Index: include/core/SkGeometry.h |
diff --git a/include/core/SkGeometry.h b/include/core/SkGeometry.h |
deleted file mode 100644 |
index 119cfc68db54f31e328126a582ac2af34bae12fa..0000000000000000000000000000000000000000 |
--- a/include/core/SkGeometry.h |
+++ /dev/null |
@@ -1,316 +0,0 @@ |
- |
-/* |
- * Copyright 2006 The Android Open Source Project |
- * |
- * Use of this source code is governed by a BSD-style license that can be |
- * found in the LICENSE file. |
- */ |
- |
- |
-#ifndef SkGeometry_DEFINED |
-#define SkGeometry_DEFINED |
- |
-#include "SkMatrix.h" |
- |
-/** An XRay is a half-line that runs from the specific point/origin to |
- +infinity in the X direction. e.g. XRay(3,5) is the half-line |
- (3,5)....(infinity, 5) |
- */ |
-typedef SkPoint SkXRay; |
- |
-/** Given a line segment from pts[0] to pts[1], and an xray, return true if |
- they intersect. Optional outgoing "ambiguous" argument indicates |
- whether the answer is ambiguous because the query occurred exactly at |
- one of the endpoints' y coordinates, indicating that another query y |
- coordinate is preferred for robustness. |
-*/ |
-bool SkXRayCrossesLine(const SkXRay& pt, const SkPoint pts[2], |
- bool* ambiguous = NULL); |
- |
-/** Given a quadratic equation Ax^2 + Bx + C = 0, return 0, 1, 2 roots for the |
- equation. |
-*/ |
-int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]); |
- |
-/////////////////////////////////////////////////////////////////////////////// |
- |
-/** Set pt to the point on the src quadratic specified by t. t must be |
- 0 <= t <= 1.0 |
-*/ |
-void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, |
- SkVector* tangent = NULL); |
-void SkEvalQuadAtHalf(const SkPoint src[3], SkPoint* pt, |
- SkVector* tangent = NULL); |
- |
-/** Given a src quadratic bezier, chop it at the specified t value, |
- where 0 < t < 1, and return the two new quadratics in dst: |
- dst[0..2] and dst[2..4] |
-*/ |
-void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t); |
- |
-/** Given a src quadratic bezier, chop it at the specified t == 1/2, |
- The new quads are returned in dst[0..2] and dst[2..4] |
-*/ |
-void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]); |
- |
-/** Given the 3 coefficients for a quadratic bezier (either X or Y values), look |
- for extrema, and return the number of t-values that are found that represent |
- these extrema. If the quadratic has no extrema betwee (0..1) exclusive, the |
- function returns 0. |
- Returned count tValues[] |
- 0 ignored |
- 1 0 < tValues[0] < 1 |
-*/ |
-int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValues[1]); |
- |
-/** Given 3 points on a quadratic bezier, chop it into 1, 2 beziers such that |
- the resulting beziers are monotonic in Y. This is called by the scan converter. |
- Depending on what is returned, dst[] is treated as follows |
- 0 dst[0..2] is the original quad |
- 1 dst[0..2] and dst[2..4] are the two new quads |
-*/ |
-int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]); |
-int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]); |
- |
-/** Given 3 points on a quadratic bezier, if the point of maximum |
- curvature exists on the segment, returns the t value for this |
- point along the curve. Otherwise it will return a value of 0. |
-*/ |
-float SkFindQuadMaxCurvature(const SkPoint src[3]); |
- |
-/** Given 3 points on a quadratic bezier, divide it into 2 quadratics |
- if the point of maximum curvature exists on the quad segment. |
- Depending on what is returned, dst[] is treated as follows |
- 1 dst[0..2] is the original quad |
- 2 dst[0..2] and dst[2..4] are the two new quads |
- If dst == null, it is ignored and only the count is returned. |
-*/ |
-int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]); |
- |
-/** Given 3 points on a quadratic bezier, use degree elevation to |
- convert it into the cubic fitting the same curve. The new cubic |
- curve is returned in dst[0..3]. |
-*/ |
-SK_API void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]); |
- |
-/////////////////////////////////////////////////////////////////////////////// |
- |
