| Index: src/base/safe_math_impl.h
|
| diff --git a/src/base/safe_math_impl.h b/src/base/safe_math_impl.h
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..b826e23918362a77d4f478de2f72b45b04aae314
|
| --- /dev/null
|
| +++ b/src/base/safe_math_impl.h
|
| @@ -0,0 +1,529 @@
|
| +// Copyright 2014 The Chromium Authors. All rights reserved.
|
| +// Use of this source code is governed by a BSD-style license that can be
|
| +// found in the LICENSE file.
|
| +
|
| +// Slightly adapted for inclusion in V8.
|
| +// Copyright 2014 the V8 project authors. All rights reserved.
|
| +
|
| +#ifndef BASE_SAFE_MATH_IMPL_H_
|
| +#define BASE_SAFE_MATH_IMPL_H_
|
| +
|
| +#include <stdint.h>
|
| +
|
| +#include <cmath>
|
| +#include <cstdlib>
|
| +#include <limits>
|
| +
|
| +#include "src/base/macros.h"
|
| +#include "src/base/safe_conversions.h"
|
| +
|
| +namespace v8 {
|
| +namespace internal {
|
| +
|
| +
|
| +// From Chromium's base/template_util.h:
|
| +
|
| +template<class T, T v>
|
| +struct integral_constant {
|
| + static const T value = v;
|
| + typedef T value_type;
|
| + typedef integral_constant<T, v> type;
|
| +};
|
| +
|
| +template <class T, T v> const T integral_constant<T, v>::value;
|
| +
|
| +typedef integral_constant<bool, true> true_type;
|
| +typedef integral_constant<bool, false> false_type;
|
| +
|
| +template <class T, class U> struct is_same : public false_type {};
|
| +template <class T> struct is_same<T, T> : true_type {};
|
| +
|
| +template<bool B, class T = void>
|
| +struct enable_if {};
|
| +
|
| +template<class T>
|
| +struct enable_if<true, T> { typedef T type; };
|
| +
|
| +// </template_util.h>
|
| +
|
| +
|
| +// Everything from here up to the floating point operations is portable C++,
|
| +// but it may not be fast. This code could be split based on
|
| +// platform/architecture and replaced with potentially faster implementations.
|
| +
|
| +// Integer promotion templates used by the portable checked integer arithmetic.
|
| +template <size_t Size, bool IsSigned>
|
| +struct IntegerForSizeAndSign;
|
| +template <>
|
| +struct IntegerForSizeAndSign<1, true> {
|
| + typedef int8_t type;
|
| +};
|
| +template <>
|
| +struct IntegerForSizeAndSign<1, false> {
|
| + typedef uint8_t type;
|
| +};
|
| +template <>
|
| +struct IntegerForSizeAndSign<2, true> {
|
| + typedef int16_t type;
|
| +};
|
| +template <>
|
| +struct IntegerForSizeAndSign<2, false> {
|
| + typedef uint16_t type;
|
| +};
|
| +template <>
|
| +struct IntegerForSizeAndSign<4, true> {
|
| + typedef int32_t type;
|
| +};
|
| +template <>
|
| +struct IntegerForSizeAndSign<4, false> {
|
| + typedef uint32_t type;
|
| +};
|
| +template <>
|
| +struct IntegerForSizeAndSign<8, true> {
|
| + typedef int64_t type;
|
| +};
|
| +template <>
|
| +struct IntegerForSizeAndSign<8, false> {
|
| + typedef uint64_t type;
|
| +};
|
| +
|
| +// WARNING: We have no IntegerForSizeAndSign<16, *>. If we ever add one to
|
| +// support 128-bit math, then the ArithmeticPromotion template below will need
|
| +// to be updated (or more likely replaced with a decltype expression).
|
| +
|
| +template <typename Integer>
|
| +struct UnsignedIntegerForSize {
|
| + typedef typename enable_if<
|
| + std::numeric_limits<Integer>::is_integer,
|
| + typename IntegerForSizeAndSign<sizeof(Integer), false>::type>::type type;
|
| +};
|
| +
|
| +template <typename Integer>
|
| +struct SignedIntegerForSize {
|
| + typedef typename enable_if<
|
| + std::numeric_limits<Integer>::is_integer,
|
| + typename IntegerForSizeAndSign<sizeof(Integer), true>::type>::type type;
|
| +};
|
| +
|
| +template <typename Integer>
|
| +struct TwiceWiderInteger {
|
| + typedef typename enable_if<
|
| + std::numeric_limits<Integer>::is_integer,
|
| + typename IntegerForSizeAndSign<
|
| + sizeof(Integer) * 2,
|
| + std::numeric_limits<Integer>::is_signed>::type>::type type;
|
| +};
|
| +
|
| +template <typename Integer>
|
| +struct PositionOfSignBit {
|
| + static const typename enable_if<std::numeric_limits<Integer>::is_integer,
|
| + size_t>::type value = 8 * sizeof(Integer) - 1;
|
| +};
|
| +
|
| +// Helper templates for integer manipulations.
