| Index: include/core/SkGeometry.h
 | 
| diff --git a/include/core/SkGeometry.h b/include/core/SkGeometry.h
 | 
| deleted file mode 100644
 | 
| index 119cfc68db54f31e328126a582ac2af34bae12fa..0000000000000000000000000000000000000000
 | 
| --- a/include/core/SkGeometry.h
 | 
| +++ /dev/null
 | 
| @@ -1,316 +0,0 @@
 | 
| -
 | 
| -/*
 | 
| - * Copyright 2006 The Android Open Source Project
 | 
| - *
 | 
| - * Use of this source code is governed by a BSD-style license that can be
 | 
| - * found in the LICENSE file.
 | 
| - */
 | 
| -
 | 
| -
 | 
| -#ifndef SkGeometry_DEFINED
 | 
| -#define SkGeometry_DEFINED
 | 
| -
 | 
| -#include "SkMatrix.h"
 | 
| -
 | 
| -/** An XRay is a half-line that runs from the specific point/origin to
 | 
| -    +infinity in the X direction. e.g. XRay(3,5) is the half-line
 | 
| -    (3,5)....(infinity, 5)
 | 
| - */
 | 
| -typedef SkPoint SkXRay;
 | 
| -
 | 
| -/** Given a line segment from pts[0] to pts[1], and an xray, return true if
 | 
| -    they intersect. Optional outgoing "ambiguous" argument indicates
 | 
| -    whether the answer is ambiguous because the query occurred exactly at
 | 
| -    one of the endpoints' y coordinates, indicating that another query y
 | 
| -    coordinate is preferred for robustness.
 | 
| -*/
 | 
| -bool SkXRayCrossesLine(const SkXRay& pt, const SkPoint pts[2],
 | 
| -                       bool* ambiguous = NULL);
 | 
| -
 | 
| -/** Given a quadratic equation Ax^2 + Bx + C = 0, return 0, 1, 2 roots for the
 | 
| -    equation.
 | 
| -*/
 | 
| -int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]);
 | 
| -
 | 
| -///////////////////////////////////////////////////////////////////////////////
 | 
| -
 | 
| -/** Set pt to the point on the src quadratic specified by t. t must be
 | 
| -    0 <= t <= 1.0
 | 
| -*/
 | 
| -void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt,
 | 
| -                  SkVector* tangent = NULL);
 | 
| -void SkEvalQuadAtHalf(const SkPoint src[3], SkPoint* pt,
 | 
| -                      SkVector* tangent = NULL);
 | 
| -
 | 
| -/** Given a src quadratic bezier, chop it at the specified t value,
 | 
| -    where 0 < t < 1, and return the two new quadratics in dst:
 | 
| -    dst[0..2] and dst[2..4]
 | 
| -*/
 | 
| -void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t);
 | 
| -
 | 
| -/** Given a src quadratic bezier, chop it at the specified t == 1/2,
 | 
| -    The new quads are returned in dst[0..2] and dst[2..4]
 | 
| -*/
 | 
| -void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]);
 | 
| -
 | 
| -/** Given the 3 coefficients for a quadratic bezier (either X or Y values), look
 | 
| -    for extrema, and return the number of t-values that are found that represent
 | 
| -    these extrema. If the quadratic has no extrema betwee (0..1) exclusive, the
 | 
| -    function returns 0.
 | 
| -    Returned count      tValues[]
 | 
| -    0                   ignored
 | 
| -    1                   0 < tValues[0] < 1
 | 
| -*/
 | 
| -int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValues[1]);
 | 
| -
 | 
| -/** Given 3 points on a quadratic bezier, chop it into 1, 2 beziers such that
 | 
| -    the resulting beziers are monotonic in Y. This is called by the scan converter.
 | 
| -    Depending on what is returned, dst[] is treated as follows
 | 
| -    0   dst[0..2] is the original quad
 | 
| -    1   dst[0..2] and dst[2..4] are the two new quads
 | 
| -*/
 | 
| -int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]);
 | 
| -int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]);
 | 
| -
 | 
| -/** Given 3 points on a quadratic bezier, if the point of maximum
 | 
| -    curvature exists on the segment, returns the t value for this
 | 
| -    point along the curve. Otherwise it will return a value of 0.
