OLD | NEW |
---|---|
1 // Copyright 2013 the V8 project authors. All rights reserved. | 1 // Copyright 2013 the V8 project authors. All rights reserved. |
2 // | 2 // |
3 // Redistribution and use in source and binary forms, with or without | 3 // Redistribution and use in source and binary forms, with or without |
4 // modification, are permitted provided that the following conditions are | 4 // modification, are permitted provided that the following conditions are |
5 // met: | 5 // met: |
6 // | 6 // |
7 // * Redistributions of source code must retain the above copyright | 7 // * Redistributions of source code must retain the above copyright |
8 // notice, this list of conditions and the following disclaimer. | 8 // notice, this list of conditions and the following disclaimer. |
9 // * Redistributions in binary form must reproduce the above | 9 // * Redistributions in binary form must reproduce the above |
10 // copyright notice, this list of conditions and the following | 10 // copyright notice, this list of conditions and the following |
(...skipping 2085 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
2096 | 2096 |
2097 return (bit7 | bit6 | bit5_to_0) << ImmFP_offset; | 2097 return (bit7 | bit6 | bit5_to_0) << ImmFP_offset; |
2098 } | 2098 } |
2099 | 2099 |
2100 | 2100 |
2101 // Code generation helpers. | 2101 // Code generation helpers. |
2102 void Assembler::MoveWide(const Register& rd, | 2102 void Assembler::MoveWide(const Register& rd, |
2103 uint64_t imm, | 2103 uint64_t imm, |
2104 int shift, | 2104 int shift, |
2105 MoveWideImmediateOp mov_op) { | 2105 MoveWideImmediateOp mov_op) { |
2106 // Ignore the top 32 bits of an immediate if we're moving to a W register. | |
2107 if (rd.Is32Bits()) { | |
2108 // Check that the top 32 bits are zero (a positive 32-bit number) or top | |
2109 // 33 bits are one (a negative 32-bit number, sign extended to 64 bits). | |
2110 ASSERT(((imm >> kWRegSizeInBits) == 0) || | |
2111 ((imm >> (kWRegSizeInBits - 1)) == 0x1ffffffff)); | |
2112 imm &= kWRegMask; | |
2113 } | |
2114 | |
2106 if (shift >= 0) { | 2115 if (shift >= 0) { |
2107 // Explicit shift specified. | 2116 // Explicit shift specified. |
2108 ASSERT((shift == 0) || (shift == 16) || (shift == 32) || (shift == 48)); | 2117 ASSERT((shift == 0) || (shift == 16) || (shift == 32) || (shift == 48)); |
2109 ASSERT(rd.Is64Bits() || (shift == 0) || (shift == 16)); | 2118 ASSERT(rd.Is64Bits() || (shift == 0) || (shift == 16)); |
2110 shift /= 16; | 2119 shift /= 16; |
2111 } else { | 2120 } else { |
2112 // Calculate a new immediate and shift combination to encode the immediate | 2121 // Calculate a new immediate and shift combination to encode the immediate |
2113 // argument. | 2122 // argument. |
2114 shift = 0; | 2123 shift = 0; |
2115 if ((imm & ~0xffffUL) == 0) { | 2124 if ((imm & ~0xffffUL) == 0) { |
(...skipping 385 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
2501 // If it can not be encoded, the function returns false, and the values pointed | 2510 // If it can not be encoded, the function returns false, and the values pointed |
2502 // to by n, imm_s and imm_r are undefined. | 2511 // to by n, imm_s and imm_r are undefined. |
2503 bool Assembler::IsImmLogical(uint64_t value, | 2512 bool Assembler::IsImmLogical(uint64_t value, |
2504 unsigned width, | 2513 unsigned width, |
2505 unsigned* n, | 2514 unsigned* n, |
2506 unsigned* imm_s, | 2515 unsigned* imm_s, |
2507 unsigned* imm_r) { | 2516 unsigned* imm_r) { |
2508 ASSERT((n != NULL) && (imm_s != NULL) && (imm_r != NULL)); | 2517 ASSERT((n != NULL) && (imm_s != NULL) && (imm_r != NULL)); |
2509 ASSERT((width == kWRegSizeInBits) || (width == kXRegSizeInBits)); | 2518 ASSERT((width == kWRegSizeInBits) || (width == kXRegSizeInBits)); |
2510 | 2519 |
2520 bool negate = false; | |
2521 | |