|
| +
|
| +template <typename T>
|
| +bool HasSignBit(T x) {
|
| + // Cast to unsigned since right shift on signed is undefined.
|
| + return !!(static_cast<typename UnsignedIntegerForSize<T>::type>(x) >>
|
| + PositionOfSignBit<T>::value);
|
| +}
|
| +
|
| +// This wrapper undoes the standard integer promotions.
|
| +template <typename T>
|
| +T BinaryComplement(T x) {
|
| + return ~x;
|
| +}
|
| +
|
| +// Here are the actual portable checked integer math implementations.
|
| +// TODO(jschuh): Break this code out from the enable_if pattern and find a clean
|
| +// way to coalesce things into the CheckedNumericState specializations below.
|
| +
|
| +template <typename T>
|
| +typename enable_if<std::numeric_limits<T>::is_integer, T>::type
|
| +CheckedAdd(T x, T y, RangeConstraint* validity) {
|
| + // Since the value of x+y is undefined if we have a signed type, we compute
|
| + // it using the unsigned type of the same size.
|
| + typedef typename UnsignedIntegerForSize<T>::type UnsignedDst;
|
| + UnsignedDst ux = static_cast<UnsignedDst>(x);
|
| + UnsignedDst uy = static_cast<UnsignedDst>(y);
|
| + UnsignedDst uresult = ux + uy;
|
| + // Addition is valid if the sign of (x + y) is equal to either that of x or
|
| + // that of y.
|
| + if (std::numeric_limits<T>::is_signed) {
|
| + if (HasSignBit(BinaryComplement((uresult ^ ux) & (uresult ^ uy))))
|
| + *validity = RANGE_VALID;
|
| + else // Direction of wrap is inverse of result sign.
|
| + *validity = HasSignBit(uresult) ? RANGE_OVERFLOW : RANGE_UNDERFLOW;
|
| +
|
| + } else { // Unsigned is either valid or overflow.
|
| + *validity = BinaryComplement(x) >= y ? RANGE_VALID : RANGE_OVERFLOW;
|
| + }
|
| + return static_cast<T>(uresult);
|
| +}
|
| +
|
| +template <typename T>
|
| +typename enable_if<std::numeric_limits<T>::is_integer, T>::type
|
| +CheckedSub(T x, T y, RangeConstraint* validity) {
|
| + // Since the value of x+y is undefined if we have a signed type, we compute
|
| + // it using the unsigned type of the same size.
|
| + typedef typename UnsignedIntegerForSize<T>::type UnsignedDst;
|
| + UnsignedDst ux = static_cast<UnsignedDst>(x);
|
| + UnsignedDst uy = static_cast<UnsignedDst>(y);
|
| + UnsignedDst uresult = ux - uy;
|
| + // Subtraction is valid if either x and y have same sign, or (x-y) and x have
|
| + // the same sign.
|
| + if (std::numeric_limits<T>::is_signed) {
|
| + if (HasSignBit(BinaryComplement((uresult ^ ux) & (ux ^ uy))))
|
| + *validity = RANGE_VALID;
|
| + else // Direction of wrap is inverse of result sign.
|
| + *validity = HasSignBit(uresult) ? RANGE_OVERFLOW : RANGE_UNDERFLOW;
|
| +
|
| + } else { // Unsigned is either valid or underflow.
|
| + *validity = x >= y ? RANGE_VALID : RANGE_UNDERFLOW;
|
| + }
|
| + return static_cast<T>(uresult);
|
| +}
|
| +
|
| +// Integer multiplication is a bit complicated. In the fast case we just
|
| +// we just promote to a twice wider type, and range check the result. In the
|
| +// slow case we need to manually check that the result won't be truncated by
|
| +// checking with division against the appropriate bound.
|
| +template <typename T>
|
| +typename enable_if<
|
| + std::numeric_limits<T>::is_integer && sizeof(T) * 2 <= sizeof(uintmax_t),
|
| + T>::type
|
| +CheckedMul(T x, T y, RangeConstraint* validity) {
|
| + typedef typename TwiceWiderInteger<T>::type IntermediateType;
|
| + IntermediateType tmp =
|
| + static_cast<IntermediateType>(x) * static_cast<IntermediateType>(y);
|
| + *validity = DstRangeRelationToSrcRange<T>(tmp);
|
| + return static_cast<T>(tmp);
|
| +}
|
| +
|
| +template <typename T>
|
| +typename enable_if<std::numeric_limits<T>::is_integer &&
|
| + std::numeric_limits<T>::is_signed &&
|
| + (sizeof(T) * 2 > sizeof(uintmax_t)),
|
| + T>::type
|
| +CheckedMul(T x, T y, RangeConstraint* validity) {
|
| + // if either side is zero then the result will be zero.
