Step::NodeTest::AnyNodeTest |
| 89 && !first->m_predicates.size() | 93 && !first->m_predicates.size() |
| 90 && !first->nodeTest().mergedPredicates().size()) { | 94 && !first->nodeTest().mergedPredicates().size()) { |
| 91 | 95 |
| 92 ASSERT(first->nodeTest().data().isEmpty()); | 96 ASSERT(first->nodeTest().data().isEmpty()); |
| 93 ASSERT(first->nodeTest().namespaceURI().isEmpty()); | 97 ASSERT(first->nodeTest().namespaceURI().isEmpty()); |
| 94 | 98 |
| 95 // Optimize the common case of "//" AKA /descendant-or-self::node()/chil
d::NodeTest to /descendant::NodeTest. | 99 // Optimize the common case of "//" AKA |
| 100 // /descendant-or-self::node()/child::NodeTest to /descendant::NodeTest. |
| 96 if (second->m_axis == Step::ChildAxis && second->predicatesAreContextLis
tInsensitive()) { | 101 if (second->m_axis == Step::ChildAxis && second->predicatesAreContextLis
tInsensitive()) { |
| 97 first->m_axis = Step::DescendantAxis; | 102 first->m_axis = Step::DescendantAxis; |
| 98 first->nodeTest() = Step::NodeTest(second->nodeTest().kind(), second
->nodeTest().data(), second->nodeTest().namespaceURI()); | 103 first->nodeTest() = Step::NodeTest(second->nodeTest().kind(), second
->nodeTest().data(), second->nodeTest().namespaceURI()); |
| 99 swap(second->nodeTest().mergedPredicates(), first->nodeTest().merged
Predicates()); | 104 swap(second->nodeTest().mergedPredicates(), first->nodeTest().merged
Predicates()); |
| 100 swap(second->m_predicates, first->m_predicates); | 105 swap(second->m_predicates, first->m_predicates); |
| 101 first->optimize(); | 106 first->optimize(); |
| 102 dropSecondStep = true; | 107 dropSecondStep = true; |
| 103 } | 108 } |
| 104 } | 109 } |
| 105 } | 110 } |
| (...skipping 41 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 147 } | 152 } |
| 148 | 153 |
| 149 nodes.swap(*newNodes); | 154 nodes.swap(*newNodes); |
| 150 } | 155 } |
| 151 } | 156 } |
| 152 | 157 |
| 153 #if ASSERT_ENABLED | 158 #if ASSERT_ENABLED |
| 154 static inline Node::NodeType primaryNodeType(Step::Axis axis) | 159 static inline Node::NodeType primaryNodeType(Step::Axis axis) |
| 155 { | 160 { |
| 156 switch (axis) { | 161 switch (axis) { |
| 157 case Step::AttributeAxis: | 162 case Step::AttributeAxis: |
| 158 return Node::ATTRIBUTE_NODE; | 163 return Node::ATTRIBUTE_NODE; |
| 159 default: | 164 default: |
| 160 return Node::ELEMENT_NODE; | 165 return Node::ELEMENT_NODE; |
| 161 } | 166 } |
| 162 } | 167 } |
| 163 #endif | 168 #endif |
| 164 | 169 |
| 165 // Evaluate NodeTest without considering merged predicates. | 170 // Evaluate NodeTest without considering merged predicates. |
| 166 static inline bool nodeMatchesBasicTest(Node* node, Step::Axis axis, const Step:
:NodeTest& nodeTest) | 171 static inline bool nodeMatchesBasicTest(Node* node, Step::Axis axis, const Step:
:NodeTest& nodeTest) |
| 167 { | 172 { |
| 168 switch (nodeTest.kind()) { | 173 switch (nodeTest.kind()) { |
| 169 case Step::NodeTest::TextNodeTest: { | 174 case Step::NodeTest::TextNodeTest: { |
| 170 Node::NodeType type = node->nodeType(); | 175 Node::NodeType type = node->nodeType(); |