 | 
| -*/
 | 
| -float SkFindQuadMaxCurvature(const SkPoint src[3]);
 | 
| -
 | 
| -/** Given 3 points on a quadratic bezier, divide it into 2 quadratics
 | 
| -    if the point of maximum curvature exists on the quad segment.
 | 
| -    Depending on what is returned, dst[] is treated as follows
 | 
| -    1   dst[0..2] is the original quad
 | 
| -    2   dst[0..2] and dst[2..4] are the two new quads
 | 
| -    If dst == null, it is ignored and only the count is returned.
 | 
| -*/
 | 
| -int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]);
 | 
| -
 | 
| -/** Given 3 points on a quadratic bezier, use degree elevation to
 | 
| -    convert it into the cubic fitting the same curve. The new cubic
 | 
| -    curve is returned in dst[0..3].
 | 
| -*/
 | 
| -SK_API void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]);
 | 
| -
 | 
| -///////////////////////////////////////////////////////////////////////////////
 | 
| -
 | 
| -/** Convert from parametric from (pts) to polynomial coefficients
 | 
| -    coeff[0]*T^3 + coeff[1]*T^2 + coeff[2]*T + coeff[3]
 | 
| -*/
 | 
| -void SkGetCubicCoeff(const SkPoint pts[4], SkScalar cx[4], SkScalar cy[4]);
 | 
| -
 | 
| -/** Set pt to the point on the src cubic specified by t. t must be
 | 
| -    0 <= t <= 1.0
 | 
| -*/
 | 
| -void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* locOrNull,
 | 
| -                   SkVector* tangentOrNull, SkVector* curvatureOrNull);
 | 
| -
 | 
| -/** Given a src cubic bezier, chop it at the specified t value,
 | 
| -    where 0 < t < 1, and return the two new cubics in dst:
 | 
| -    dst[0..3] and dst[3..6]
 | 
| -*/
 | 
| -void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t);
 | 
| -/** Given a src cubic bezier, chop it at the specified t values,
 | 
| -    where 0 < t < 1, and return the new cubics in dst:
 | 
| -    dst[0..3],dst[3..6],...,dst[3*t_count..3*(t_count+1)]
 | 
| -*/
 | 
| -void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], const SkScalar t[],
 | 
| -                   int t_count);
 | 
| -
 | 
| -/** Given a src cubic bezier, chop it at the specified t == 1/2,
 | 
| -    The new cubics are returned in dst[0..3] and dst[3..6]
 | 
| -*/
 | 
| -void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]);
 | 
| -
 | 
| -/** Given the 4 coefficients for a cubic bezier (either X or Y values), look
 | 
| -    for extrema, and return the number of t-values that are found that represent
 | 
| -    these extrema. If the cubic has no extrema betwee (0..1) exclusive, the
 | 
| -    function returns 0.
 | 
| -    Returned count      tValues[]
 | 
| -    0                   ignored
 | 
| -    1                   0 < tValues[0] < 1
 | 
| -    2                   0 < tValues[0] < tValues[1] < 1
 | 
| -*/
 | 
| -int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d,
 | 
| -                       SkScalar tValues[2]);
 | 
| -
 | 
| -/** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
 | 
| -    the resulting beziers are monotonic in Y. This is called by the scan converter.
 | 
| -    Depending on what is returned, dst[] is treated as follows
 | 
| -    0   dst[0..3] is the original cubic
 | 
| -    1   dst[0..3] and dst[3..6] are the two new cubics
 | 
| -    2   dst[0..3], dst[3..6], dst[6..9] are the three new cubics
 | 
| -    If dst == null, it is ignored and only the count is returned.
 | 
| -*/
 | 
| -int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]);
 | 
| -int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]);
 | 
| -
 | 
| -/** Given a cubic bezier, return 0, 1, or 2 t-values that represent the
 | 
| -    inflection points.
 | 
| -*/
 | 
| -int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[2]);
 | 
| -
 | 
| -/** Return 1 for no chop, 2 for having chopped the cubic at a single
 | 
| -    inflection point, 3 for having chopped at 2 inflection points.
 | 
| -    dst will hold the resulting 1, 2, or 3 cubics.
