OLD | NEW |
1 //===- subzero/src/IceTargetLoweringX8632.cpp - x86-32 lowering -----------===// | 1 //===- subzero/src/IceTargetLoweringX8632.cpp - x86-32 lowering -----------===// |
2 // | 2 // |
3 // The Subzero Code Generator | 3 // The Subzero Code Generator |
4 // | 4 // |
5 // This file is distributed under the University of Illinois Open Source | 5 // This file is distributed under the University of Illinois Open Source |
6 // License. See LICENSE.TXT for details. | 6 // License. See LICENSE.TXT for details. |
7 // | 7 // |
8 //===----------------------------------------------------------------------===// | 8 //===----------------------------------------------------------------------===// |
9 // | 9 // |
10 // This file implements the TargetLoweringX8632 class, which | 10 // This file implements the TargetLoweringX8632 class, which |
(...skipping 413 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
424 if (Arg->hasReg()) { | 424 if (Arg->hasReg()) { |
425 assert(Ty != IceType_i64); | 425 assert(Ty != IceType_i64); |
426 OperandX8632Mem *Mem = OperandX8632Mem::create( | 426 OperandX8632Mem *Mem = OperandX8632Mem::create( |
427 Func, Ty, FramePtr, | 427 Func, Ty, FramePtr, |
428 Ctx->getConstantInt(IceType_i32, Arg->getStackOffset())); | 428 Ctx->getConstantInt(IceType_i32, Arg->getStackOffset())); |
429 _mov(Arg, Mem); | 429 _mov(Arg, Mem); |
430 } | 430 } |
431 InArgsSizeBytes += typeWidthInBytesOnStack(Ty); | 431 InArgsSizeBytes += typeWidthInBytesOnStack(Ty); |
432 } | 432 } |
433 | 433 |
434 // static | |
435 Type TargetX8632::stackSlotType() { return IceType_i32; } | 434 Type TargetX8632::stackSlotType() { return IceType_i32; } |
436 | 435 |
437 void TargetX8632::addProlog(CfgNode *Node) { | 436 void TargetX8632::addProlog(CfgNode *Node) { |
438 // If SimpleCoalescing is false, each variable without a register | 437 // If SimpleCoalescing is false, each variable without a register |
439 // gets its own unique stack slot, which leads to large stack | 438 // gets its own unique stack slot, which leads to large stack |
440 // frames. If SimpleCoalescing is true, then each "global" variable | 439 // frames. If SimpleCoalescing is true, then each "global" variable |
441 // without a register gets its own slot, but "local" variable slots | 440 // without a register gets its own slot, but "local" variable slots |
442 // are reused across basic blocks. E.g., if A and B are local to | 441 // are reused across basic blocks. E.g., if A and B are local to |
443 // block 1 and C is local to block 2, then C may share a slot with A | 442 // block 1 and C is local to block 2, then C may share a slot with A |
444 // or B. | 443 // or B. |
(...skipping 1163 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
1608 assert(Src0RM->getType() == IceType_f64); | 1607 assert(Src0RM->getType() == IceType_f64); |
1609 // a.i64 = bitcast b.f64 ==> | 1608 // a.i64 = bitcast b.f64 ==> |
1610 // s.f64 = spill b.f64 | 1609 // s.f64 = spill b.f64 |
1611 // t_lo.i32 = lo(s.f64) | 1610 // t_lo.i32 = lo(s.f64) |
1612 // a_lo.i32 = t_lo.i32 | 1611 // a_lo.i32 = t_lo.i32 |
1613 // t_hi.i32 = hi(s.f64) | 1612 // t_hi.i32 = hi(s.f64) |
1614 // a_hi.i32 = t_hi.i32 | 1613 // a_hi.i32 = t_hi.i32 |
1615 Variable *Spill = Func->makeVariable(IceType_f64, Context.getNode()); | 1614 Variable *Spill = Func->makeVariable(IceType_f64, Context.getNode()); |
1616 Spill->setWeight(RegWeight::Zero); | 1615 Spill->setWeight(RegWeight::Zero); |
1617 Spill->setPreferredRegister(llvm::dyn_cast<Variable>(Src0RM), true); | 1616 Spill->setPreferredRegister(llvm::dyn_cast<Variable>(Src0RM), true); |
1618 _mov(Spill, Src0RM); | 1617 _movq(Spill, Src0RM); |
1619 | 1618 |
1620 Variable *DestLo = llvm::cast<Variable>(loOperand(Dest)); | 1619 Variable *DestLo = llvm::cast<Variable>(loOperand(Dest)); |
1621 Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest)); | 1620 Variable *DestHi = llvm::cast<Variable>(hiOperand(Dest)); |