| 171 return type == Node::TEXT_NODE || type == Node::CDATA_SECTION_NODE; | 176 return type == Node::TEXT_NODE || type == Node::CDATA_SECTION_NODE; |
| 172 } | 177 } |
| 173 case Step::NodeTest::CommentNodeTest: | 178 case Step::NodeTest::CommentNodeTest: |
| 174 return node->nodeType() == Node::COMMENT_NODE; | 179 return node->nodeType() == Node::COMMENT_NODE; |
| 175 case Step::NodeTest::ProcessingInstructionNodeTest: { | 180 case Step::NodeTest::ProcessingInstructionNodeTest: { |
| 176 const AtomicString& name = nodeTest.data(); | 181 const AtomicString& name = nodeTest.data(); |
| 177 return node->nodeType() == Node::PROCESSING_INSTRUCTION_NODE && (nam
e.isEmpty() || node->nodeName() == name); | 182 return node->nodeType() == Node::PROCESSING_INSTRUCTION_NODE && (name.is
Empty() || node->nodeName() == name); |
| 178 } | 183 } |
| 179 case Step::NodeTest::AnyNodeTest: | 184 case Step::NodeTest::AnyNodeTest: |
| 180 return true; | 185 return true; |
| 181 case Step::NodeTest::NameTest: { | 186 case Step::NodeTest::NameTest: { |
| 182 const AtomicString& name = nodeTest.data(); | 187 const AtomicString& name = nodeTest.data(); |
| 183 const AtomicString& namespaceURI = nodeTest.namespaceURI(); | 188 const AtomicString& namespaceURI = nodeTest.namespaceURI(); |
| 184 | 189 |
| 185 if (axis == Step::AttributeAxis) { | 190 if (axis == Step::AttributeAxis) { |
| 186 ASSERT(node->isAttributeNode()); | 191 ASSERT(node->isAttributeNode()); |
| 187 | 192 |
| 188 // In XPath land, namespace nodes are not accessible on the attr
ibute axis. | 193 // In XPath land, namespace nodes are not accessible on the |
| 189 if (node->namespaceURI() == XMLNSNames::xmlnsNamespaceURI) | 194 // attribute axis. |
| 190 return false; | 195 if (node->namespaceURI() == XMLNSNames::xmlnsNamespaceURI) |
| 191 | |
| 192 if (name == starAtom) | |
| 193 return namespaceURI.isEmpty() || node->namespaceURI() == nam
espaceURI; | |
| 194 | |
| 195 return node->localName() == name && node->namespaceURI() == name
spaceURI; | |
| 196 } | |
| 197 | |
| 198 // Node test on the namespace axis is not implemented yet, the calle
r has a check for it. | |
| 199 ASSERT(axis != Step::NamespaceAxis); | |
| 200 | |
| 201 // For other axes, the principal node type is element. | |
| 202 ASSERT(primaryNodeType(axis) == Node::ELEMENT_NODE); | |
| 203 if (!node->isElementNode()) | |
| 204 return false; | 196 return false; |
| 205 Element& element = toElement(*node); | |
| 206 | 197 |
| 207 if (name == starAtom) | 198 if (name == starAtom) |
| 208 return namespaceURI.isEmpty() || namespaceURI == element.namespa
ceURI(); | 199 return namespaceURI.isEmpty() || node->namespaceURI() == namespa
ceURI; |
| 209 | 200 |
| 210 if (element.document().isHTMLDocument()) { | 201 return node->localName() == name && node->namespaceURI() == namespac
eURI; |
| 211 if (element.isHTMLElement()) { | 202 } |
| 212 // Paths without namespaces should match HTML elements in HT
ML documents despite those having an XHTML namespace. Names are compared case-in
sensitively. | 203 |
| 213 return equalIgnoringCase(element.localName(), name) && (name
spaceURI.isNull() || namespaceURI == element.namespaceURI()); | 204 // Node test on the namespace axis is not implemented yet, the caller |