 | 
| -*/
 | 
| -int SkChopCubicAtInflections(const SkPoint src[4], SkPoint dst[10]);
 | 
| -
 | 
| -int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]);
 | 
| -int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13],
 | 
| -                              SkScalar tValues[3] = NULL);
 | 
| -
 | 
| -/** Given a monotonic cubic bezier, determine whether an xray intersects the
 | 
| -    cubic.
 | 
| -    By definition the cubic is open at the starting point; in other
 | 
| -    words, if pt.fY is equivalent to cubic[0].fY, and pt.fX is to the
 | 
| -    left of the curve, the line is not considered to cross the curve,
 | 
| -    but if it is equal to cubic[3].fY then it is considered to
 | 
| -    cross.
 | 
| -    Optional outgoing "ambiguous" argument indicates whether the answer is
 | 
| -    ambiguous because the query occurred exactly at one of the endpoints' y
 | 
| -    coordinates, indicating that another query y coordinate is preferred
 | 
| -    for robustness.
 | 
| - */
 | 
| -bool SkXRayCrossesMonotonicCubic(const SkXRay& pt, const SkPoint cubic[4],
 | 
| -                                 bool* ambiguous = NULL);
 | 
| -
 | 
| -/** Given an arbitrary cubic bezier, return the number of times an xray crosses
 | 
| -    the cubic. Valid return values are [0..3]
 | 
| -    By definition the cubic is open at the starting point; in other
 | 
| -    words, if pt.fY is equivalent to cubic[0].fY, and pt.fX is to the
 | 
| -    left of the curve, the line is not considered to cross the curve,
 | 
| -    but if it is equal to cubic[3].fY then it is considered to
 | 
| -    cross.
 | 
| -    Optional outgoing "ambiguous" argument indicates whether the answer is
 | 
| -    ambiguous because the query occurred exactly at one of the endpoints' y
 | 
| -    coordinates or at a tangent point, indicating that another query y
 | 
| -    coordinate is preferred for robustness.
 | 
| - */
 | 
| -int SkNumXRayCrossingsForCubic(const SkXRay& pt, const SkPoint cubic[4],
 | 
| -                               bool* ambiguous = NULL);
 | 
| -
 | 
| -///////////////////////////////////////////////////////////////////////////////
 | 
| -
 | 
| -enum SkRotationDirection {
 | 
| -    kCW_SkRotationDirection,
 | 
| -    kCCW_SkRotationDirection
 | 
| -};
 | 
| -
 | 
| -/** Maximum number of points needed in the quadPoints[] parameter for
 | 
| -    SkBuildQuadArc()
 | 
| -*/
 | 
| -#define kSkBuildQuadArcStorage  17
 | 
| -
 | 
| -/** Given 2 unit vectors and a rotation direction, fill out the specified
 | 
| -    array of points with quadratic segments. Return is the number of points
 | 
| -    written to, which will be { 0, 3, 5, 7, ... kSkBuildQuadArcStorage }
 | 
| -
 | 
| -    matrix, if not null, is appled to the points before they are returned.
 | 
| -*/
 | 
| -int SkBuildQuadArc(const SkVector& unitStart, const SkVector& unitStop,
 | 
| -                   SkRotationDirection, const SkMatrix*, SkPoint quadPoints[]);
 | 
| -
 | 
| -// experimental
 | 
| -struct SkConic {
 | 
| -    SkPoint  fPts[3];
 | 
| -    SkScalar fW;
 | 
| -
 | 
| -    void set(const SkPoint pts[3], SkScalar w) {
 | 
| -        memcpy(fPts, pts, 3 * sizeof(SkPoint));
 | 
| -        fW = w;
 | 
| -    }
 | 
| -
 | 
| -    /**
 | 
| -     *  Given a t-value [0...1] return its position and/or tangent.
 | 
| -     *  If pos is not null, return its position at the t-value.
 | 
| -     *  If tangent is not null, return its tangent at the t-value. NOTE the
 | 
| -     *  tangent value's length is arbitrary, and only its direction should
 | 
| -     *  be used.
