| OLD | NEW |
| (Empty) | |
| 1 /* |
| 2 * G.722 ADPCM audio decoder |
| 3 * |
| 4 * Copyright (c) CMU 1993 Computer Science, Speech Group |
| 5 * Chengxiang Lu and Alex Hauptmann |
| 6 * Copyright (c) 2005 Steve Underwood <steveu at coppice.org> |
| 7 * Copyright (c) 2009 Kenan Gillet |
| 8 * Copyright (c) 2010 Martin Storsjo |
| 9 * |
| 10 * This file is part of FFmpeg. |
| 11 * |
| 12 * FFmpeg is free software; you can redistribute it and/or |
| 13 * modify it under the terms of the GNU Lesser General Public |
| 14 * License as published by the Free Software Foundation; either |
| 15 * version 2.1 of the License, or (at your option) any later version. |
| 16 * |
| 17 * FFmpeg is distributed in the hope that it will be useful, |
| 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 20 * Lesser General Public License for more details. |
| 21 * |
| 22 * You should have received a copy of the GNU Lesser General Public |
| 23 * License along with FFmpeg; if not, write to the Free Software |
| 24 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| 25 */ |
| 26 |
| 27 /** |
| 28 * @file |
| 29 * |
| 30 * G.722 ADPCM audio codec |
| 31 * |
| 32 * This G.722 decoder is a bit-exact implementation of the ITU G.722 |
| 33 * specification for all three specified bitrates - 64000bps, 56000bps |
| 34 * and 48000bps. It passes the ITU tests. |
| 35 * |
| 36 * @note For the 56000bps and 48000bps bitrates, the lowest 1 or 2 bits |
| 37 * respectively of each byte are ignored. |
| 38 */ |
| 39 |
| 40 #include "avcodec.h" |
| 41 #include "mathops.h" |
| 42 #include "get_bits.h" |
| 43 |
| 44 #define PREV_SAMPLES_BUF_SIZE 1024 |
| 45 |
| 46 typedef struct { |
| 47 int16_t prev_samples[PREV_SAMPLES_BUF_SIZE]; ///< memory of past decoded sam
ples |
| 48 int prev_samples_pos; ///< the number of values in prev_samples |
| 49 |
| 50 /** |
| 51 * The band[0] and band[1] correspond respectively to the lower band and hig
her band. |
| 52 */ |
| 53 struct G722Band { |
| 54 int16_t s_predictor; ///< predictor output value |
| 55 int32_t s_zero; ///< previous output signal from zero predi
ctor |
| 56 int8_t part_reconst_mem[2]; ///< signs of previous partially reconstruc
ted signals |
| 57 int16_t prev_qtzd_reconst; ///< previous quantized reconstructed signa
l (internal value, using low_inv_quant4) |
| 58 int16_t pole_mem[2]; ///< second-order pole section coefficient
buffer |
| 59 int32_t diff_mem[6]; ///< quantizer difference signal memory |
| 60 int16_t zero_mem[6]; ///< Seventh-order zero section coefficient
buffer |
| 61 int16_t log_factor; ///< delayed 2-logarithmic quantizer factor |
| 62 int16_t scale_factor; ///< delayed quantizer scale factor |
| 63 } band[2]; |
| 64 } G722Context; |
| 65 |
| 66 |
| 67 static const int8_t sign_lookup[2] = { -1, 1 }; |
| 68 |