|
| + if (!(x || y)) {
|
| + return RANGE_VALID;
|
| +
|
| + } else if (x > 0) {
|
| + if (y > 0)
|
| + *validity =
|
| + x <= std::numeric_limits<T>::max() / y ? RANGE_VALID : RANGE_OVERFLOW;
|
| + else
|
| + *validity = y >= std::numeric_limits<T>::min() / x ? RANGE_VALID
|
| + : RANGE_UNDERFLOW;
|
| +
|
| + } else {
|
| + if (y > 0)
|
| + *validity = x >= std::numeric_limits<T>::min() / y ? RANGE_VALID
|
| + : RANGE_UNDERFLOW;
|
| + else
|
| + *validity =
|
| + y >= std::numeric_limits<T>::max() / x ? RANGE_VALID : RANGE_OVERFLOW;
|
| + }
|
| +
|
| + return x * y;
|
| +}
|
| +
|
| +template <typename T>
|
| +typename enable_if<std::numeric_limits<T>::is_integer &&
|
| + !std::numeric_limits<T>::is_signed &&
|
| + (sizeof(T) * 2 > sizeof(uintmax_t)),
|
| + T>::type
|
| +CheckedMul(T x, T y, RangeConstraint* validity) {
|
| + *validity = (y == 0 || x <= std::numeric_limits<T>::max() / y)
|
| + ? RANGE_VALID
|
| + : RANGE_OVERFLOW;
|
| + return x * y;
|
| +}
|
| +
|
| +// Division just requires a check for an invalid negation on signed min/-1.
|
| +template <typename T>
|
| +T CheckedDiv(
|
| + T x,
|
| + T y,
|
| + RangeConstraint* validity,
|
| + typename enable_if<std::numeric_limits<T>::is_integer, int>::type = 0) {
|
| + if (std::numeric_limits<T>::is_signed && x == std::numeric_limits<T>::min() &&
|
| + y == static_cast<T>(-1)) {
|
| + *validity = RANGE_OVERFLOW;
|
| + return std::numeric_limits<T>::min();
|
| + }
|
| +
|
| + *validity = RANGE_VALID;
|
| + return x / y;
|
| +}
|
| +
|
| +template <typename T>
|
| +typename enable_if<
|
| + std::numeric_limits<T>::is_integer && std::numeric_limits<T>::is_signed,
|
| + T>::type
|
| +CheckedMod(T x, T y, RangeConstraint* validity) {
|
| + *validity = y > 0 ? RANGE_VALID : RANGE_INVALID;
|
| + return x % y;
|
| +}
|
| +
|
| +template <typename T>
|
| +typename enable_if<
|
| + std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed,
|
| + T>::type
|
| +CheckedMod(T x, T y, RangeConstraint* validity) {
|
| + *validity = RANGE_VALID;
|
| + return x % y;
|
| +}
|
| +
|
| +template <typename T>
|
| +typename enable_if<
|
| + std::numeric_limits<T>::is_integer && std::numeric_limits<T>::is_signed,
|
| + T>::type
|
| +CheckedNeg(T value, RangeConstraint* validity) {
|
| + *validity =
|
| + value != std::numeric_limits<T>::min() ? RANGE_VALID : RANGE_OVERFLOW;
|
| + // The negation of signed min is min, so catch that one.
|
| + return -value;
|
| +}
|
| +
|
| +template <typename T>
|
| +typename enable_if<
|
| + std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed,
|
| + T>::type
|
| +CheckedNeg(T value, RangeConstraint* validity) {
|
| + // The only legal unsigned negation is zero.
|
| + *validity = value ? RANGE_UNDERFLOW : RANGE_VALID;
|
| + return static_cast<T>(
|
| + -static_cast<typename SignedIntegerForSize<T>::type>(value));
|
| +}
|
| +
|
| +template <typename T>
|
| +typename enable_if<
|
| + std::numeric_limits<T>::is_integer && std::numeric_limits<T>::is_signed,
|
| + T>::type
|
| +CheckedAbs(T value, RangeConstraint* validity) {
|
| + *validity =
|
| + value != std::numeric_limits<T>::min() ? RANGE_VALID : RANGE_OVERFLOW;
|
| + return std::abs(value);
|
| +}
|
| +
|
| +template <typename T>
|
| +typename enable_if<
|
| + std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed,
|
| + T>::type
|
| +CheckedAbs(T value, RangeConstraint* validity) {
|
| + // Absolute value of a positive is just its identiy.
|
| + *validity = RANGE_VALID;
|
| + return value;
|
| +}
|
| +
|
| +// These are the floating point stubs that the compiler needs to see. Only the
|
| +// negation operation is ever called.
