| Index: include/core/SkGeometry.h
|
| diff --git a/include/core/SkGeometry.h b/include/core/SkGeometry.h
|
| deleted file mode 100644
|
| index 119cfc68db54f31e328126a582ac2af34bae12fa..0000000000000000000000000000000000000000
|
| --- a/include/core/SkGeometry.h
|
| +++ /dev/null
|
| @@ -1,316 +0,0 @@
|
| -
|
| -/*
|
| - * Copyright 2006 The Android Open Source Project
|
| - *
|
| - * Use of this source code is governed by a BSD-style license that can be
|
| - * found in the LICENSE file.
|
| - */
|
| -
|
| -
|
| -#ifndef SkGeometry_DEFINED
|
| -#define SkGeometry_DEFINED
|
| -
|
| -#include "SkMatrix.h"
|
| -
|
| -/** An XRay is a half-line that runs from the specific point/origin to
|
| - +infinity in the X direction. e.g. XRay(3,5) is the half-line
|
| - (3,5)....(infinity, 5)
|
| - */
|
| -typedef SkPoint SkXRay;
|
| -
|
| -/** Given a line segment from pts[0] to pts[1], and an xray, return true if
|
| - they intersect. Optional outgoing "ambiguous" argument indicates
|
| - whether the answer is ambiguous because the query occurred exactly at
|
| - one of the endpoints' y coordinates, indicating that another query y
|
| - coordinate is preferred for robustness.
|
| -*/
|
| -bool SkXRayCrossesLine(const SkXRay& pt, const SkPoint pts[2],
|
| - bool* ambiguous = NULL);
|
| -
|
| -/** Given a quadratic equation Ax^2 + Bx + C = 0, return 0, 1, 2 roots for the
|
| - equation.
|
| -*/
|
| -int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]);
|
| -
|
| -///////////////////////////////////////////////////////////////////////////////
|
| -
|
| -/** Set pt to the point on the src quadratic specified by t. t must be
|
| - 0 <= t <= 1.0
|
| -*/
|
| -void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt,
|
| - SkVector* tangent = NULL);
|
| -void SkEvalQuadAtHalf(const SkPoint src[3], SkPoint* pt,
|
| - SkVector* tangent = NULL);
|
| -
|
| -/** Given a src quadratic bezier, chop it at the specified t value,
|
| - where 0 < t < 1, and return the two new quadratics in dst:
|
| - dst[0..2] and dst[2..4]
|
| -*/
|
| -void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t);
|
| -
|
| -/** Given a src quadratic bezier, chop it at the specified t == 1/2,
|
| - The new quads are returned in dst[0..2] and dst[2..4]
|
| -*/
|
| -void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]);
|
| -
|
| -/** Given the 3 coefficients for a quadratic bezier (either X or Y values), look
|
| - for extrema, and return the number of t-values that are found that represent
|
| - these extrema. If the quadratic has no extrema betwee (0..1) exclusive, the
|
| - function returns 0.
|
| - Returned count tValues[]
|
| - 0 ignored
|
| - 1 0 < tValues[0] < 1
|
| -*/
|
| -int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValues[1]);
|
| -
|
| -/** Given 3 points on a quadratic bezier, chop it into 1, 2 beziers such that
|
| - the resulting beziers are monotonic in Y. This is called by the scan converter.
|
| - Depending on what is returned, dst[] is treated as follows
|
| - 0 dst[0..2] is the original quad
|
| - 1 dst[0..2] and dst[2..4] are the two new quads
|
| -*/
|
| -int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]);
|
| -int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]);
|
| -
|
| -/** Given 3 points on a quadratic bezier, if the point of maximum
|
| - curvature exists on the segment, returns the t value for this
|
| - point along the curve. Otherwise it will return a value of 0.
|
| -*/
|
| -float SkFindQuadMaxCurvature(const SkPoint src[3]);
|
| -
|
| -/** Given 3 points on a quadratic bezier, divide it into 2 quadratics
|
| - if the point of maximum curvature exists on the quad segment.
|
| - Depending on what is returned, dst[] is treated as follows
|
| - 1 dst[0..2] is the original quad
|
| - 2 dst[0..2] and dst[2..4] are the two new quads
|
| - If dst == null, it is ignored and only the count is returned.
|
| -*/
|
| -int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]);
|
| -
|
| -/** Given 3 points on a quadratic bezier, use degree elevation to
|
| - convert it into the cubic fitting the same curve. The new cubic
|
| - curve is returned in dst[0..3].