1622 Variable *T_Lo = makeReg(IceType_i32); | 1621 Variable *T_Lo = makeReg(IceType_i32); |
1623 Variable *T_Hi = makeReg(IceType_i32); | 1622 Variable *T_Hi = makeReg(IceType_i32); |
1624 VariableSplit *SpillLo = | 1623 VariableSplit *SpillLo = |
1625 VariableSplit::create(Func, Spill, VariableSplit::Low); | 1624 VariableSplit::create(Func, Spill, VariableSplit::Low); |
1626 VariableSplit *SpillHi = | 1625 VariableSplit *SpillHi = |
1627 VariableSplit::create(Func, Spill, VariableSplit::High); | 1626 VariableSplit::create(Func, Spill, VariableSplit::High); |
1628 | 1627 |
(...skipping 22 matching lines...) Expand all Loading... |
1651 VariableSplit *SpillHi = | 1650 VariableSplit *SpillHi = |
1652 VariableSplit::create(Func, Spill, VariableSplit::High); | 1651 VariableSplit::create(Func, Spill, VariableSplit::High); |
1653 _mov(T_Lo, loOperand(Src0)); | 1652 _mov(T_Lo, loOperand(Src0)); |
1654 // Technically, the Spill is defined after the _store happens, but | 1653 // Technically, the Spill is defined after the _store happens, but |
1655 // SpillLo is considered a "use" of Spill so define Spill before it | 1654 // SpillLo is considered a "use" of Spill so define Spill before it |
1656 // is used. | 1655 // is used. |
1657 Context.insert(InstFakeDef::create(Func, Spill)); | 1656 Context.insert(InstFakeDef::create(Func, Spill)); |
1658 _store(T_Lo, SpillLo); | 1657 _store(T_Lo, SpillLo); |
1659 _mov(T_Hi, hiOperand(Src0)); | 1658 _mov(T_Hi, hiOperand(Src0)); |
1660 _store(T_Hi, SpillHi); | 1659 _store(T_Hi, SpillHi); |
1661 _mov(Dest, Spill); | 1660 _movq(Dest, Spill); |
1662 } break; | 1661 } break; |
1663 } | 1662 } |
1664 break; | 1663 break; |
1665 } | 1664 } |
1666 } | 1665 } |
1667 } | 1666 } |
1668 | 1667 |
1669 void TargetX8632::lowerFcmp(const InstFcmp *Inst) { | 1668 void TargetX8632::lowerFcmp(const InstFcmp *Inst) { |
1670 Operand *Src0 = Inst->getSrc(0); | 1669 Operand *Src0 = Inst->getSrc(0); |
1671 Operand *Src1 = Inst->getSrc(1); | 1670 Operand *Src1 = Inst->getSrc(1); |
(...skipping 121 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
1793 _mov(Dest, One); | 1792 _mov(Dest, One); |
1794 _br(getIcmp32Mapping(Inst->getCondition()), Label); | 1793 _br(getIcmp32Mapping(Inst->getCondition()), Label); |
1795 Context.insert(InstFakeUse::create(Func, Dest)); | 1794 Context.insert(InstFakeUse::create(Func, Dest)); |
1796 _mov(Dest, Zero); | 1795 _mov(Dest, Zero); |
1797 Context.insert(Label); | 1796 Context.insert(Label); |
1798 } | 1797 } |
1799 | 1798 |
1800 void TargetX8632::lowerIntrinsicCall(const InstIntrinsicCall *Instr) { | 1799 void TargetX8632::lowerIntrinsicCall(const InstIntrinsicCall *Instr) { |
1801 switch (Instr->getIntrinsicInfo().ID) { | 1800 switch (Instr->getIntrinsicInfo().ID) { |
1802 case Intrinsics::AtomicCmpxchg: | 1801 case Intrinsics::AtomicCmpxchg: |
| 1802 if (!Intrinsics::VerifyMemoryOrder( |
| 1803 llvm::cast<ConstantInteger>(Instr->getArg(3))->getValue())) { |
| 1804 Func->setError("Unexpected memory ordering (success) for AtomicCmpxchg"); |
| 1805 return; |
| 1806 } |
| 1807 if (!Intrinsics::VerifyMemoryOrder( |
| 1808 llvm::cast<ConstantInteger>(Instr->getArg(4))->getValue())) { |
| 1809 Func->setError("Unexpected memory ordering (failure) for AtomicCmpxchg"); |
| 1810 return; |
| 1811 } |
| 1812 // TODO(jvoung): fill it in. |
| 1813 Func->setError("Unhandled intrinsic"); |
| 1814 return; |
1803 case Intrinsics::AtomicFence: | 1815 case Intrinsics::AtomicFence: |
| 1816 if (!Intrinsics::VerifyMemoryOrder( |
| 1817 llvm::cast<ConstantInteger>(Instr->getArg(0))->getValue())) { |
| 1818 Func->setError("Unexpected memory ordering for AtomicFence"); |
| 1819 return; |
| 1820 } |
| 1821 _mfence(); |
| 1822 return; |
1804 case Intrinsics::AtomicFenceAll: | 1823 case Intrinsics::AtomicFenceAll: |
1805 case Intrinsics::AtomicIsLockFree: | 1824 // NOTE: FenceAll should prevent and load/store from being moved |
