Chromium Code Reviews| Index: src/IceTargetLoweringX8632.cpp |
| diff --git a/src/IceTargetLoweringX8632.cpp b/src/IceTargetLoweringX8632.cpp |
| index af7b866d3696aa7a8a6c501cb3de738f208f4805..906cf5d18c6d611464407a995fe36fe9f9a36493 100644 |
| --- a/src/IceTargetLoweringX8632.cpp |
| +++ b/src/IceTargetLoweringX8632.cpp |
| @@ -431,7 +431,6 @@ void TargetX8632::setArgOffsetAndCopy(Variable *Arg, Variable *FramePtr, |
| InArgsSizeBytes += typeWidthInBytesOnStack(Ty); |
| } |
| -// static |
| Type TargetX8632::stackSlotType() { return IceType_i32; } |
| void TargetX8632::addProlog(CfgNode *Node) { |
| @@ -1615,7 +1614,7 @@ void TargetX8632::lowerCast(const InstCast *Inst) { |
| Variable *Spill = Func->makeVariable(IceType_f64, Context.getNode()); |
| Spill->setWeight(RegWeight::Zero); |
| Spill->setPreferredRegister(llvm::dyn_cast<Variable>(Src0RM), true); |
| - _mov(Spill, Src0RM); |
| + _movq(Spill, Src0RM); |
| Variable *DestLo = llvm::cast<Variable>(loOperand(Dest)); |
| Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest)); |
| @@ -1658,7 +1657,7 @@ void TargetX8632::lowerCast(const InstCast *Inst) { |
| _store(T_Lo, SpillLo); |
| _mov(T_Hi, hiOperand(Src0)); |
| _store(T_Hi, SpillHi); |
| - _mov(Dest, Spill); |
| + _movq(Dest, Spill); |
| } break; |
| } |
| break; |
| @@ -1800,16 +1799,136 @@ void TargetX8632::lowerIcmp(const InstIcmp *Inst) { |
| void TargetX8632::lowerIntrinsicCall(const InstIntrinsicCall *Instr) { |
| switch (Instr->getIntrinsicInfo().ID) { |
| case Intrinsics::AtomicCmpxchg: |
| + if (!Intrinsics::VerifyMemoryOrder( |
| + llvm::cast<ConstantInteger>(Instr->getArg(3))->getValue())) { |
| + Func->setError("Unexpected memory ordering (success) for AtomicCmpxchg"); |
| + return; |
| + } |
| + if (!Intrinsics::VerifyMemoryOrder( |
| + llvm::cast<ConstantInteger>(Instr->getArg(4))->getValue())) { |
| + Func->setError("Unexpected memory ordering (failure) for AtomicCmpxchg"); |
| + return; |
| + } |
| + // TODO(jvoung): fill it in. |
| + Func->setError("Unhandled intrinsic"); |
| + return; |
| case Intrinsics::AtomicFence: |
| + if (!Intrinsics::VerifyMemoryOrder( |
| + llvm::cast<ConstantInteger>(Instr->getArg(0))->getValue())) { |
| + Func->setError("Unexpected memory ordering for AtomicFence"); |
| + return; |
| + } |
| + _mfence(); |
| + return; |
| case Intrinsics::AtomicFenceAll: |
| - case Intrinsics::AtomicIsLockFree: |
| - case Intrinsics::AtomicLoad: |
| + // NOTE: FenceAll should prevent and load/store from being moved |
| + // across the fence (both atomic and non-atomic). The InstX8632Mfence |
| + // instruction is currently marked coarsely as "HasSideEffects". |
| + _mfence(); |
| + return; |
| + case Intrinsics::AtomicIsLockFree: { |
| + // X86 is always lock free for 8/16/32/64 bit accesses. |
| + // TODO(jvoung): Since the result is constant when given a constant |
| + // byte size, this opens up DCE opportunities. |
| + Operand *ByteSize = Instr->getArg(0); |
| + Variable *Dest = Instr->getDest(); |
| + if (ConstantInteger *CI = llvm::dyn_cast<ConstantInteger>(ByteSize)) { |
| + Constant *Result; |
| + switch (CI->getValue()) { |
| + default: |
| + Result = Ctx->getConstantZero(IceType_i32); |
|
JF
2014/06/24 23:50:37
Well, LOCK CMPXCHG16B can actually be used in x86
jvoung (off chromium)
2014/06/25 01:31:42
Okay, I see why you wanted the bit width check. Si
|
| + break; |
| + case 1: |
| + case 2: |
| + case 4: |
| + case 8: |
| + Result = Ctx->getConstantInt(IceType_i32, 1); |
| + break; |
| + } |
| + _mov(Dest, Result); |
| + return; |
| + } |
| + // The PNaCl ABI requires the byte size to be a compile-time constant. |
| + Func->setError("AtomicIsLockFree byte size should be compile-time const"); |