| 214 } | 205 // has a check for it. |
| 215 // An expression without any prefix shouldn't match no-namespace
nodes (because HTML5 says so). | 206 ASSERT(axis != Step::NamespaceAxis); |
| 216 return element.hasLocalName(name) && namespaceURI == element.nam
espaceURI() && !namespaceURI.isNull(); | 207 |
| 208 // For other axes, the principal node type is element. |
| 209 ASSERT(primaryNodeType(axis) == Node::ELEMENT_NODE); |
| 210 if (!node->isElementNode()) |
| 211 return false; |
| 212 Element& element = toElement(*node); |
| 213 |
| 214 if (name == starAtom) |
| 215 return namespaceURI.isEmpty() || namespaceURI == element.namespaceUR
I(); |
| 216 |
| 217 if (element.document().isHTMLDocument()) { |
| 218 if (element.isHTMLElement()) { |
| 219 // Paths without namespaces should match HTML elements in HTML |
| 220 // documents despite those having an XHTML namespace. Names are |
| 221 // compared case-insensitively. |
| 222 return equalIgnoringCase(element.localName(), name) && (namespac
eURI.isNull() || namespaceURI == element.namespaceURI()); |
| 217 } | 223 } |
| 218 return element.hasLocalName(name) && namespaceURI == element.namespa
ceURI(); | 224 // An expression without any prefix shouldn't match no-namespace |
| 225 // nodes (because HTML5 says so). |
| 226 return element.hasLocalName(name) && namespaceURI == element.namespa
ceURI() && !namespaceURI.isNull(); |
| 219 } | 227 } |
| 228 return element.hasLocalName(name) && namespaceURI == element.namespaceUR
I(); |
| 229 } |
| 220 } | 230 } |
| 221 ASSERT_NOT_REACHED(); | 231 ASSERT_NOT_REACHED(); |
| 222 return false; | 232 return false; |
| 223 } | 233 } |
| 224 | 234 |
| 225 static inline bool nodeMatches(Node* node, Step::Axis axis, const Step::NodeTest
& nodeTest) | 235 static inline bool nodeMatches(Node* node, Step::Axis axis, const Step::NodeTest
& nodeTest) |
| 226 { | 236 { |
| 227 if (!nodeMatchesBasicTest(node, axis, nodeTest)) | 237 if (!nodeMatchesBasicTest(node, axis, nodeTest)) |
| 228 return false; | 238 return false; |
| 229 | 239 |
| 230 EvaluationContext& evaluationContext = Expression::evaluationContext(); | 240 EvaluationContext& evaluationContext = Expression::evaluationContext(); |
| 231 | 241 |
| 232 // Only the first merged predicate may depend on position. | 242 // Only the first merged predicate may depend on position. |
| 233 ++evaluationContext.position; | 243 ++evaluationContext.position; |
| 234 | 244 |
| 235 const WillBeHeapVector<OwnPtrWillBeMember<Predicate> >& mergedPredicates = n
odeTest.mergedPredicates(); | 245 const WillBeHeapVector<OwnPtrWillBeMember<Predicate> >& mergedPredicates = n
odeTest.mergedPredicates(); |
| 236 for (unsigned i = 0; i < mergedPredicates.size(); i++) { | 246 for (unsigned i = 0; i < mergedPredicates.size(); i++) { |
| 237 Predicate* predicate = mergedPredicates[i].get(); | 247 Predicate* predicate = mergedPredicates[i].get(); |
| 238 | 248 |
| 239 evaluationContext.node = node; | 249 evaluationContext.node = node; |
| 240 // No need to set context size - we only get here when evaluating predic
ates that do not depend on it. | 250 // No need to set context size - we only get here when evaluating |