| 69 static const int16_t inv_log2_table[32] = { |
| 70 2048, 2093, 2139, 2186, 2233, 2282, 2332, 2383, |
| 71 2435, 2489, 2543, 2599, 2656, 2714, 2774, 2834, |
| 72 2896, 2960, 3025, 3091, 3158, 3228, 3298, 3371, |
| 73 3444, 3520, 3597, 3676, 3756, 3838, 3922, 4008 |
| 74 }; |
| 75 static const int16_t high_log_factor_step[2] = { 798, -214 }; |
| 76 static const int16_t high_inv_quant[4] = { -926, -202, 926, 202 }; |
| 77 /** |
| 78 * low_log_factor_step[index] == wl[rl42[index]] |
| 79 */ |
| 80 static const int16_t low_log_factor_step[16] = { |
| 81 -60, 3042, 1198, 538, 334, 172, 58, -30, |
| 82 3042, 1198, 538, 334, 172, 58, -30, -60 |
| 83 }; |
| 84 static const int16_t low_inv_quant4[16] = { |
| 85 0, -2557, -1612, -1121, -786, -530, -323, -150, |
| 86 2557, 1612, 1121, 786, 530, 323, 150, 0 |
| 87 }; |
| 88 |
| 89 /** |
| 90 * quadrature mirror filter (QMF) coefficients |
| 91 * |
| 92 * ITU-T G.722 Table 11 |
| 93 */ |
| 94 static const int16_t qmf_coeffs[12] = { |
| 95 3, -11, 12, 32, -210, 951, 3876, -805, 362, -156, 53, -11, |
| 96 }; |
| 97 |
| 98 |
| 99 /** |
| 100 * adaptive predictor |
| 101 * |
| 102 * @param cur_diff the dequantized and scaled delta calculated from the |
| 103 * current codeword |
| 104 */ |
| 105 static void do_adaptive_prediction(struct G722Band *band, const int cur_diff) |
| 106 { |
| 107 int sg[2], limit, i, cur_qtzd_reconst; |
| 108 |
| 109 const int cur_part_reconst = band->s_zero + cur_diff < 0; |
| 110 |
| 111 sg[0] = sign_lookup[cur_part_reconst != band->part_reconst_mem[0]]; |
| 112 sg[1] = sign_lookup[cur_part_reconst == band->part_reconst_mem[1]]; |
| 113 band->part_reconst_mem[1] = band->part_reconst_mem[0]; |
| 114 band->part_reconst_mem[0] = cur_part_reconst; |
| 115 |
| 116 band->pole_mem[1] = av_clip((sg[0] * av_clip(band->pole_mem[0], -8191, 8191)
>> 5) + |
| 117 (sg[1] << 7) + (band->pole_mem[1] * 127 >> 7), -
12288, 12288); |
| 118 |
| 119 limit = 15360 - band->pole_mem[1]; |
| 120 band->pole_mem[0] = av_clip(-192 * sg[0] + (band->pole_mem[0] * 255 >> 8), -
limit, limit); |
| 121 |
| 122 |
| 123 if (cur_diff) { |
| 124 for (i = 0; i < 6; i++) |
| 125 band->zero_mem[i] = ((band->zero_mem[i]*255) >> 8) + |
| 126 ((band->diff_mem[i]^cur_diff) < 0 ? -128 : 128); |
| 127 } else |
| 128 for (i = 0; i < 6; i++) |
| 129 band->zero_mem[i] = (band->zero_mem[i]*255) >> 8; |
| 130 |
| 131 for (i = 5; i > 0; i--) |
| 132 band->diff_mem[i] = band->diff_mem[i-1]; |
| 133 band->diff_mem[0] = av_clip_int16(cur_diff << 1); |
| 134 |
| 135 band->s_zero = 0; |
| 136 for (i = 5; i >= 0; i--) |
| 137 band->s_zero += (band->zero_mem[i]*band->diff_mem[i]) >> 15; |
| 138 |
| 139 |
| 140 cur_qtzd_reconst = av_clip_int16((band->s_predictor + cur_diff) << 1); |
| 141 band->s_predictor = av_clip_int16(band->s_zero + |
| 142 (band->pole_mem[0] * cur_qtzd_reconst >> 1