2511 // Logical immediates are encoded using parameters n, imm_s and imm_r using | 2522 // Logical immediates are encoded using parameters n, imm_s and imm_r using |
2512 // the following table: | 2523 // the following table: |
2513 // | 2524 // |
2514 // N imms immr size S R | 2525 // N imms immr size S R |
2515 // 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr) | 2526 // 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr) |
2516 // 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr) | 2527 // 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr) |
2517 // 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr) | 2528 // 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr) |
2518 // 0 110sss xxxrrr 8 UInt(sss) UInt(rrr) | 2529 // 0 110sss xxxrrr 8 UInt(sss) UInt(rrr) |
2519 // 0 1110ss xxxxrr 4 UInt(ss) UInt(rr) | 2530 // 0 1110ss xxxxrr 4 UInt(ss) UInt(rr) |
2520 // 0 11110s xxxxxr 2 UInt(s) UInt(r) | 2531 // 0 11110s xxxxxr 2 UInt(s) UInt(r) |
2521 // (s bits must not be all set) | 2532 // (s bits must not be all set) |
2522 // | 2533 // |
2523 // A pattern is constructed of size bits, where the least significant S+1 | 2534 // A pattern is constructed of size bits, where the least significant S+1 bits |
2524 // bits are set. The pattern is rotated right by R, and repeated across a | 2535 // are set. The pattern is rotated right by R, and repeated across a 32 or |
2525 // 32 or 64-bit value, depending on destination register width. | 2536 // 64-bit value, depending on destination register width. |
2526 // | 2537 // |
2527 // To test if an arbitary immediate can be encoded using this scheme, an | 2538 // Put another way: the basic format of a logical immediate is a single |
2528 // iterative algorithm is used. | 2539 // contiguous stretch of 1 bits, repeated across the whole word at intervals |
2540 // given by a power of 2. To identify them quickly, we first locate the | |
2541 // lowest stretch of 1 bits, then the next 1 bit above that; that combination | |
2542 // is different for every logical immediate, so it gives us all the | |
2543 // information we need to identify the only logical immediate that our input | |
2544 // could be, and then we simply check if that's the value we actually have. | |
2529 // | 2545 // |
2530 // TODO(mcapewel) This code does not consider using X/W register overlap to | 2546 // (The rotation parameter does give the possibility of the stretch of 1 bits |
2531 // support 64-bit immediates where the top 32-bits are zero, and the bottom | 2547 // going 'round the end' of the word. To deal with that, we observe that in |
2532 // 32-bits are an encodable logical immediate. | 2548 // any situation where that happens the bitwise NOT of the value is also a |
2549 // valid logical immediate. So we simply invert the input whenever its low bit | |
2550 // is set, and then we know that the rotated case can't arise.) | |
2533 | 2551 |
2534 // 1. If the value has all set or all clear bits, it can't be encoded. | 2552 if (value & 1) { |
2535 if ((value == 0) || (value == 0xffffffffffffffffUL) || | 2553 // If the low bit is 1, negate the value, and set a flag to remember that we |
2536 ((width == kWRegSizeInBits) && (value == 0xffffffff))) { | 2554 // did (so that we can adjust the return values appropriately). |
2555 negate = true; | |
2556 value = ~value; | |
2557 } | |
2558 | |
2559 if (width == kWRegSizeInBits) { | |
2560 // To handle 32-bit logical immediates, the very easiest thing is to repeat | |
2561 // the input value twice to make a 64-bit word. The correct encoding of that | |
2562 // as a logical immediate will also be the correct encoding of the 32-bit | |
2563 // value. | |
2564 | |
2565 // Avoid making the assumption that the most-significant 32 bits are zero by | |
ulan
2014/06/30 12:50:08
Yes, this assumption will not hold if negate = tru
m.m.capewell
2014/07/01 09:45:46
Altered the comment to make this clear.