1806 case Intrinsics::AtomicLoad: | 1825 // across the fence (both atomic and non-atomic). The InstX8632Mfence |
| 1826 // instruction is currently marked coarsely as "HasSideEffects". |
| 1827 _mfence(); |
| 1828 return; |
| 1829 case Intrinsics::AtomicIsLockFree: { |
| 1830 // X86 is always lock free for 8/16/32/64 bit accesses. |
| 1831 // TODO(jvoung): Since the result is constant when given a constant |
| 1832 // byte size, this opens up DCE opportunities. |
| 1833 Operand *ByteSize = Instr->getArg(0); |
| 1834 Variable *Dest = Instr->getDest(); |
| 1835 if (ConstantInteger *CI = llvm::dyn_cast<ConstantInteger>(ByteSize)) { |
| 1836 Constant *Result; |
| 1837 switch (CI->getValue()) { |
| 1838 default: |
| 1839 // Some x86-64 processors support the cmpxchg16b intruction, which |
| 1840 // can make 16-byte operations lock free (when used with the LOCK |
| 1841 // prefix). However, that's not supported in 32-bit mode, so just |
| 1842 // return 0 even for large sizes. |
| 1843 Result = Ctx->getConstantZero(IceType_i32); |
| 1844 break; |
| 1845 case 1: |
| 1846 case 2: |
| 1847 case 4: |
| 1848 case 8: |
| 1849 Result = Ctx->getConstantInt(IceType_i32, 1); |
| 1850 break; |
| 1851 } |
| 1852 _mov(Dest, Result); |
| 1853 return; |
| 1854 } |
| 1855 // The PNaCl ABI requires the byte size to be a compile-time constant. |
| 1856 Func->setError("AtomicIsLockFree byte size should be compile-time const"); |
| 1857 return; |
| 1858 } |
| 1859 case Intrinsics::AtomicLoad: { |
| 1860 // We require the memory address to be naturally aligned. |
| 1861 // Given that is the case, then normal loads are atomic. |
| 1862 if (!Intrinsics::VerifyMemoryOrder( |
| 1863 llvm::cast<ConstantInteger>(Instr->getArg(1))->getValue())) { |
| 1864 Func->setError("Unexpected memory ordering for AtomicLoad"); |
| 1865 return; |
| 1866 } |
| 1867 Variable *Dest = Instr->getDest(); |
| 1868 if (Dest->getType() == IceType_i64) { |
| 1869 // Follow what GCC does and use a movq instead of what lowerLoad() |
| 1870 // normally does (split the load into two). |
| 1871 // Thus, this skips load/arithmetic op folding. Load/arithmetic folding |
| 1872 // can't happen anyway, since this is x86-32 and integer arithmetic only |
| 1873 // happens on 32-bit quantities. |
| 1874 Variable *T = makeReg(IceType_f64); |
| 1875 OperandX8632Mem *Addr = FormMemoryOperand(Instr->getArg(0), IceType_f64); |
| 1876 _movq(T, Addr); |
| 1877 // Then cast the bits back out of the XMM register to the i64 Dest. |
| 1878 InstCast *Cast = InstCast::create(Func, InstCast::Bitcast, Dest, T); |
| 1879 lowerCast(Cast); |
| 1880 // Make sure that the atomic load isn't elided. |
| 1881 Context.insert(InstFakeUse::create(Func, Dest->getLo())); |
| 1882 Context.insert(InstFakeUse::create(Func, Dest->getHi())); |
| 1883 return; |
| 1884 } |
| 1885 InstLoad *Load = InstLoad::create(Func, Dest, Instr->getArg(0)); |
| 1886 lowerLoad(Load); |
| 1887 // Make sure the atomic load isn't elided. |
| 1888 Context.insert(InstFakeUse::create(Func, Dest)); |
| 1889 return; |
| 1890 } |
1807 case Intrinsics::AtomicRMW: | 1891 case Intrinsics::AtomicRMW: |
1808 case Intrinsics::AtomicStore: | 1892 if (!Intrinsics::VerifyMemoryOrder( |
| 1893 llvm::cast<ConstantInteger>(Instr->getArg(3))->getValue())) { |
| 1894 Func->setError("Unexpected memory ordering for AtomicRMW"); |
| 1895 return; |
| 1896 } |
| 1897 lowerAtomicRMW(Instr->getDest(), |
| 1898 static_cast<uint32_t>(llvm::cast<ConstantInteger>( |
| 1899 Instr->getArg(0))->getValue()), |
| 1900 Instr->getArg(1), Instr->getArg(2)); |
| 1901 return; |
| 1902 case Intrinsics::AtomicStore: { |
| 1903 if (!Intrinsics::VerifyMemoryOrder( |
| 1904 llvm::cast<ConstantInteger>(Instr->getArg(2))->getValue())) { |
| 1905 Func->setError("Unexpected memory ordering for AtomicStore"); |
| 1906 return; |
| 1907 } |
| 1908 // We require the memory address to be naturally aligned. |