5) + |
| 143 (band->pole_mem[1] * band->prev_qtzd_recon
st >> 15)); |
| 144 band->prev_qtzd_reconst = cur_qtzd_reconst; |
| 145 } |
| 146 |
| 147 static int inline linear_scale_factor(const int log_factor) |
| 148 { |
| 149 const int wd1 = inv_log2_table[(log_factor >> 6) & 31]; |
| 150 const int shift = log_factor >> 11; |
| 151 return shift < 0 ? wd1 >> -shift : wd1 << shift; |
| 152 } |
| 153 |
| 154 static void update_low_predictor(struct G722Band *band, const int ilow) |
| 155 { |
| 156 do_adaptive_prediction(band, |
| 157 band->scale_factor * low_inv_quant4[ilow] >> 10); |
| 158 |
| 159 // quantizer adaptation |
| 160 band->log_factor = av_clip((band->log_factor * 127 >> 7) + |
| 161 low_log_factor_step[ilow], 0, 18432); |
| 162 band->scale_factor = linear_scale_factor(band->log_factor - (8 << 11)); |
| 163 } |
| 164 |
| 165 static void update_high_predictor(struct G722Band *band, const int dhigh, |
| 166 const int ihigh) |
| 167 { |
| 168 do_adaptive_prediction(band, dhigh); |
| 169 |
| 170 // quantizer adaptation |
| 171 band->log_factor = av_clip((band->log_factor * 127 >> 7) + |
| 172 high_log_factor_step[ihigh&1], 0, 22528); |
| 173 band->scale_factor = linear_scale_factor(band->log_factor - (10 << 11)); |
| 174 } |
| 175 |
| 176 static void apply_qmf(const int16_t *prev_samples, int *xout1, int *xout2) |
| 177 { |
| 178 int i; |
| 179 |
| 180 *xout1 = 0; |
| 181 *xout2 = 0; |
| 182 for (i = 0; i < 12; i++) { |
| 183 MAC16(*xout2, prev_samples[2*i ], qmf_coeffs[i ]); |
| 184 MAC16(*xout1, prev_samples[2*i+1], qmf_coeffs[11-i]); |
| 185 } |
| 186 } |
| 187 |
| 188 static av_cold int g722_init(AVCodecContext * avctx) |
| 189 { |
| 190 G722Context *c = avctx->priv_data; |
| 191 |
| 192 if (avctx->channels != 1) { |
| 193 av_log(avctx, AV_LOG_ERROR, "Only mono tracks are allowed.\n"); |
| 194 return AVERROR_INVALIDDATA; |
| 195 } |
| 196 avctx->sample_fmt = SAMPLE_FMT_S16; |
| 197 |
| 198 switch (avctx->bits_per_coded_sample) { |
| 199 case 8: |
| 200 case 7: |
| 201 case 6: |
| 202 break; |
| 203 default: |
| 204 av_log(avctx, AV_LOG_WARNING, "Unsupported bits_per_coded_sample [%d], " |
| 205 "assuming 8\n", |
| 206 avctx->bits_per_coded_sample); |
| 207 case 0: |
| 208 avctx->bits_per_coded_sample = 8; |
| 209 break; |
| 210 } |
| 211 |
| 212 c->band[0].scale_factor = 8; |
| 213 c->band[1].scale_factor = 2; |
| 214 c->prev_samples_pos = 22; |
| 215 |
| 216 if (avctx->lowres) |
| 217 avctx->sample_rate /= 2; |
| 218 |
| 219 return 0; |
| 220 } |
| 221 |
| 222 static const int16_t low_inv_quant5[32] = { |
| 223 -35, -35, -2919, -2195, -1765, -1458, -1219, -1023, |
| 224 -858, -714, -587, -473, -370, -276, -190, -110, |
| 225 2919, 2195, 1765, 1458, 1219, 1023, 858, 714, |
| 226 587, 473, 370, 276, 190, 110, 35, -35 |
| 227 }; |