| |
2566 // shifting the value left before duplicating it. | |
2567 value <<= kWRegSizeInBits; | |
2568 value |= value >> kWRegSizeInBits; | |
2569 } | |
2570 | |
2571 // The basic analysis idea: imagine our input word looks like this. | |
2572 // | |
2573 // 0011111000111110001111100011111000111110001111100011111000111110 | |
2574 // c b a | |
2575 // |<--d-->| | |
2576 // | |
2577 // We find the lowest set bit (as an actual power-of-2 value, not its index) | |
2578 // and call it a. Then we add a to our original number, which wipes out the | |
2579 // bottommost stretch of set bits and replaces it with a 1 carried into the | |
2580 // next zero bit. Then we look for the new lowest set bit, which is in | |
2581 // position b, and subtract it, so now our number is just like the original | |
2582 // but with the lowest stretch of set bits completely gone. Now we find the | |
2583 // lowest set bit again, which is position c in the diagram above. Then we'll | |
2584 // measure the distance d between bit positions a and c (using CLZ), and that | |
2585 // tells us that the only valid logical immediate that could possibly be equal | |
2586 // to this number is the one in which a stretch of bits running from a to just | |
2587 // below b is replicated every d bits. | |
2588 uint64_t a = LowestSetBit(value); | |
2589 uint64_t value_plus_a = value + a; | |
2590 uint64_t b = LowestSetBit(value_plus_a); | |
2591 uint64_t value_plus_a_minus_b = value_plus_a - b; | |
2592 uint64_t c = LowestSetBit(value_plus_a_minus_b); | |
2593 | |
2594 int d, clz_a, out_n; | |
2595 uint64_t mask; | |
2596 | |
2597 if (c != 0) { | |
2598 // The general case, in which there is more than one stretch of set bits. | |
2599 // Compute the repeat distance d, and set up a bitmask covering the basic | |
2600 // unit of repetition (i.e. a word with the bottom d bits set). Also, in all | |
2601 // of these cases the N bit of the output will be zero. | |
2602 clz_a = CountLeadingZeros(a, kXRegSizeInBits); | |
2603 int clz_c = CountLeadingZeros(c, kXRegSizeInBits); | |
2604 d = clz_a - clz_c; | |
2605 mask = ((UINT64_C(1) << d) - 1); | |
2606 out_n = 0; | |
2607 } else { | |
2608 // Handle degenerate cases. | |
2609 // | |
2610 // If any of those 'find lowest set bit' operations didn't find a set bit at | |
2611 // all, then the word will have been zero thereafter, so in particular the | |
2612 // last lowest_set_bit operation will have returned zero. So we can test for | |
2613 // all the special case conditions in one go by seeing if c is zero. | |
2614 if (a == 0) { | |
2615 // The input was zero (or all 1 bits, which will come to here too after we | |
2616 // inverted it at the start of the function), for which we just return | |
2617 // false. | |
2618 return false; | |
2619 } else { | |
2620 // Otherwise, if c was zero but a was not, then there's just one stretch | |
2621 // of set bits in our word, meaning that we have the trivial case of | |
2622 // d == 64 and only one 'repetition'. Set up all the same variables as in | |
2623 // the general case above, and set the N bit in the output. | |
2624 clz_a = CountLeadingZeros(a, kXRegSizeInBits); | |
2625 d = 64; | |
2626 mask = ~UINT64_C(0); | |
2627 out_n = 1; | |
2628 } | |
2629 } | |