| 251 // predicates that do not depend on it. |
| 241 if (!predicate->evaluate()) | 252 if (!predicate->evaluate()) |
| 242 return false; | 253 return false; |
| 243 } | 254 } |
| 244 | 255 |
| 245 return true; | 256 return true; |
| 246 } | 257 } |
| 247 | 258 |
| 248 // Result nodes are ordered in axis order. Node test (including merged predicate
s) is applied. | 259 // Result nodes are ordered in axis order. Node test (including merged |
| 260 // predicates) is applied. |
| 249 void Step::nodesInAxis(Node* context, NodeSet& nodes) const | 261 void Step::nodesInAxis(Node* context, NodeSet& nodes) const |
| 250 { | 262 { |
| 251 ASSERT(nodes.isEmpty()); | 263 ASSERT(nodes.isEmpty()); |
| 252 switch (m_axis) { | 264 switch (m_axis) { |
| 253 case ChildAxis: | 265 case ChildAxis: |
| 254 if (context->isAttributeNode()) // In XPath model, attribute nodes d
o not have children. | 266 // In XPath model, attribute nodes do not have children. |
| 255 return; | 267 if (context->isAttributeNode()) |
| 268 return; |
| 256 | 269 |
| 257 for (Node* n = context->firstChild(); n; n = n->nextSibling()) | 270 for (Node* n = context->firstChild(); n; n = n->nextSibling()) { |
| 258 if (nodeMatches(n, ChildAxis, nodeTest())) | 271 if (nodeMatches(n, ChildAxis, nodeTest())) |
| 259 nodes.append(n); | 272 nodes.append(n); |
| 273 } |
| 274 return; |
| 275 |
| 276 case DescendantAxis: |
| 277 // In XPath model, attribute nodes do not have children. |
| 278 if (context->isAttributeNode()) |
| 260 return; | 279 return; |
| 261 case DescendantAxis: | |
| 262 if (context->isAttributeNode()) // In XPath model, attribute nodes d
o not have children. | |
| 263 return; | |
| 264 | 280 |
| 265 for (Node* n = context->firstChild(); n; n = NodeTraversal::next(*n,
context)) | 281 for (Node* n = context->firstChild(); n; n = NodeTraversal::next(*n, con
text)) { |
| 266 if (nodeMatches(n, DescendantAxis, nodeTest())) | 282 if (nodeMatches(n, DescendantAxis, nodeTest())) |
| 267 nodes.append(n); | 283 nodes.append(n); |
| 284 } |
| 285 return; |
| 286 |
| 287 case ParentAxis: |
| 288 if (context->isAttributeNode()) { |
| 289 Element* n = toAttr(context)->ownerElement(); |
| 290 if (nodeMatches(n, ParentAxis, nodeTest())) |
| 291 nodes.append(n); |
| 292 } else { |
| 293 ContainerNode* n = context->parentNode(); |
| 294 if (n && nodeMatches(n, ParentAxis, nodeTest())) |
| 295 nodes.append(n); |
| 296 } |
| 297 return; |
| 298 |
| 299 case AncestorAxis: { |
| 300 Node* n = context; |
| 301 if (context->isAttributeNode()) { |
| 302 n = toAttr(context)->ownerElement(); |
| 303 if (nodeMatches(n, AncestorAxis, nodeTest())) |
| 304 nodes.append(n); |
| 305 } |
| 306 for (n = n->parentNode(); n; n = n->parentNode()) { |
| 307 if (nodeMatches(n, AncestorAxis, nodeTest())) |
| 308 nodes.append(n); |
| 309 } |
| 310 nodes.markSorted(false); |
| 311 return; |
| 312 } |
| 313 |
| 314 case FollowingSiblingAxis: |
| 315 if (context->nodeType() == Node::ATTRIBUTE_NODE) |
| 268 return; | 316 return; |
| 269 case ParentAxis: | 317 |
| 270 if (context->isAttributeNode()) { | 318 for (Node* n = context->nextSibling(); n; n = n->nextSibling()) { |