| + return; |
| + } |
| + case Intrinsics::AtomicLoad: { |
| + // We require the memory address to be naturally aligned. |
| + // Given that is the case, then normal loads are atomic. |
| + if (!Intrinsics::VerifyMemoryOrder( |
| + llvm::cast<ConstantInteger>(Instr->getArg(1))->getValue())) { |
| + Func->setError("Unexpected memory ordering for AtomicLoad"); |
| + return; |
| + } |
| + Variable *Dest = Instr->getDest(); |
| + if (Dest->getType() == IceType_i64) { |
| + // Follow what GCC does and use a movq instead of what lowerLoad() |
| + // normally does (split the load into two). |
| + // Thus, this skips load/arithmetic op folding. Load/arithmetic folding |
| + // can't happen anyway, since this is x86-32 and integer arithmetic only |
| + // happens on 32-bit quantities. |
| + Variable *T = makeReg(IceType_f64); |
| + OperandX8632Mem *Addr = FormMemoryOperand(Instr->getArg(0), IceType_f64); |
| + _movq(T, Addr); |
| + // Then cast the bits back out of the XMM register to the i64 Dest. |
| + InstCast *Cast = InstCast::create(Func, InstCast::Bitcast, Dest, T); |
| + lowerCast(Cast); |
| + // Make sure that the atomic load isn't elided. |
| + Context.insert(InstFakeUse::create(Func, Dest->getLo())); |
| + Context.insert(InstFakeUse::create(Func, Dest->getHi())); |
| + return; |
| + } |
| + InstLoad *Load = InstLoad::create(Func, Dest, Instr->getArg(0)); |
| + lowerLoad(Load); |
| + // Make sure the atomic load isn't elided. |
| + Context.insert(InstFakeUse::create(Func, Dest)); |
| + return; |
| + } |
| case Intrinsics::AtomicRMW: |
| - case Intrinsics::AtomicStore: |
| + if (!Intrinsics::VerifyMemoryOrder( |
| + llvm::cast<ConstantInteger>(Instr->getArg(3))->getValue())) { |
| + Func->setError("Unexpected memory ordering for AtomicRMW"); |
| + return; |
| + } |
| + lowerAtomicRMW(Instr->getDest(), |
| + static_cast<uint32_t>(llvm::cast<ConstantInteger>( |
| + Instr->getArg(0))->getValue()), |
| + Instr->getArg(1), Instr->getArg(2)); |
| + return; |
| + case Intrinsics::AtomicStore: { |
| + if (!Intrinsics::VerifyMemoryOrder( |
| + llvm::cast<ConstantInteger>(Instr->getArg(2))->getValue())) { |
| + Func->setError("Unexpected memory ordering for AtomicStore"); |
| + return; |
| + } |
| + // We require the memory address to be naturally aligned. |
| + // Given that is the case, then normal stores are atomic. |
| + // Add a fence after the store to make it visible. |
| + Operand *Value = Instr->getArg(0); |
| + Operand *Ptr = Instr->getArg(1); |
| + if (Value->getType() == IceType_i64) { |
| + // Use a movq instead of what lowerStore() normally does |
| + // (split the store into two), following what GCC does. |
| + // Cast the bits from int -> to an xmm register first. |
| + Variable *T = makeReg(IceType_f64); |
| + InstCast *Cast = InstCast::create(Func, InstCast::Bitcast, T, Value); |
| + lowerCast(Cast); |
| + // Then store XMM w/ a movq. |
| + OperandX8632Mem *Addr = FormMemoryOperand(Ptr, IceType_f64); |
| + _storeq(T, Addr); |
| + _mfence(); |
| + return; |
| + } |
| + InstStore *Store = InstStore::create(Func, Value, Ptr); |
| + lowerStore(Store); |
| + _mfence(); |
| + return; |
| + } |
| case Intrinsics::Bswap: |
| case Intrinsics::Ctlz: |
| case Intrinsics::Ctpop: |
| case Intrinsics::Cttz: |
| + // TODO(jvoung): fill it in. |
| Func->setError("Unhandled intrinsic"); |
| return; |
| case Intrinsics::Longjmp: { |
| @@ -1817,7 +1936,7 @@ void TargetX8632::lowerIntrinsicCall(const InstIntrinsicCall *Instr) { |
| Call->addArg(Instr->getArg(0)); |
| Call->addArg(Instr->getArg(1)); |
| lowerCall(Call); |
| - break; |
| + return; |
| } |
| case Intrinsics::Memcpy: { |
| // In the future, we could potentially emit an inline memcpy/memset, etc. |