| 1909 // Given that is the case, then normal stores are atomic. |
| 1910 // Add a fence after the store to make it visible. |
| 1911 Operand *Value = Instr->getArg(0); |
| 1912 Operand *Ptr = Instr->getArg(1); |
| 1913 if (Value->getType() == IceType_i64) { |
| 1914 // Use a movq instead of what lowerStore() normally does |
| 1915 // (split the store into two), following what GCC does. |
| 1916 // Cast the bits from int -> to an xmm register first. |
| 1917 Variable *T = makeReg(IceType_f64); |
| 1918 InstCast *Cast = InstCast::create(Func, InstCast::Bitcast, T, Value); |
| 1919 lowerCast(Cast); |
| 1920 // Then store XMM w/ a movq. |
| 1921 OperandX8632Mem *Addr = FormMemoryOperand(Ptr, IceType_f64); |
| 1922 _storeq(T, Addr); |
| 1923 _mfence(); |
| 1924 return; |
| 1925 } |
| 1926 InstStore *Store = InstStore::create(Func, Value, Ptr); |
| 1927 lowerStore(Store); |
| 1928 _mfence(); |
| 1929 return; |
| 1930 } |
1809 case Intrinsics::Bswap: | 1931 case Intrinsics::Bswap: |
1810 case Intrinsics::Ctlz: | 1932 case Intrinsics::Ctlz: |
1811 case Intrinsics::Ctpop: | 1933 case Intrinsics::Ctpop: |
1812 case Intrinsics::Cttz: | 1934 case Intrinsics::Cttz: |
| 1935 // TODO(jvoung): fill it in. |
1813 Func->setError("Unhandled intrinsic"); | 1936 Func->setError("Unhandled intrinsic"); |
1814 return; | 1937 return; |
1815 case Intrinsics::Longjmp: { | 1938 case Intrinsics::Longjmp: { |
1816 InstCall *Call = makeHelperCall("longjmp", NULL, 2); | 1939 InstCall *Call = makeHelperCall("longjmp", NULL, 2); |
1817 Call->addArg(Instr->getArg(0)); | 1940 Call->addArg(Instr->getArg(0)); |
1818 Call->addArg(Instr->getArg(1)); | 1941 Call->addArg(Instr->getArg(1)); |
1819 lowerCall(Call); | 1942 lowerCall(Call); |
1820 break; | 1943 return; |
1821 } | 1944 } |
1822 case Intrinsics::Memcpy: { | 1945 case Intrinsics::Memcpy: { |
1823 // In the future, we could potentially emit an inline memcpy/memset, etc. | 1946 // In the future, we could potentially emit an inline memcpy/memset, etc. |
1824 // for intrinsic calls w/ a known length. | 1947 // for intrinsic calls w/ a known length. |
1825 InstCall *Call = makeHelperCall("memcpy", NULL, 3); | 1948 InstCall *Call = makeHelperCall("memcpy", NULL, 3); |
1826 Call->addArg(Instr->getArg(0)); | 1949 Call->addArg(Instr->getArg(0)); |
1827 Call->addArg(Instr->getArg(1)); | 1950 Call->addArg(Instr->getArg(1)); |
1828 Call->addArg(Instr->getArg(2)); | 1951 Call->addArg(Instr->getArg(2)); |
1829 lowerCall(Call); | 1952 lowerCall(Call); |
1830 break; | 1953 return; |
1831 } | 1954 } |
1832 case Intrinsics::Memmove: { | 1955 case Intrinsics::Memmove: { |
1833 InstCall *Call = makeHelperCall("memmove", NULL, 3); | 1956 InstCall *Call = makeHelperCall("memmove", NULL, 3); |
1834 Call->addArg(Instr->getArg(0)); | 1957 Call->addArg(Instr->getArg(0)); |
1835 Call->addArg(Instr->getArg(1)); | 1958 Call->addArg(Instr->getArg(1)); |
1836 Call->addArg(Instr->getArg(2)); | 1959 Call->addArg(Instr->getArg(2)); |
1837 lowerCall(Call); | 1960 lowerCall(Call); |
1838 break; | 1961 return; |
1839 } | 1962 } |
1840 case Intrinsics::Memset: { | 1963 case Intrinsics::Memset: { |
1841 // The value operand needs to be extended to a stack slot size | 1964 // The value operand needs to be extended to a stack slot size |
1842 // because we "push" only works for a specific operand size. | 1965 // because we "push" only works for a specific operand size. |
1843 Operand *ValOp = Instr->getArg(1); | 1966 Operand *ValOp = Instr->getArg(1); |
1844 assert(ValOp->getType() == IceType_i8); | 1967 assert(ValOp->getType() == IceType_i8); |
1845 Variable *ValExt = makeReg(stackSlotType()); | 1968 Variable *ValExt = makeReg(stackSlotType()); |
1846 _movzx(ValExt, ValOp); | 1969 _movzx(ValExt, ValOp); |
1847 InstCall *Call = makeHelperCall("memset", NULL, 3); | 1970 InstCall *Call = makeHelperCall("memset", NULL, 3); |
1848 Call->addArg(Instr->getArg(0)); | 1971 Call->addArg(Instr->getArg(0)); |