| 271 Element* n = toAttr(context)->ownerElement(); | 319 if (nodeMatches(n, FollowingSiblingAxis, nodeTest())) |
| 272 if (nodeMatches(n, ParentAxis, nodeTest())) | 320 nodes.append(n); |
| 273 nodes.append(n); | 321 } |
| 274 } else { | 322 return; |
| 275 ContainerNode* n = context->parentNode(); | 323 |
| 276 if (n && nodeMatches(n, ParentAxis, nodeTest())) | 324 case PrecedingSiblingAxis: |
| 277 nodes.append(n); | 325 if (context->nodeType() == Node::ATTRIBUTE_NODE) |
| 326 return; |
| 327 |
| 328 for (Node* n = context->previousSibling(); n; n = n->previousSibling())
{ |
| 329 if (nodeMatches(n, PrecedingSiblingAxis, nodeTest())) |
| 330 nodes.append(n); |
| 331 } |
| 332 nodes.markSorted(false); |
| 333 return; |
| 334 |
| 335 case FollowingAxis: |
| 336 if (context->isAttributeNode()) { |
| 337 Node* p = toAttr(context)->ownerElement(); |
| 338 while ((p = NodeTraversal::next(*p))) { |
| 339 if (nodeMatches(p, FollowingAxis, nodeTest())) |
| 340 nodes.append(p); |
| 278 } | 341 } |
| 279 return; | 342 } else { |
| 280 case AncestorAxis: { | 343 for (Node* p = context; !isRootDomNode(p); p = p->parentNode()) { |
| 281 Node* n = context; | 344 for (Node* n = p->nextSibling(); n; n = n->nextSibling()) { |
| 282 if (context->isAttributeNode()) { | 345 if (nodeMatches(n, FollowingAxis, nodeTest())) |
| 283 n = toAttr(context)->ownerElement(); | 346 nodes.append(n); |
| 284 if (nodeMatches(n, AncestorAxis, nodeTest())) | 347 for (Node* c = n->firstChild(); c; c = NodeTraversal::next(*
c, n)) { |
| 285 nodes.append(n); | 348 if (nodeMatches(c, FollowingAxis, nodeTest())) |
| 286 } | 349 nodes.append(c); |
| 287 for (n = n->parentNode(); n; n = n->parentNode()) | |
| 288 if (nodeMatches(n, AncestorAxis, nodeTest())) | |
| 289 nodes.append(n); | |
| 290 nodes.markSorted(false); | |
| 291 return; | |
| 292 } | |
| 293 case FollowingSiblingAxis: | |
| 294 if (context->nodeType() == Node::ATTRIBUTE_NODE) | |
| 295 return; | |
| 296 | |
| 297 for (Node* n = context->nextSibling(); n; n = n->nextSibling()) | |
| 298 if (nodeMatches(n, FollowingSiblingAxis, nodeTest())) | |
| 299 nodes.append(n); | |
| 300 return; | |
| 301 case PrecedingSiblingAxis: | |
| 302 if (context->nodeType() == Node::ATTRIBUTE_NODE) | |
| 303 return; | |
| 304 | |
| 305 for (Node* n = context->previousSibling(); n; n = n->previousSibling
()) | |
| 306 if (nodeMatches(n, PrecedingSiblingAxis, nodeTest())) | |
| 307 nodes.append(n); | |
| 308 | |
| 309 nodes.markSorted(false); | |
| 310 return; | |
| 311 case FollowingAxis: | |
| 312 if (context->isAttributeNode()) { | |
| 313 Node* p = toAttr(context)->ownerElement(); | |
| 314 while ((p = NodeTraversal::next(*p))) { | |
| 315 if (nodeMatches(p, FollowingAxis, nodeTest())) | |
| 316 nodes.append(p); | |
| 317 } | |
| 318 } else { | |
| 319 for (Node* p = context; !isRootDomNode(p); p = p->parentNode())
{ | |
| 320 for (Node* n = p->nextSibling(); n; n = n->nextSibling()) { | |
| 321 if (nodeMatches(n, FollowingAxis, nodeTest())) | |
| 322 nodes.append(n); | |
| 323 for (Node* c = n->firstChild(); c; c = NodeTraversal::ne
xt(*c, n)) | |
| 324 if (nodeMatches(c, FollowingAxis, nodeTest())) | |
| 325 nodes.append(c); | |
| 326 } | 350 } |
| 327 } | 351 } |