|
| -*/
|
| -SK_API void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]);
|
| -
|
| -///////////////////////////////////////////////////////////////////////////////
|
| -
|
| -/** Convert from parametric from (pts) to polynomial coefficients
|
| - coeff[0]*T^3 + coeff[1]*T^2 + coeff[2]*T + coeff[3]
|
| -*/
|
| -void SkGetCubicCoeff(const SkPoint pts[4], SkScalar cx[4], SkScalar cy[4]);
|
| -
|
| -/** Set pt to the point on the src cubic specified by t. t must be
|
| - 0 <= t <= 1.0
|
| -*/
|
| -void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* locOrNull,
|
| - SkVector* tangentOrNull, SkVector* curvatureOrNull);
|
| -
|
| -/** Given a src cubic bezier, chop it at the specified t value,
|
| - where 0 < t < 1, and return the two new cubics in dst:
|
| - dst[0..3] and dst[3..6]
|
| -*/
|
| -void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t);
|
| -/** Given a src cubic bezier, chop it at the specified t values,
|
| - where 0 < t < 1, and return the new cubics in dst:
|
| - dst[0..3],dst[3..6],...,dst[3*t_count..3*(t_count+1)]
|
| -*/
|
| -void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], const SkScalar t[],
|
| - int t_count);
|
| -
|
| -/** Given a src cubic bezier, chop it at the specified t == 1/2,
|
| - The new cubics are returned in dst[0..3] and dst[3..6]
|
| -*/
|
| -void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]);
|
| -
|
| -/** Given the 4 coefficients for a cubic bezier (either X or Y values), look
|
| - for extrema, and return the number of t-values that are found that represent
|
| - these extrema. If the cubic has no extrema betwee (0..1) exclusive, the
|
| - function returns 0.
|
| - Returned count tValues[]
|
| - 0 ignored
|
| - 1 0 < tValues[0] < 1
|
| - 2 0 < tValues[0] < tValues[1] < 1
|
| -*/
|
| -int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d,
|
| - SkScalar tValues[2]);
|
| -
|
| -/** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
|
| - the resulting beziers are monotonic in Y. This is called by the scan converter.
|
| - Depending on what is returned, dst[] is treated as follows
|
| - 0 dst[0..3] is the original cubic
|
| - 1 dst[0..3] and dst[3..6] are the two new cubics
|
| - 2 dst[0..3], dst[3..6], dst[6..9] are the three new cubics
|
| - If dst == null, it is ignored and only the count is returned.
|
| -*/
|
| -int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]);
|
| -int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]);
|
| -
|
| -/** Given a cubic bezier, return 0, 1, or 2 t-values that represent the
|
| - inflection points.
|
| -*/
|
| -int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[2]);
|
| -
|
| -/** Return 1 for no chop, 2 for having chopped the cubic at a single
|
| - inflection point, 3 for having chopped at 2 inflection points.
|
| - dst will hold the resulting 1, 2, or 3 cubics.
|
| -*/
|
| -int SkChopCubicAtInflections(const SkPoint src[4], SkPoint dst[10]);
|
| -
|
| -int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]);
|
| -int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13],
|
| - SkScalar tValues[3] = NULL);
|
| -
|
| -/** Given a monotonic cubic bezier, determine whether an xray intersects the
|
| - cubic.
|
| - By definition the cubic is open at the starting point; in other
|
| - words, if pt.fY is equivalent to cubic[0].fY, and pt.fX is to the
|
| - left of the curve, the line is not considered to cross the curve,
|
| - but if it is equal to cubic[3].fY then it is considered to
|
| - cross.
|
| - Optional outgoing "ambiguous" argument indicates whether the answer is
|
| - ambiguous because the query occurred exactly at one of the endpoints' y
|
| - coordinates, indicating that another query y coordinate is preferred
|
| - for robustness.
|
| - */
|
| -bool SkXRayCrossesMonotonicCubic(const SkXRay& pt, const SkPoint cubic[4],
|
| - bool* ambiguous = NULL);
|
| -
|
| -/** Given an arbitrary cubic bezier, return the number of times an xray crosses
|
| - the cubic. Valid return values are [0..3]
|
| - By definition the cubic is open at the starting point; in other
|
| - words, if pt.fY is equivalent to cubic[0].fY, and pt.fX is to the
|
| - left of the curve, the line is not considered to cross the curve,
|
| - but if it is equal to cubic[3].fY then it is considered to
|
| - cross.
|
| - Optional outgoing "ambiguous" argument indicates whether the answer is
|
| - ambiguous because the query occurred exactly at one of the endpoints' y
|
| - coordinates or at a tangent point, indicating that another query y
|
| - coordinate is preferred for robustness.
|
| - */
|
| -int SkNumXRayCrossingsForCubic(const SkXRay& pt, const SkPoint cubic[4],
|
| - bool* ambiguous = NULL);
|
| -
|
| -///////////////////////////////////////////////////////////////////////////////
|
| -
|
| -enum SkRotationDirection {
|
| - kCW_SkRotationDirection,
|
| - kCCW_SkRotationDirection
|
| -};
|
| -
|
| -/** Maximum number of points needed in the quadPoints[] parameter for
|
| - SkBuildQuadArc()
|
| -*/
|
| -#define kSkBuildQuadArcStorage 17
|
| -
|
| -/** Given 2 unit vectors and a rotation direction, fill out the specified
|
| - array of points with quadratic segments. Return is the number of points
|
| - written to, which will be { 0, 3, 5, 7, ... kSkBuildQuadArcStorage }
|
| -
|
| - matrix, if not null, is appled to the points before they are returned.