| @@ -1827,7 +1946,7 @@ void TargetX8632::lowerIntrinsicCall(const InstIntrinsicCall *Instr) { |
| Call->addArg(Instr->getArg(1)); |
| Call->addArg(Instr->getArg(2)); |
| lowerCall(Call); |
| - break; |
| + return; |
| } |
| case Intrinsics::Memmove: { |
| InstCall *Call = makeHelperCall("memmove", NULL, 3); |
| @@ -1835,7 +1954,7 @@ void TargetX8632::lowerIntrinsicCall(const InstIntrinsicCall *Instr) { |
| Call->addArg(Instr->getArg(1)); |
| Call->addArg(Instr->getArg(2)); |
| lowerCall(Call); |
| - break; |
| + return; |
| } |
| case Intrinsics::Memset: { |
| // The value operand needs to be extended to a stack slot size |
| @@ -1849,32 +1968,33 @@ void TargetX8632::lowerIntrinsicCall(const InstIntrinsicCall *Instr) { |
| Call->addArg(ValExt); |
| Call->addArg(Instr->getArg(2)); |
| lowerCall(Call); |
| - break; |
| + return; |
| } |
| case Intrinsics::NaClReadTP: { |
| - Constant *Zero = Ctx->getConstantInt(IceType_i32, 0); |
| + Constant *Zero = Ctx->getConstantZero(IceType_i32); |
| Operand *Src = OperandX8632Mem::create(Func, IceType_i32, NULL, Zero, NULL, |
| 0, OperandX8632Mem::SegReg_GS); |
| Variable *Dest = Instr->getDest(); |
| Variable *T = NULL; |
| _mov(T, Src); |
| _mov(Dest, T); |
| - break; |
| + return; |
| } |
| case Intrinsics::Setjmp: { |
| InstCall *Call = makeHelperCall("setjmp", Instr->getDest(), 1); |
| Call->addArg(Instr->getArg(0)); |
| lowerCall(Call); |
| - break; |
| + return; |
| } |
| case Intrinsics::Sqrt: |
| case Intrinsics::Stacksave: |
| case Intrinsics::Stackrestore: |
| + // TODO(jvoung): fill it in. |
| Func->setError("Unhandled intrinsic"); |
| return; |
| case Intrinsics::Trap: |
| _ud2(); |
| - break; |
| + return; |
| case Intrinsics::UnknownIntrinsic: |
| Func->setError("Should not be lowering UnknownIntrinsic"); |
| return; |
| @@ -1882,6 +2002,51 @@ void TargetX8632::lowerIntrinsicCall(const InstIntrinsicCall *Instr) { |
| return; |
| } |
| +void TargetX8632::lowerAtomicRMW(Variable *Dest, uint32_t Operation, |
| + Operand *Ptr, Operand *Val) { |
| + switch (Operation) { |
| + default: |
| + Func->setError("Unknown AtomicRMW operation"); |
| + return; |
| + case Intrinsics::AtomicAdd: { |
| + if (Dest->getType() == IceType_i64) { |
| + // Do a nasty cmpxchg8b loop. Factor this into a function. |
| + // TODO(jvoung): fill it in. |
| + Func->setError("Unhandled AtomicRMW operation"); |
| + return; |
| + } |
| + OperandX8632Mem *Addr = FormMemoryOperand(Ptr, Dest->getType()); |
| + const bool Locked = true; |
| + Variable *T = NULL; |
| + _mov(T, Val); |
| + _xadd(Addr, T, Locked); |
| + _mov(Dest, T); |
| + return; |
| + } |
| + case Intrinsics::AtomicSub: { |
| + if (Dest->getType() == IceType_i64) { |
| + // Do a nasty cmpxchg8b loop. |
| + // TODO(jvoung): fill it in. |
| + Func->setError("Unhandled AtomicRMW operation"); |
| + return; |
| + } |
| + // Generate a memory operand from Ptr. |
| + // neg... |
| + // Then do the same as AtomicAdd. |
| + // TODO(jvoung): fill it in. |
| + Func->setError("Unhandled AtomicRMW operation"); |
| + return; |
| + } |
| + case Intrinsics::AtomicOr: |
| + case Intrinsics::AtomicAnd: |
| + case Intrinsics::AtomicXor: |
| + case Intrinsics::AtomicExchange: |
| + // TODO(jvoung): fill it in. |
| + Func->setError("Unhandled AtomicRMW operation"); |
| + return; |
| + } |
| +} |
| + |
| namespace { |
| bool isAdd(const Inst *Inst) { |
| @@ -2018,15 +2183,7 @@ void TargetX8632::lowerLoad(const InstLoad *Inst) { |
| // optimization already creates an OperandX8632Mem operand, so it |
| // doesn't need another level of transformation. |
| Type Ty = Inst->getDest()->getType(); |
| - Operand *Src0 = Inst->getSourceAddress(); |
| - // Address mode optimization already creates an OperandX8632Mem |