1849 Call->addArg(ValExt); | 1972 Call->addArg(ValExt); |
1850 Call->addArg(Instr->getArg(2)); | 1973 Call->addArg(Instr->getArg(2)); |
1851 lowerCall(Call); | 1974 lowerCall(Call); |
1852 break; | 1975 return; |
1853 } | 1976 } |
1854 case Intrinsics::NaClReadTP: { | 1977 case Intrinsics::NaClReadTP: { |
1855 Constant *Zero = Ctx->getConstantInt(IceType_i32, 0); | 1978 Constant *Zero = Ctx->getConstantZero(IceType_i32); |
1856 Operand *Src = OperandX8632Mem::create(Func, IceType_i32, NULL, Zero, NULL, | 1979 Operand *Src = OperandX8632Mem::create(Func, IceType_i32, NULL, Zero, NULL, |
1857 0, OperandX8632Mem::SegReg_GS); | 1980 0, OperandX8632Mem::SegReg_GS); |
1858 Variable *Dest = Instr->getDest(); | 1981 Variable *Dest = Instr->getDest(); |
1859 Variable *T = NULL; | 1982 Variable *T = NULL; |
1860 _mov(T, Src); | 1983 _mov(T, Src); |
1861 _mov(Dest, T); | 1984 _mov(Dest, T); |
1862 break; | 1985 return; |
1863 } | 1986 } |
1864 case Intrinsics::Setjmp: { | 1987 case Intrinsics::Setjmp: { |
1865 InstCall *Call = makeHelperCall("setjmp", Instr->getDest(), 1); | 1988 InstCall *Call = makeHelperCall("setjmp", Instr->getDest(), 1); |
1866 Call->addArg(Instr->getArg(0)); | 1989 Call->addArg(Instr->getArg(0)); |
1867 lowerCall(Call); | 1990 lowerCall(Call); |
1868 break; | 1991 return; |
1869 } | 1992 } |
1870 case Intrinsics::Sqrt: | 1993 case Intrinsics::Sqrt: |
1871 case Intrinsics::Stacksave: | 1994 case Intrinsics::Stacksave: |
1872 case Intrinsics::Stackrestore: | 1995 case Intrinsics::Stackrestore: |
| 1996 // TODO(jvoung): fill it in. |
1873 Func->setError("Unhandled intrinsic"); | 1997 Func->setError("Unhandled intrinsic"); |
1874 return; | 1998 return; |
1875 case Intrinsics::Trap: | 1999 case Intrinsics::Trap: |
1876 _ud2(); | 2000 _ud2(); |
1877 break; | 2001 return; |
1878 case Intrinsics::UnknownIntrinsic: | 2002 case Intrinsics::UnknownIntrinsic: |
1879 Func->setError("Should not be lowering UnknownIntrinsic"); | 2003 Func->setError("Should not be lowering UnknownIntrinsic"); |
1880 return; | 2004 return; |
1881 } | 2005 } |
1882 return; | 2006 return; |
1883 } | 2007 } |
1884 | 2008 |
| 2009 void TargetX8632::lowerAtomicRMW(Variable *Dest, uint32_t Operation, |
| 2010 Operand *Ptr, Operand *Val) { |
| 2011 switch (Operation) { |
| 2012 default: |
| 2013 Func->setError("Unknown AtomicRMW operation"); |
| 2014 return; |
| 2015 case Intrinsics::AtomicAdd: { |
| 2016 if (Dest->getType() == IceType_i64) { |
| 2017 // Do a nasty cmpxchg8b loop. Factor this into a function. |
| 2018 // TODO(jvoung): fill it in. |
| 2019 Func->setError("Unhandled AtomicRMW operation"); |
| 2020 return; |
| 2021 } |
| 2022 OperandX8632Mem *Addr = FormMemoryOperand(Ptr, Dest->getType()); |
| 2023 const bool Locked = true; |
| 2024 Variable *T = NULL; |
| 2025 _mov(T, Val); |
| 2026 _xadd(Addr, T, Locked); |
| 2027 _mov(Dest, T); |
| 2028 return; |
| 2029 } |
| 2030 case Intrinsics::AtomicSub: { |
| 2031 if (Dest->getType() == IceType_i64) { |
| 2032 // Do a nasty cmpxchg8b loop. |
| 2033 // TODO(jvoung): fill it in. |
| 2034 Func->setError("Unhandled AtomicRMW operation"); |
| 2035 return; |
| 2036 } |
| 2037 // Generate a memory operand from Ptr. |
| 2038 // neg... |
| 2039 // Then do the same as AtomicAdd. |
| 2040 // TODO(jvoung): fill it in. |
| 2041 Func->setError("Unhandled AtomicRMW operation"); |
| 2042 return; |
| 2043 } |
| 2044 case Intrinsics::AtomicOr: |
| 2045 case Intrinsics::AtomicAnd: |
| 2046 case Intrinsics::AtomicXor: |
| 2047 case Intrinsics::AtomicExchange: |
| 2048 // TODO(jvoung): fill it in. |
| 2049 Func->setError("Unhandled AtomicRMW operation"); |
| 2050 return; |
| 2051 } |
| 2052 } |
| 2053 |
1885 namespace { | 2054 namespace { |
1886 | 2055 |
1887 bool isAdd(const Inst *Inst) { | 2056 bool isAdd(const Inst *Inst) { |
1888 if (const InstArithmetic *Arith = | 2057 if (const InstArithmetic *Arith = |