2630 | |
2631 // If the repeat period d is not a power of two, it can't be encoded. | |
2632 if (!IS_POWER_OF_TWO(d)) { | |
2537 return false; | 2633 return false; |
2538 } | 2634 } |
ulan
2014/06/30 12:50:08
ASSERT(d >= 2) or assert below that CountLeadingZe
m.m.capewell
2014/07/01 09:45:46
Asserted the index to the multipliers array, as I
| |
2539 | 2635 |
2540 unsigned lead_zero = CountLeadingZeros(value, width); | 2636 if (((b - a) & ~mask) != 0) { |
2541 unsigned lead_one = CountLeadingZeros(~value, width); | 2637 // If the bit stretch (b - a) does not fit within the mask derived from the |
2542 unsigned trail_zero = CountTrailingZeros(value, width); | 2638 // repeat period, then fail. |
2543 unsigned trail_one = CountTrailingZeros(~value, width); | |
2544 unsigned set_bits = CountSetBits(value, width); | |
2545 | |
2546 // The fixed bits in the immediate s field. | |
2547 // If width == 64 (X reg), start at 0xFFFFFF80. | |
2548 // If width == 32 (W reg), start at 0xFFFFFFC0, as the iteration for 64-bit | |
2549 // widths won't be executed. | |
2550 int imm_s_fixed = (width == kXRegSizeInBits) ? -128 : -64; | |
2551 int imm_s_mask = 0x3F; | |
2552 | |
2553 for (;;) { | |
2554 // 2. If the value is two bits wide, it can be encoded. | |
2555 if (width == 2) { | |
2556 *n = 0; | |
2557 *imm_s = 0x3C; | |
2558 *imm_r = (value & 3) - 1; | |
2559 return true; | |
2560 } | |
2561 | |
2562 *n = (width == 64) ? 1 : 0; | |
2563 *imm_s = ((imm_s_fixed | (set_bits - 1)) & imm_s_mask); | |
2564 if ((lead_zero + set_bits) == width) { | |
2565 *imm_r = 0; | |
2566 } else { | |
2567 *imm_r = (lead_zero > 0) ? (width - trail_zero) : lead_one; | |
2568 } | |
2569 | |
2570 // 3. If the sum of leading zeros, trailing zeros and set bits is equal to | |
2571 // the bit width of the value, it can be encoded. | |
2572 if (lead_zero + trail_zero + set_bits == width) { | |
2573 return true; | |
2574 } | |
2575 | |
2576 // 4. If the sum of leading ones, trailing ones and unset bits in the | |
2577 // value is equal to the bit width of the value, it can be encoded. | |
2578 if (lead_one + trail_one + (width - set_bits) == width) { | |
2579 return true; | |
2580 } | |
2581 | |
2582 // 5. If the most-significant half of the bitwise value is equal to the | |
2583 // least-significant half, return to step 2 using the least-significant | |
2584 // half of the value. | |
2585 uint64_t mask = (1UL << (width >> 1)) - 1; | |
2586 if ((value & mask) == ((value >> (width >> 1)) & mask)) { | |
2587 width >>= 1; | |
2588 set_bits >>= 1; | |
2589 imm_s_fixed >>= 1; | |
2590 continue; | |
2591 } | |
2592 | |
2593 // 6. Otherwise, the value can't be encoded. | |
2594 return false; | 2639 return false; |
2595 } | 2640 } |
2641 | |
2642 // The only possible option is b - a repeated every d bits. Now we're going to | |
2643 // actually construct the valid logical immediate derived from that | |
2644 // specification, and see if it equals our original input. | |
2645 // | |
2646 // To repeat a value every d bits, we multiply it by a number of the form | |
2647 // (1 + 2^d + 2^(2d) + ...), i.e. 0x0001000100010001 or similar. These can | |
2648 // be derived using a table lookup on CLZ(d). | |
2649 static const uint64_t multipliers[] = { | |