| - // operand, so it doesn't need another level of transformation. |
| - if (!llvm::isa<OperandX8632Mem>(Src0)) { |
| - Variable *Base = llvm::dyn_cast<Variable>(Src0); |
| - Constant *Offset = llvm::dyn_cast<Constant>(Src0); |
| - assert(Base || Offset); |
| - Src0 = OperandX8632Mem::create(Func, Ty, Base, Offset); |
| - } |
| + Operand *Src0 = FormMemoryOperand(Inst->getSourceAddress(), Ty); |
| // Fuse this load with a subsequent Arithmetic instruction in the |
| // following situations: |
| @@ -2034,6 +2191,8 @@ void TargetX8632::lowerLoad(const InstLoad *Inst) { |
| // a=[mem]; c=a+b ==> c=b+[mem] if commutative and above is true |
| // |
| // TODO: Clean up and test thoroughly. |
| + // (E.g., if there is an mfence-all make sure the load ends up on the |
| + // same side of the fence). |
| // |
| // TODO: Why limit to Arithmetic instructions? This could probably be |
| // applied to most any instruction type. Look at all source operands |
| @@ -2164,19 +2323,7 @@ void TargetX8632::lowerSelect(const InstSelect *Inst) { |
| void TargetX8632::lowerStore(const InstStore *Inst) { |
| Operand *Value = Inst->getData(); |
| Operand *Addr = Inst->getAddr(); |
| - OperandX8632Mem *NewAddr = llvm::dyn_cast<OperandX8632Mem>(Addr); |
| - // Address mode optimization already creates an OperandX8632Mem |
| - // operand, so it doesn't need another level of transformation. |
| - if (!NewAddr) { |
| - // The address will be either a constant (which represents a global |
| - // variable) or a variable, so either the Base or Offset component |
| - // of the OperandX8632Mem will be set. |
| - Variable *Base = llvm::dyn_cast<Variable>(Addr); |
| - Constant *Offset = llvm::dyn_cast<Constant>(Addr); |
| - assert(Base || Offset); |
| - NewAddr = OperandX8632Mem::create(Func, Value->getType(), Base, Offset); |
| - } |
| - NewAddr = llvm::cast<OperandX8632Mem>(legalize(NewAddr)); |
| + OperandX8632Mem *NewAddr = FormMemoryOperand(Addr, Value->getType()); |
| if (NewAddr->getType() == IceType_i64) { |
| Value = legalize(Value); |
| @@ -2294,10 +2441,11 @@ Operand *TargetX8632::legalize(Operand *From, LegalMask Allowed, |
| // need to go in uninitialized registers. |
| From = Ctx->getConstantZero(From->getType()); |
| } |
| - bool NeedsReg = !(Allowed & Legal_Imm) || |
| + bool NeedsReg = |
| + !(Allowed & Legal_Imm) || |
| // ConstantFloat and ConstantDouble are actually memory operands. |
| - (!(Allowed & Legal_Mem) && (From->getType() == IceType_f32 || |
| - From->getType() == IceType_f64)); |
| + (!(Allowed & Legal_Mem) && |
| + (From->getType() == IceType_f32 || From->getType() == IceType_f64)); |
| if (NeedsReg) { |
| Variable *Reg = makeReg(From->getType(), RegNum); |
| _mov(Reg, From); |
| @@ -2330,6 +2478,20 @@ Variable *TargetX8632::legalizeToVar(Operand *From, bool AllowOverlap, |
| return llvm::cast<Variable>(legalize(From, Legal_Reg, AllowOverlap, RegNum)); |
| } |
| +OperandX8632Mem *TargetX8632::FormMemoryOperand(Operand *Operand, Type Ty) { |
| + OperandX8632Mem *Mem = llvm::dyn_cast<OperandX8632Mem>(Operand); |
| + // It may be the case that address mode optimization already creates |
| + // an OperandX8632Mem, so in that case it wouldn't need another level |
| + // of transformation. |
| + if (!Mem) { |
| + Variable *Base = llvm::dyn_cast<Variable>(Operand); |
| + Constant *Offset = llvm::dyn_cast<Constant>(Operand); |
| + assert(Base || Offset); |
| + Mem = OperandX8632Mem::create(Func, Ty, Base, Offset); |
| + } |
| + return llvm::cast<OperandX8632Mem>(legalize(Mem)); |
| +} |
| + |
| Variable *TargetX8632::makeReg(Type Type, int32_t RegNum) { |
| // There aren't any 64-bit integer registers for x86-32. |
| assert(Type != IceType_i64); |