 | 
| -     */
 | 
| -    void evalAt(SkScalar t, SkPoint* pos, SkVector* tangent = NULL) const;
 | 
| -    void chopAt(SkScalar t, SkConic dst[2]) const;
 | 
| -    void chop(SkConic dst[2]) const;
 | 
| -
 | 
| -    void computeAsQuadError(SkVector* err) const;
 | 
| -    bool asQuadTol(SkScalar tol) const;
 | 
| -
 | 
| -    /**
 | 
| -     *  return the power-of-2 number of quads needed to approximate this conic
 | 
| -     *  with a sequence of quads. Will be >= 0.
 | 
| -     */
 | 
| -    int computeQuadPOW2(SkScalar tol) const;
 | 
| -
 | 
| -    /**
 | 
| -     *  Chop this conic into N quads, stored continguously in pts[], where
 | 
| -     *  N = 1 << pow2. The amount of storage needed is (1 + 2 * N)
 | 
| -     */
 | 
| -    int chopIntoQuadsPOW2(SkPoint pts[], int pow2) const;
 | 
| -
 | 
| -    bool findXExtrema(SkScalar* t) const;
 | 
| -    bool findYExtrema(SkScalar* t) const;
 | 
| -    bool chopAtXExtrema(SkConic dst[2]) const;
 | 
| -    bool chopAtYExtrema(SkConic dst[2]) const;
 | 
| -
 | 
| -    void computeTightBounds(SkRect* bounds) const;
 | 
| -    void computeFastBounds(SkRect* bounds) const;
 | 
| -
 | 
| -    /** Find the parameter value where the conic takes on its maximum curvature.
 | 
| -     *
 | 
| -     *  @param t   output scalar for max curvature.  Will be unchanged if
 | 
| -     *             max curvature outside 0..1 range.
 | 
| -     *
 | 
| -     *  @return  true if max curvature found inside 0..1 range, false otherwise
 | 
| -     */
 | 
| -    bool findMaxCurvature(SkScalar* t) const;
 | 
| -};
 | 
| -
 | 
| -#include "SkTemplates.h"
 | 
| -
 | 
| -/**
 | 
| - *  Help class to allocate storage for approximating a conic with N quads.
 | 
| - */
 | 
| -class SkAutoConicToQuads {
 | 
| -public:
 | 
| -    SkAutoConicToQuads() : fQuadCount(0) {}
 | 
| -
 | 
| -    /**
 | 
| -     *  Given a conic and a tolerance, return the array of points for the
 | 
| -     *  approximating quad(s). Call countQuads() to know the number of quads
 | 
| -     *  represented in these points.
 | 
| -     *
 | 
| -     *  The quads are allocated to share end-points. e.g. if there are 4 quads,
 | 
| -     *  there will be 9 points allocated as follows
 | 
| -     *      quad[0] == pts[0..2]
 | 
| -     *      quad[1] == pts[2..4]
 | 
| -     *      quad[2] == pts[4..6]
 | 
| -     *      quad[3] == pts[6..8]
 | 
| -     */
 | 
| -    const SkPoint* computeQuads(const SkConic& conic, SkScalar tol) {
 | 
| -        int pow2 = conic.computeQuadPOW2(tol);
 | 
| -        fQuadCount = 1 << pow2;
 | 
| -        SkPoint* pts = fStorage.reset(1 + 2 * fQuadCount);
 | 
| -        conic.chopIntoQuadsPOW2(pts, pow2);
 | 
| -        return pts;
 | 
| -    }
 | 
| -
 | 
| -    const SkPoint* computeQuads(const SkPoint pts[3], SkScalar weight,
 | 
| -                                SkScalar tol) {
 | 
| -        SkConic conic;
 | 
| -        conic.set(pts, weight);
 | 
| -        return computeQuads(conic, tol);
 | 
| -    }
 | 
| -
 | 
| -    int countQuads() const { return fQuadCount; }
 | 
| -
 | 
| -private:
 | 
| -    enum {
 | 
| -        kQuadCount = 8, // should handle most conics
 | 
| -        kPointCount = 1 + 2 * kQuadCount,
 | 
| -    };
 | 
| -    SkAutoSTMalloc<kPointCount, SkPoint> fStorage;
 | 
| -    int fQuadCount; // #quads for current usage
 | 
| -};
 | 
| -
 | 
| -#endif
 | 
| 
 |