|
| -*/
|
| -int SkBuildQuadArc(const SkVector& unitStart, const SkVector& unitStop,
|
| - SkRotationDirection, const SkMatrix*, SkPoint quadPoints[]);
|
| -
|
| -// experimental
|
| -struct SkConic {
|
| - SkPoint fPts[3];
|
| - SkScalar fW;
|
| -
|
| - void set(const SkPoint pts[3], SkScalar w) {
|
| - memcpy(fPts, pts, 3 * sizeof(SkPoint));
|
| - fW = w;
|
| - }
|
| -
|
| - /**
|
| - * Given a t-value [0...1] return its position and/or tangent.
|
| - * If pos is not null, return its position at the t-value.
|
| - * If tangent is not null, return its tangent at the t-value. NOTE the
|
| - * tangent value's length is arbitrary, and only its direction should
|
| - * be used.
|
| - */
|
| - void evalAt(SkScalar t, SkPoint* pos, SkVector* tangent = NULL) const;
|
| - void chopAt(SkScalar t, SkConic dst[2]) const;
|
| - void chop(SkConic dst[2]) const;
|
| -
|
| - void computeAsQuadError(SkVector* err) const;
|
| - bool asQuadTol(SkScalar tol) const;
|
| -
|
| - /**
|
| - * return the power-of-2 number of quads needed to approximate this conic
|
| - * with a sequence of quads. Will be >= 0.
|
| - */
|
| - int computeQuadPOW2(SkScalar tol) const;
|
| -
|
| - /**
|
| - * Chop this conic into N quads, stored continguously in pts[], where
|
| - * N = 1 << pow2. The amount of storage needed is (1 + 2 * N)
|
| - */
|
| - int chopIntoQuadsPOW2(SkPoint pts[], int pow2) const;
|
| -
|
| - bool findXExtrema(SkScalar* t) const;
|
| - bool findYExtrema(SkScalar* t) const;
|
| - bool chopAtXExtrema(SkConic dst[2]) const;
|
| - bool chopAtYExtrema(SkConic dst[2]) const;
|
| -
|
| - void computeTightBounds(SkRect* bounds) const;
|
| - void computeFastBounds(SkRect* bounds) const;
|
| -
|
| - /** Find the parameter value where the conic takes on its maximum curvature.
|
| - *
|
| - * @param t output scalar for max curvature. Will be unchanged if
|
| - * max curvature outside 0..1 range.
|
| - *
|
| - * @return true if max curvature found inside 0..1 range, false otherwise
|
| - */
|
| - bool findMaxCurvature(SkScalar* t) const;
|
| -};
|
| -
|
| -#include "SkTemplates.h"
|
| -
|
| -/**
|
| - * Help class to allocate storage for approximating a conic with N quads.
|
| - */
|
| -class SkAutoConicToQuads {
|
| -public:
|
| - SkAutoConicToQuads() : fQuadCount(0) {}
|
| -
|
| - /**
|
| - * Given a conic and a tolerance, return the array of points for the
|
| - * approximating quad(s). Call countQuads() to know the number of quads
|
| - * represented in these points.
|
| - *
|
| - * The quads are allocated to share end-points. e.g. if there are 4 quads,
|
| - * there will be 9 points allocated as follows
|
| - * quad[0] == pts[0..2]
|
| - * quad[1] == pts[2..4]
|
| - * quad[2] == pts[4..6]
|
| - * quad[3] == pts[6..8]
|
| - */
|
| - const SkPoint* computeQuads(const SkConic& conic, SkScalar tol) {
|
| - int pow2 = conic.computeQuadPOW2(tol);
|
| - fQuadCount = 1 << pow2;
|
| - SkPoint* pts = fStorage.reset(1 + 2 * fQuadCount);
|
| - conic.chopIntoQuadsPOW2(pts, pow2);
|
| - return pts;
|
| - }
|
| -
|
| - const SkPoint* computeQuads(const SkPoint pts[3], SkScalar weight,
|
| - SkScalar tol) {
|
| - SkConic conic;
|
| - conic.set(pts, weight);
|
| - return computeQuads(conic, tol);
|
| - }
|
| -
|
| - int countQuads() const { return fQuadCount; }
|
| -
|
| -private:
|
| - enum {
|
| - kQuadCount = 8, // should handle most conics
|
| - kPointCount = 1 + 2 * kQuadCount,
|
| - };
|
| - SkAutoSTMalloc<kPointCount, SkPoint> fStorage;
|
| - int fQuadCount; // #quads for current usage
|
| -};
|
| -
|
| -#endif
|
|
|