-/** Convert from parametric from (pts) to polynomial coefficients |
- coeff[0]*T^3 + coeff[1]*T^2 + coeff[2]*T + coeff[3] |
-*/ |
-void SkGetCubicCoeff(const SkPoint pts[4], SkScalar cx[4], SkScalar cy[4]); |
- |
-/** Set pt to the point on the src cubic specified by t. t must be |
- 0 <= t <= 1.0 |
-*/ |
-void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* locOrNull, |
- SkVector* tangentOrNull, SkVector* curvatureOrNull); |
- |
-/** Given a src cubic bezier, chop it at the specified t value, |
- where 0 < t < 1, and return the two new cubics in dst: |
- dst[0..3] and dst[3..6] |
-*/ |
-void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t); |
-/** Given a src cubic bezier, chop it at the specified t values, |
- where 0 < t < 1, and return the new cubics in dst: |
- dst[0..3],dst[3..6],...,dst[3*t_count..3*(t_count+1)] |
-*/ |
-void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], const SkScalar t[], |
- int t_count); |
- |
-/** Given a src cubic bezier, chop it at the specified t == 1/2, |
- The new cubics are returned in dst[0..3] and dst[3..6] |
-*/ |
-void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]); |
- |
-/** Given the 4 coefficients for a cubic bezier (either X or Y values), look |
- for extrema, and return the number of t-values that are found that represent |
- these extrema. If the cubic has no extrema betwee (0..1) exclusive, the |
- function returns 0. |
- Returned count tValues[] |
- 0 ignored |
- 1 0 < tValues[0] < 1 |
- 2 0 < tValues[0] < tValues[1] < 1 |
-*/ |
-int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d, |
- SkScalar tValues[2]); |
- |
-/** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that |
- the resulting beziers are monotonic in Y. This is called by the scan converter. |
- Depending on what is returned, dst[] is treated as follows |
- 0 dst[0..3] is the original cubic |
- 1 dst[0..3] and dst[3..6] are the two new cubics |
- 2 dst[0..3], dst[3..6], dst[6..9] are the three new cubics |
- If dst == null, it is ignored and only the count is returned. |
-*/ |
-int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]); |
-int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]); |
- |
-/** Given a cubic bezier, return 0, 1, or 2 t-values that represent the |
- inflection points. |
-*/ |
-int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[2]); |
- |
-/** Return 1 for no chop, 2 for having chopped the cubic at a single |
- inflection point, 3 for having chopped at 2 inflection points. |
- dst will hold the resulting 1, 2, or 3 cubics. |
-*/ |
-int SkChopCubicAtInflections(const SkPoint src[4], SkPoint dst[10]); |
- |
-int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]); |
-int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13], |
- SkScalar tValues[3] = NULL); |
- |
-/** Given a monotonic cubic bezier, determine whether an xray intersects the |
- cubic. |
- By definition the cubic is open at the starting point; in other |
- words, if pt.fY is equivalent to cubic[0].fY, and pt.fX is to the |
- left of the curve, the line is not considered to cross the curve, |
- but if it is equal to cubic[3].fY then it is considered to |
- cross. |
- Optional outgoing "ambiguous" argument indicates whether the answer is |
- ambiguous because the query occurred exactly at one of the endpoints' y |
- coordinates, indicating that another query y coordinate is preferred |
- for robustness. |
- */ |
-bool SkXRayCrossesMonotonicCubic(const SkXRay& pt, const SkPoint cubic[4], |
- bool* ambiguous = NULL); |
- |
-/** Given an arbitrary cubic bezier, return the number of times an xray crosses |
- the cubic. Valid return values are [0..3] |
- By definition the cubic is open at the starting point; in other |
- words, if pt.fY is equivalent to cubic[0].fY, and pt.fX is to the |
- left of the curve, the line is not considered to cross the curve, |
- but if it is equal to cubic[3].fY then it is considered to |
- cross. |
- Optional outgoing "ambiguous" argument indicates whether the answer is |
- ambiguous because the query occurred exactly at one of the endpoints' y |
- coordinates or at a tangent point, indicating that another query y |