1889 llvm::dyn_cast_or_null<const InstArithmetic>(Inst)) { | 2058 llvm::dyn_cast_or_null<const InstArithmetic>(Inst)) { |
1890 return (Arith->getOp() == InstArithmetic::Add); | 2059 return (Arith->getOp() == InstArithmetic::Add); |
1891 } | 2060 } |
1892 return false; | 2061 return false; |
1893 } | 2062 } |
1894 | 2063 |
(...skipping 116 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
2011 | 2180 |
2012 } // anonymous namespace | 2181 } // anonymous namespace |
2013 | 2182 |
2014 void TargetX8632::lowerLoad(const InstLoad *Inst) { | 2183 void TargetX8632::lowerLoad(const InstLoad *Inst) { |
2015 // A Load instruction can be treated the same as an Assign | 2184 // A Load instruction can be treated the same as an Assign |
2016 // instruction, after the source operand is transformed into an | 2185 // instruction, after the source operand is transformed into an |
2017 // OperandX8632Mem operand. Note that the address mode | 2186 // OperandX8632Mem operand. Note that the address mode |
2018 // optimization already creates an OperandX8632Mem operand, so it | 2187 // optimization already creates an OperandX8632Mem operand, so it |
2019 // doesn't need another level of transformation. | 2188 // doesn't need another level of transformation. |
2020 Type Ty = Inst->getDest()->getType(); | 2189 Type Ty = Inst->getDest()->getType(); |
2021 Operand *Src0 = Inst->getSourceAddress(); | 2190 Operand *Src0 = FormMemoryOperand(Inst->getSourceAddress(), Ty); |
2022 // Address mode optimization already creates an OperandX8632Mem | |
2023 // operand, so it doesn't need another level of transformation. | |
2024 if (!llvm::isa<OperandX8632Mem>(Src0)) { | |
2025 Variable *Base = llvm::dyn_cast<Variable>(Src0); | |
2026 Constant *Offset = llvm::dyn_cast<Constant>(Src0); | |
2027 assert(Base || Offset); | |
2028 Src0 = OperandX8632Mem::create(Func, Ty, Base, Offset); | |
2029 } | |
2030 | 2191 |
2031 // Fuse this load with a subsequent Arithmetic instruction in the | 2192 // Fuse this load with a subsequent Arithmetic instruction in the |
2032 // following situations: | 2193 // following situations: |
2033 // a=[mem]; c=b+a ==> c=b+[mem] if last use of a and a not in b | 2194 // a=[mem]; c=b+a ==> c=b+[mem] if last use of a and a not in b |
2034 // a=[mem]; c=a+b ==> c=b+[mem] if commutative and above is true | 2195 // a=[mem]; c=a+b ==> c=b+[mem] if commutative and above is true |
2035 // | 2196 // |
2036 // TODO: Clean up and test thoroughly. | 2197 // TODO: Clean up and test thoroughly. |
| 2198 // (E.g., if there is an mfence-all make sure the load ends up on the |
| 2199 // same side of the fence). |
2037 // | 2200 // |
2038 // TODO: Why limit to Arithmetic instructions? This could probably be | 2201 // TODO: Why limit to Arithmetic instructions? This could probably be |
2039 // applied to most any instruction type. Look at all source operands | 2202 // applied to most any instruction type. Look at all source operands |
2040 // in the following instruction, and if there is one instance of the | 2203 // in the following instruction, and if there is one instance of the |
2041 // load instruction's dest variable, and that instruction ends that | 2204 // load instruction's dest variable, and that instruction ends that |
2042 // variable's live range, then make the substitution. Deal with | 2205 // variable's live range, then make the substitution. Deal with |
2043 // commutativity optimization in the arithmetic instruction lowering. | 2206 // commutativity optimization in the arithmetic instruction lowering. |
2044 InstArithmetic *NewArith = NULL; | 2207 InstArithmetic *NewArith = NULL; |
2045 if (InstArithmetic *Arith = | 2208 if (InstArithmetic *Arith = |
2046 llvm::dyn_cast_or_null<InstArithmetic>(Context.getNextInst())) { | 2209 llvm::dyn_cast_or_null<InstArithmetic>(Context.getNextInst())) { |
(...skipping 110 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