| 328 } | 352 } |
| 353 } |
| 354 return; |
| 355 |
| 356 case PrecedingAxis: { |
| 357 if (context->isAttributeNode()) |
| 358 context = toAttr(context)->ownerElement(); |
| 359 |
| 360 Node* n = context; |
| 361 while (ContainerNode* parent = n->parentNode()) { |
| 362 for (n = NodeTraversal::previous(*n); n != parent; n = NodeTraversal
::previous(*n)) { |
| 363 if (nodeMatches(n, PrecedingAxis, nodeTest())) |
| 364 nodes.append(n); |
| 365 } |
| 366 n = parent; |
| 367 } |
| 368 nodes.markSorted(false); |
| 369 return; |
| 370 } |
| 371 |
| 372 case AttributeAxis: { |
| 373 if (!context->isElementNode()) |
| 329 return; | 374 return; |
| 330 case PrecedingAxis: { | |
| 331 if (context->isAttributeNode()) | |
| 332 context = toAttr(context)->ownerElement(); | |
| 333 | 375 |
| 334 Node* n = context; | 376 Element* contextElement = toElement(context); |
| 335 while (ContainerNode* parent = n->parentNode()) { | 377 // Avoid lazily creating attribute nodes for attributes that we do not |
| 336 for (n = NodeTraversal::previous(*n); n != parent; n = NodeTrave
rsal::previous(*n)) | 378 // need anyway. |
| 337 if (nodeMatches(n, PrecedingAxis, nodeTest())) | 379 if (nodeTest().kind() == NodeTest::NameTest && nodeTest().data() != star
Atom) { |
| 338 nodes.append(n); | 380 RefPtrWillBeRawPtr<Node> n = contextElement->getAttributeNodeNS(node
Test().namespaceURI(), nodeTest().data()); |
| 339 n = parent; | 381 // In XPath land, namespace nodes are not accessible on the attribut
e axis. |
| 340 } | 382 if (n && n->namespaceURI() != XMLNSNames::xmlnsNamespaceURI) { |
| 341 nodes.markSorted(false); | 383 // Still need to check merged predicates. |
| 342 return; | 384 if (nodeMatches(n.get(), AttributeAxis, nodeTest())) |
| 343 } | 385 nodes.append(n.release()); |
| 344 case AttributeAxis: { | |
| 345 if (!context->isElementNode()) | |
| 346 return; | |
| 347 | |
| 348 Element* contextElement = toElement(context); | |
| 349 | |
| 350 // Avoid lazily creating attribute nodes for attributes that we do n
ot need anyway. | |
| 351 if (nodeTest().kind() == NodeTest::NameTest && nodeTest().data() !=
starAtom) { | |
| 352 RefPtrWillBeRawPtr<Node> n = contextElement->getAttributeNodeNS(
nodeTest().namespaceURI(), nodeTest().data()); | |
| 353 if (n && n->namespaceURI() != XMLNSNames::xmlnsNamespaceURI) { /
/ In XPath land, namespace nodes are not accessible on the attribute axis. | |
| 354 if (nodeMatches(n.get(), AttributeAxis, nodeTest())) // Stil
l need to check merged predicates. | |
| 355 nodes.append(n.release()); | |
| 356 } | |
| 357 return; | |
| 358 } | |
| 359 | |
| 360 if (!contextElement->hasAttributes()) | |
| 361 return; | |
| 362 | |
| 363 AttributeIteratorAccessor attributes = contextElement->attributesIte
rator(); | |
| 364 AttributeConstIterator end = attributes.end(); | |
| 365 for (AttributeConstIterator it = attributes.begin(); it != end; ++it
) { | |
| 366 RefPtrWillBeRawPtr<Attr> attr = contextElement->ensureAttr(it->n
ame()); | |
| 367 if (nodeMatches(attr.get(), AttributeAxis, nodeTest())) | |
| 368 nodes.append(attr.release()); | |
| 369 } | 386 } |
| 370 return; | 387 return; |
| 371 } | 388 } |
| 372 case NamespaceAxis: | 389 |