2650 0x0000000000000001UL, | |
2651 0x0000000100000001UL, | |
2652 0x0001000100010001UL, | |
2653 0x0101010101010101UL, | |
2654 0x1111111111111111UL, | |
2655 0x5555555555555555UL, | |
2656 }; | |
2657 uint64_t multiplier = multipliers[CountLeadingZeros(d, kXRegSizeInBits) - 57]; | |
2658 uint64_t candidate = (b - a) * multiplier; | |
2659 | |
2660 if (value != candidate) { | |
2661 // The candidate pattern doesn't match our input value, so fail. | |
2662 return false; | |
2663 } | |
2664 | |
2665 // We have a match! This is a valid logical immediate, so now we have to | |
2666 // construct the bits and pieces of the instruction encoding that generates | |
2667 // it. | |
2668 | |
2669 // Count the set bits in our basic stretch. The special case of clz(0) == -1 | |
2670 // makes the answer come out right for stretches that reach the very top of | |
2671 // the word (e.g. numbers like 0xffffc00000000000). | |
2672 int clz_b = (b == 0) ? -1 : CountLeadingZeros(b, kXRegSizeInBits); | |
2673 int s = clz_a - clz_b; | |
2674 | |
2675 // Decide how many bits to rotate right by, to put the low bit of that basic | |
2676 // stretch in position a. | |
2677 int r; | |
2678 if (negate) { | |
2679 // If we inverted the input right at the start of this function, here's | |
2680 // where we compensate: the number of set bits becomes the number of clear | |
2681 // bits, and the rotation count is based on position b rather than position | |
2682 // a (since b is the location of the 'lowest' 1 bit after inversion). | |
2683 s = d - s; | |
2684 r = (clz_b + 1) & (d - 1); | |
2685 } else { | |
2686 r = (clz_a + 1) & (d - 1); | |
2687 } | |
2688 | |
2689 // Now we're done, except for having to encode the S output in such a way that | |
2690 // it gives both the number of set bits and the length of the repeated | |
2691 // segment. The s field is encoded like this: | |
2692 // | |
2693 // imms size S | |
2694 // ssssss 64 UInt(ssssss) | |
2695 // 0sssss 32 UInt(sssss) | |
2696 // 10ssss 16 UInt(ssss) | |
2697 // 110sss 8 UInt(sss) | |
2698 // 1110ss 4 UInt(ss) | |
2699 // 11110s 2 UInt(s) | |
2700 // | |
2701 // So we 'or' (-d << 1) with our computed s to form imms. | |
2702 *n = out_n; | |
2703 *imm_s = ((-d << 1) | (s - 1)) & 0x3f; | |
2704 *imm_r = r; | |
2705 | |
2706 return true; | |
2596 } | 2707 } |
2597 | 2708 |
2598 | 2709 |
2599 bool Assembler::IsImmConditionalCompare(int64_t immediate) { | 2710 bool Assembler::IsImmConditionalCompare(int64_t immediate) { |
2600 return is_uint5(immediate); | 2711 return is_uint5(immediate); |
2601 } | 2712 } |
2602 | 2713 |
2603 | 2714 |
2604 bool Assembler::IsImmFP32(float imm) { | 2715 bool Assembler::IsImmFP32(float imm) { |
2605 // Valid values will have the form: | 2716 // Valid values will have the form: |
(...skipping 431 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
3037 adr(rd, 0); | 3148 adr(rd, 0); |
3038 MovInt64(scratch, target_offset); | 3149 MovInt64(scratch, target_offset); |
3039 add(rd, rd, scratch); | 3150 add(rd, rd, scratch); |
3040 } | 3151 } |
3041 } | 3152 } |
3042 | 3153 |
3043 | 3154 |
3044 } } // namespace v8::internal | 3155 } } // namespace v8::internal |
3045 | 3156 |
3046 #endif // V8_TARGET_ARCH_ARM64 | 3157 #endif // V8_TARGET_ARCH_ARM64 |
OLD | NEW |