2157 SrcF = legalize(SrcF, Legal_Reg | Legal_Imm, true); | 2320 SrcF = legalize(SrcF, Legal_Reg | Legal_Imm, true); |
2158 _mov(Dest, SrcF); | 2321 _mov(Dest, SrcF); |
2159 } | 2322 } |
2160 | 2323 |
2161 Context.insert(Label); | 2324 Context.insert(Label); |
2162 } | 2325 } |
2163 | 2326 |
2164 void TargetX8632::lowerStore(const InstStore *Inst) { | 2327 void TargetX8632::lowerStore(const InstStore *Inst) { |
2165 Operand *Value = Inst->getData(); | 2328 Operand *Value = Inst->getData(); |
2166 Operand *Addr = Inst->getAddr(); | 2329 Operand *Addr = Inst->getAddr(); |
2167 OperandX8632Mem *NewAddr = llvm::dyn_cast<OperandX8632Mem>(Addr); | 2330 OperandX8632Mem *NewAddr = FormMemoryOperand(Addr, Value->getType()); |
2168 // Address mode optimization already creates an OperandX8632Mem | |
2169 // operand, so it doesn't need another level of transformation. | |
2170 if (!NewAddr) { | |
2171 // The address will be either a constant (which represents a global | |
2172 // variable) or a variable, so either the Base or Offset component | |
2173 // of the OperandX8632Mem will be set. | |
2174 Variable *Base = llvm::dyn_cast<Variable>(Addr); | |
2175 Constant *Offset = llvm::dyn_cast<Constant>(Addr); | |
2176 assert(Base || Offset); | |
2177 NewAddr = OperandX8632Mem::create(Func, Value->getType(), Base, Offset); | |
2178 } | |
2179 NewAddr = llvm::cast<OperandX8632Mem>(legalize(NewAddr)); | |
2180 | 2331 |
2181 if (NewAddr->getType() == IceType_i64) { | 2332 if (NewAddr->getType() == IceType_i64) { |
2182 Value = legalize(Value); | 2333 Value = legalize(Value); |
2183 Operand *ValueHi = legalize(hiOperand(Value), Legal_Reg | Legal_Imm, true); | 2334 Operand *ValueHi = legalize(hiOperand(Value), Legal_Reg | Legal_Imm, true); |
2184 Operand *ValueLo = legalize(loOperand(Value), Legal_Reg | Legal_Imm, true); | 2335 Operand *ValueLo = legalize(loOperand(Value), Legal_Reg | Legal_Imm, true); |
2185 _store(ValueHi, llvm::cast<OperandX8632Mem>(hiOperand(NewAddr))); | 2336 _store(ValueHi, llvm::cast<OperandX8632Mem>(hiOperand(NewAddr))); |
2186 _store(ValueLo, llvm::cast<OperandX8632Mem>(loOperand(NewAddr))); | 2337 _store(ValueLo, llvm::cast<OperandX8632Mem>(loOperand(NewAddr))); |
2187 } else { | 2338 } else { |
2188 Value = legalize(Value, Legal_Reg | Legal_Imm, true); | 2339 Value = legalize(Value, Legal_Reg | Legal_Imm, true); |
2189 _store(Value, NewAddr); | 2340 _store(Value, NewAddr); |
(...skipping 97 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
2287 // | 2438 // |
2288 // If in the future the implementation is changed to lower undef | 2439 // If in the future the implementation is changed to lower undef |
2289 // values to uninitialized registers, a FakeDef will be needed: | 2440 // values to uninitialized registers, a FakeDef will be needed: |
2290 // Context.insert(InstFakeDef::create(Func, Reg)); | 2441 // Context.insert(InstFakeDef::create(Func, Reg)); |
2291 // This is in order to ensure that the live range of Reg is not | 2442 // This is in order to ensure that the live range of Reg is not |
2292 // overestimated. If the constant being lowered is a 64 bit value, | 2443 // overestimated. If the constant being lowered is a 64 bit value, |
2293 // then the result should be split and the lo and hi components will | 2444 // then the result should be split and the lo and hi components will |
2294 // need to go in uninitialized registers. | 2445 // need to go in uninitialized registers. |
2295 From = Ctx->getConstantZero(From->getType()); | 2446 From = Ctx->getConstantZero(From->getType()); |
2296 } | 2447 } |
2297 bool NeedsReg = !(Allowed & Legal_Imm) || | 2448 bool NeedsReg = |
| 2449 !(Allowed & Legal_Imm) || |
2298 // ConstantFloat and ConstantDouble are actually memory operands. | 2450 // ConstantFloat and ConstantDouble are actually memory operands. |
2299 (!(Allowed & Legal_Mem) && (From->getType() == IceType_f32 || | 2451 (!(Allowed & Legal_Mem) && |