- coordinate is preferred for robustness. |
- */ |
-int SkNumXRayCrossingsForCubic(const SkXRay& pt, const SkPoint cubic[4], |
- bool* ambiguous = NULL); |
- |
-/////////////////////////////////////////////////////////////////////////////// |
- |
-enum SkRotationDirection { |
- kCW_SkRotationDirection, |
- kCCW_SkRotationDirection |
-}; |
- |
-/** Maximum number of points needed in the quadPoints[] parameter for |
- SkBuildQuadArc() |
-*/ |
-#define kSkBuildQuadArcStorage 17 |
- |
-/** Given 2 unit vectors and a rotation direction, fill out the specified |
- array of points with quadratic segments. Return is the number of points |
- written to, which will be { 0, 3, 5, 7, ... kSkBuildQuadArcStorage } |
- |
- matrix, if not null, is appled to the points before they are returned. |
-*/ |
-int SkBuildQuadArc(const SkVector& unitStart, const SkVector& unitStop, |
- SkRotationDirection, const SkMatrix*, SkPoint quadPoints[]); |
- |
-// experimental |
-struct SkConic { |
- SkPoint fPts[3]; |
- SkScalar fW; |
- |
- void set(const SkPoint pts[3], SkScalar w) { |
- memcpy(fPts, pts, 3 * sizeof(SkPoint)); |
- fW = w; |
- } |
- |
- /** |
- * Given a t-value [0...1] return its position and/or tangent. |
- * If pos is not null, return its position at the t-value. |
- * If tangent is not null, return its tangent at the t-value. NOTE the |
- * tangent value's length is arbitrary, and only its direction should |
- * be used. |
- */ |
- void evalAt(SkScalar t, SkPoint* pos, SkVector* tangent = NULL) const; |
- void chopAt(SkScalar t, SkConic dst[2]) const; |
- void chop(SkConic dst[2]) const; |
- |
- void computeAsQuadError(SkVector* err) const; |
- bool asQuadTol(SkScalar tol) const; |
- |
- /** |
- * return the power-of-2 number of quads needed to approximate this conic |
- * with a sequence of quads. Will be >= 0. |
- */ |
- int computeQuadPOW2(SkScalar tol) const; |
- |
- /** |
- * Chop this conic into N quads, stored continguously in pts[], where |
- * N = 1 << pow2. The amount of storage needed is (1 + 2 * N) |
- */ |
- int chopIntoQuadsPOW2(SkPoint pts[], int pow2) const; |
- |
- bool findXExtrema(SkScalar* t) const; |
- bool findYExtrema(SkScalar* t) const; |
- bool chopAtXExtrema(SkConic dst[2]) const; |
- bool chopAtYExtrema(SkConic dst[2]) const; |
- |
- void computeTightBounds(SkRect* bounds) const; |
- void computeFastBounds(SkRect* bounds) const; |
- |
- /** Find the parameter value where the conic takes on its maximum curvature. |
- * |
- * @param t output scalar for max curvature. Will be unchanged if |
- * max curvature outside 0..1 range. |
- * |
- * @return true if max curvature found inside 0..1 range, false otherwise |
- */ |
- bool findMaxCurvature(SkScalar* t) const; |
-}; |
- |
-#include "SkTemplates.h" |
- |
-/** |
- * Help class to allocate storage for approximating a conic with N quads. |
- */ |
-class SkAutoConicToQuads { |
-public: |
- SkAutoConicToQuads() : fQuadCount(0) {} |
- |
- /** |
- * Given a conic and a tolerance, return the array of points for the |
- * approximating quad(s). Call countQuads() to know the number of quads |
- * represented in these points. |
- * |
- * The quads are allocated to share end-points. e.g. if there are 4 quads, |
- * there will be 9 points allocated as follows |
- * quad[0] == pts[0..2] |
- * quad[1] == pts[2..4] |
- * quad[2] == pts[4..6] |
- * quad[3] == pts[6..8] |
- */ |
- const SkPoint* computeQuads(const SkConic& conic, SkScalar tol) { |
- int pow2 = conic.computeQuadPOW2(tol); |
- fQuadCount = 1 << pow2; |
- SkPoint* pts = fStorage.reset(1 + 2 * fQuadCount); |
- conic.chopIntoQuadsPOW2(pts, pow2); |
- return pts; |
- } |
- |
- const SkPoint* computeQuads(const SkPoint pts[3], SkScalar weight, |
- SkScalar tol) { |
- SkConic conic; |
- conic.set(pts, weight); |
- return computeQuads(conic, tol); |
- } |
- |
- int countQuads() const { return fQuadCount; } |
- |
-private: |
- enum { |
- kQuadCount = 8, // should handle most conics |
- kPointCount = 1 + 2 * kQuadCount, |
- }; |
- SkAutoSTMalloc<kPointCount, SkPoint> fStorage; |
- int fQuadCount; // #quads for current usage |
-}; |
- |
-#endif |