| 228 static const int16_t low_inv_quant6[64] = { |
| 229 -17, -17, -17, -17, -3101, -2738, -2376, -2088, |
| 230 -1873, -1689, -1535, -1399, -1279, -1170, -1072, -982, |
| 231 -899, -822, -750, -682, -618, -558, -501, -447, |
| 232 -396, -347, -300, -254, -211, -170, -130, -91, |
| 233 3101, 2738, 2376, 2088, 1873, 1689, 1535, 1399, |
| 234 1279, 1170, 1072, 982, 899, 822, 750, 682, |
| 235 618, 558, 501, 447, 396, 347, 300, 254, |
| 236 211, 170, 130, 91, 54, 17, -54, -17 |
| 237 }; |
| 238 |
| 239 static const int16_t *low_inv_quants[3] = { low_inv_quant6, low_inv_quant5, |
| 240 low_inv_quant4 }; |
| 241 |
| 242 static int g722_decode_frame(AVCodecContext *avctx, void *data, |
| 243 int *data_size, AVPacket *avpkt) |
| 244 { |
| 245 G722Context *c = avctx->priv_data; |
| 246 int16_t *out_buf = data; |
| 247 int j, out_len = 0; |
| 248 const int skip = 8 - avctx->bits_per_coded_sample; |
| 249 const int16_t *quantizer_table = low_inv_quants[skip]; |
| 250 GetBitContext gb; |
| 251 |
| 252 init_get_bits(&gb, avpkt->data, avpkt->size * 8); |
| 253 |
| 254 for (j = 0; j < avpkt->size; j++) { |
| 255 int ilow, ihigh, rlow; |
| 256 |
| 257 ihigh = get_bits(&gb, 2); |
| 258 ilow = get_bits(&gb, 6 - skip); |
| 259 skip_bits(&gb, skip); |
| 260 |
| 261 rlow = av_clip((c->band[0].scale_factor * quantizer_table[ilow] >> 10) |
| 262 + c->band[0].s_predictor, -16384, 16383); |
| 263 |
| 264 update_low_predictor(&c->band[0], ilow >> (2 - skip)); |
| 265 |
| 266 if (!avctx->lowres) { |
| 267 const int dhigh = c->band[1].scale_factor * |
| 268 high_inv_quant[ihigh] >> 10; |
| 269 const int rhigh = av_clip(dhigh + c->band[1].s_predictor, |
| 270 -16384, 16383); |
| 271 int xout1, xout2; |
| 272 |
| 273 update_high_predictor(&c->band[1], dhigh, ihigh); |
| 274 |
| 275 c->prev_samples[c->prev_samples_pos++] = rlow + rhigh; |
| 276 c->prev_samples[c->prev_samples_pos++] = rlow - rhigh; |
| 277 apply_qmf(c->prev_samples + c->prev_samples_pos - 24, |
| 278 &xout1, &xout2); |
| 279 out_buf[out_len++] = av_clip_int16(xout1 >> 12); |
| 280 out_buf[out_len++] = av_clip_int16(xout2 >> 12); |
| 281 if (c->prev_samples_pos >= PREV_SAMPLES_BUF_SIZE) { |
| 282 memmove(c->prev_samples, |
| 283 c->prev_samples + c->prev_samples_pos - 22, |
| 284 22 * sizeof(c->prev_samples[0])); |
| 285 c->prev_samples_pos = 22; |
| 286 } |
| 287 } else |
| 288 out_buf[out_len++] = rlow; |
| 289 } |
| 290 *data_size = out_len << 1; |
| 291 return avpkt->size; |
| 292 } |
| 293 |
| 294 AVCodec adpcm_g722_decoder = { |
| 295 .name = "g722", |
| 296 .type = AVMEDIA_TYPE_AUDIO, |
| 297 .id = CODEC_ID_ADPCM_G722, |
| 298 .priv_data_size = sizeof(G722Context), |
| 299 .init = g722_init, |
| 300 .decode = g722_decode_frame, |
| 301 .long_name = NULL_IF_CONFIG_SMALL("G.722 ADPCM"), |
| 302 .max_lowres = 1, |
| 303 }; |
| 304 |
| OLD | NEW |