2300 From->getType() == IceType_f64)); | 2452 (From->getType() == IceType_f32 || From->getType() == IceType_f64)); |
2301 if (NeedsReg) { | 2453 if (NeedsReg) { |
2302 Variable *Reg = makeReg(From->getType(), RegNum); | 2454 Variable *Reg = makeReg(From->getType(), RegNum); |
2303 _mov(Reg, From); | 2455 _mov(Reg, From); |
2304 From = Reg; | 2456 From = Reg; |
2305 } | 2457 } |
2306 return From; | 2458 return From; |
2307 } | 2459 } |
2308 if (Variable *Var = llvm::dyn_cast<Variable>(From)) { | 2460 if (Variable *Var = llvm::dyn_cast<Variable>(From)) { |
2309 // We need a new physical register for the operand if: | 2461 // We need a new physical register for the operand if: |
2310 // Mem is not allowed and Var->getRegNum() is unknown, or | 2462 // Mem is not allowed and Var->getRegNum() is unknown, or |
(...skipping 12 matching lines...) Expand all Loading... |
2323 llvm_unreachable("Unhandled operand kind in legalize()"); | 2475 llvm_unreachable("Unhandled operand kind in legalize()"); |
2324 return From; | 2476 return From; |
2325 } | 2477 } |
2326 | 2478 |
2327 // Provide a trivial wrapper to legalize() for this common usage. | 2479 // Provide a trivial wrapper to legalize() for this common usage. |
2328 Variable *TargetX8632::legalizeToVar(Operand *From, bool AllowOverlap, | 2480 Variable *TargetX8632::legalizeToVar(Operand *From, bool AllowOverlap, |
2329 int32_t RegNum) { | 2481 int32_t RegNum) { |
2330 return llvm::cast<Variable>(legalize(From, Legal_Reg, AllowOverlap, RegNum)); | 2482 return llvm::cast<Variable>(legalize(From, Legal_Reg, AllowOverlap, RegNum)); |
2331 } | 2483 } |
2332 | 2484 |
| 2485 OperandX8632Mem *TargetX8632::FormMemoryOperand(Operand *Operand, Type Ty) { |
| 2486 OperandX8632Mem *Mem = llvm::dyn_cast<OperandX8632Mem>(Operand); |
| 2487 // It may be the case that address mode optimization already creates |
| 2488 // an OperandX8632Mem, so in that case it wouldn't need another level |
| 2489 // of transformation. |
| 2490 if (!Mem) { |
| 2491 Variable *Base = llvm::dyn_cast<Variable>(Operand); |
| 2492 Constant *Offset = llvm::dyn_cast<Constant>(Operand); |
| 2493 assert(Base || Offset); |
| 2494 Mem = OperandX8632Mem::create(Func, Ty, Base, Offset); |
| 2495 } |
| 2496 return llvm::cast<OperandX8632Mem>(legalize(Mem)); |
| 2497 } |
| 2498 |
2333 Variable *TargetX8632::makeReg(Type Type, int32_t RegNum) { | 2499 Variable *TargetX8632::makeReg(Type Type, int32_t RegNum) { |
2334 // There aren't any 64-bit integer registers for x86-32. | 2500 // There aren't any 64-bit integer registers for x86-32. |
2335 assert(Type != IceType_i64); | 2501 assert(Type != IceType_i64); |
2336 Variable *Reg = Func->makeVariable(Type, Context.getNode()); | 2502 Variable *Reg = Func->makeVariable(Type, Context.getNode()); |
2337 if (RegNum == Variable::NoRegister) | 2503 if (RegNum == Variable::NoRegister) |
2338 Reg->setWeightInfinite(); | 2504 Reg->setWeightInfinite(); |
2339 else | 2505 else |
2340 Reg->setRegNum(RegNum); | 2506 Reg->setRegNum(RegNum); |
2341 return Reg; | 2507 return Reg; |
2342 } | 2508 } |
(...skipping 66 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
2409 // llvm-mc doesn't parse "dword ptr [.L$foo]". | 2575 // llvm-mc doesn't parse "dword ptr [.L$foo]". |
2410 Str << "dword ptr [L$" << IceType_f32 << "$" << getPoolEntryID() << "]"; | 2576 Str << "dword ptr [L$" << IceType_f32 << "$" << getPoolEntryID() << "]"; |
2411 } | 2577 } |
2412 | 2578 |
2413 template <> void ConstantDouble::emit(GlobalContext *Ctx) const { | 2579 template <> void ConstantDouble::emit(GlobalContext *Ctx) const { |
2414 Ostream &Str = Ctx->getStrEmit(); | 2580 Ostream &Str = Ctx->getStrEmit(); |
2415 Str << "qword ptr [L$" << IceType_f64 << "$" << getPoolEntryID() << "]"; | 2581 Str << "qword ptr [L$" << IceType_f64 << "$" << getPoolEntryID() << "]"; |
2416 } | 2582 } |
2417 | 2583 |
2418 } // end of namespace Ice | 2584 } // end of namespace Ice |
OLD | NEW |