| 373 // XPath namespace nodes are not implemented. | 390 if (!contextElement->hasAttributes()) |
| 374 return; | 391 return; |
| 375 case SelfAxis: | 392 |
| 376 if (nodeMatches(context, SelfAxis, nodeTest())) | 393 AttributeIteratorAccessor attributes = contextElement->attributesIterato
r(); |
| 377 nodes.append(context); | 394 AttributeConstIterator end = attributes.end(); |
| 395 for (AttributeConstIterator it = attributes.begin(); it != end; ++it) { |
| 396 RefPtrWillBeRawPtr<Attr> attr = contextElement->ensureAttr(it->name(
)); |
| 397 if (nodeMatches(attr.get(), AttributeAxis, nodeTest())) |
| 398 nodes.append(attr.release()); |
| 399 } |
| 400 return; |
| 401 } |
| 402 |
| 403 case NamespaceAxis: |
| 404 // XPath namespace nodes are not implemented. |
| 405 return; |
| 406 |
| 407 case SelfAxis: |
| 408 if (nodeMatches(context, SelfAxis, nodeTest())) |
| 409 nodes.append(context); |
| 410 return; |
| 411 |
| 412 case DescendantOrSelfAxis: |
| 413 if (nodeMatches(context, DescendantOrSelfAxis, nodeTest())) |
| 414 nodes.append(context); |
| 415 // In XPath model, attribute nodes do not have children. |
| 416 if (context->isAttributeNode()) |
| 378 return; | 417 return; |
| 379 case DescendantOrSelfAxis: | |
| 380 if (nodeMatches(context, DescendantOrSelfAxis, nodeTest())) | |
| 381 nodes.append(context); | |
| 382 if (context->isAttributeNode()) // In XPath model, attribute nodes d
o not have children. | |
| 383 return; | |
| 384 | 418 |
| 385 for (Node* n = context->firstChild(); n; n = NodeTraversal::next(*n,
context)) { | 419 for (Node* n = context->firstChild(); n; n = NodeTraversal::next(*n, con
text)) { |
| 386 if (nodeMatches(n, DescendantOrSelfAxis, nodeTest())) | 420 if (nodeMatches(n, DescendantOrSelfAxis, nodeTest())) |
| 387 nodes.append(n); | 421 nodes.append(n); |
| 388 } | 422 } |
| 389 return; | 423 return; |
| 390 case AncestorOrSelfAxis: { | |
| 391 if (nodeMatches(context, AncestorOrSelfAxis, nodeTest())) | |
| 392 nodes.append(context); | |
| 393 Node* n = context; | |
| 394 if (context->isAttributeNode()) { | |
| 395 n = toAttr(context)->ownerElement(); | |
| 396 if (nodeMatches(n, AncestorOrSelfAxis, nodeTest())) | |
| 397 nodes.append(n); | |
| 398 } | |
| 399 for (n = n->parentNode(); n; n = n->parentNode()) | |
| 400 if (nodeMatches(n, AncestorOrSelfAxis, nodeTest())) | |
| 401 nodes.append(n); | |
| 402 | 424 |
| 403 nodes.markSorted(false); | 425 case AncestorOrSelfAxis: { |
| 404 return; | 426 if (nodeMatches(context, AncestorOrSelfAxis, nodeTest())) |
| 427 nodes.append(context); |
| 428 Node* n = context; |
| 429 if (context->isAttributeNode()) { |
| 430 n = toAttr(context)->ownerElement(); |
| 431 if (nodeMatches(n, AncestorOrSelfAxis, nodeTest())) |
| 432 nodes.append(n); |
| 405 } | 433 } |
| 434 for (n = n->parentNode(); n; n = n->parentNode()) { |
| 435 if (nodeMatches(n, AncestorOrSelfAxis, nodeTest())) |
| 436 nodes.append(n); |
| 437 } |
| 438 nodes.markSorted(false); |
| 439 return; |
| 440 } |
| 406 } | 441 } |
| 407 ASSERT_NOT_REACHED(); | 442 ASSERT_NOT_REACHED(); |
| 408 } | 443 } |
| 409 | 444 |
| 445 } |
| 410 | 446 |
| 411 } | 447 } |
| 412 } | |
| OLD | NEW |