|
| +#define BASE_FLOAT_ARITHMETIC_STUBS(NAME) \
|
| + template <typename T> \
|
| + typename enable_if<std::numeric_limits<T>::is_iec559, T>::type \
|
| + Checked##NAME(T, T, RangeConstraint*) { \
|
| + UNREACHABLE(); \
|
| + return 0; \
|
| + }
|
| +
|
| +BASE_FLOAT_ARITHMETIC_STUBS(Add)
|
| +BASE_FLOAT_ARITHMETIC_STUBS(Sub)
|
| +BASE_FLOAT_ARITHMETIC_STUBS(Mul)
|
| +BASE_FLOAT_ARITHMETIC_STUBS(Div)
|
| +BASE_FLOAT_ARITHMETIC_STUBS(Mod)
|
| +
|
| +#undef BASE_FLOAT_ARITHMETIC_STUBS
|
| +
|
| +template <typename T>
|
| +typename enable_if<std::numeric_limits<T>::is_iec559, T>::type CheckedNeg(
|
| + T value,
|
| + RangeConstraint*) {
|
| + return -value;
|
| +}
|
| +
|
| +template <typename T>
|
| +typename enable_if<std::numeric_limits<T>::is_iec559, T>::type CheckedAbs(
|
| + T value,
|
| + RangeConstraint*) {
|
| + return std::abs(value);
|
| +}
|
| +
|
| +// Floats carry around their validity state with them, but integers do not. So,
|
| +// we wrap the underlying value in a specialization in order to hide that detail
|
| +// and expose an interface via accessors.
|
| +enum NumericRepresentation {
|
| + NUMERIC_INTEGER,
|
| + NUMERIC_FLOATING,
|
| + NUMERIC_UNKNOWN
|
| +};
|
| +
|
| +template <typename NumericType>
|
| +struct GetNumericRepresentation {
|
| + static const NumericRepresentation value =
|
| + std::numeric_limits<NumericType>::is_integer
|
| + ? NUMERIC_INTEGER
|
| + : (std::numeric_limits<NumericType>::is_iec559 ? NUMERIC_FLOATING
|
| + : NUMERIC_UNKNOWN);
|
| +};
|
| +
|
| +template <typename T, NumericRepresentation type =
|
| + GetNumericRepresentation<T>::value>
|
| +class CheckedNumericState {};
|
| +
|
| +// Integrals require quite a bit of additional housekeeping to manage state.
|
| +template <typename T>
|
| +class CheckedNumericState<T, NUMERIC_INTEGER> {
|
| + private:
|
| + T value_;
|
| + RangeConstraint validity_;
|
| +
|
| + public:
|
| + template <typename Src, NumericRepresentation type>
|
| + friend class CheckedNumericState;
|
| +
|
| + CheckedNumericState() : value_(0), validity_(RANGE_VALID) {}
|
| +
|
| + template <typename Src>
|
| + CheckedNumericState(Src value, RangeConstraint validity)
|
| + : value_(value),
|
| + validity_(GetRangeConstraint(validity |
|
| + DstRangeRelationToSrcRange<T>(value))) {
|
| + // Argument must be numeric.
|
| + STATIC_ASSERT(std::numeric_limits<Src>::is_specialized);
|
| + }
|
| +
|
| + // Copy constructor.
|
| + template <typename Src>
|
| + CheckedNumericState(const CheckedNumericState<Src>& rhs)
|
| + : value_(static_cast<T>(rhs.value())),
|
| + validity_(GetRangeConstraint(
|
| + rhs.validity() | DstRangeRelationToSrcRange<T>(rhs.value()))) {}
|
| +
|
| + template <typename Src>
|
| + explicit CheckedNumericState(
|
| + Src value,
|
| + typename enable_if<std::numeric_limits<Src>::is_specialized, int>::type =
|
| + 0)
|
| + : value_(static_cast<T>(value)),
|
| + validity_(DstRangeRelationToSrcRange<T>(value)) {}
|
| +
|
| + RangeConstraint validity() const { return validity_; }
|
| + T value() const { return value_; }
|
| +};
|
| +
|
| +// Floating points maintain their own validity, but need translation wrappers.
|
| +template <typename T>
|
| +class CheckedNumericState<T, NUMERIC_FLOATING> {
|
| + private:
|
| + T value_;
|
| +
|
| + public:
|
| + template <typename Src, NumericRepresentation type>
|
| + friend class CheckedNumericState;
|
| +
|
| + CheckedNumericState() : value_(0.0) {}
|
| +
|
| + template <typename Src>
|
| + CheckedNumericState(
|
| + Src value,
|
| + RangeConstraint validity,
|
| + typename enable_if<std::numeric_limits<Src>::is_integer, int>::type = 0) {
|
| + switch (DstRangeRelationToSrcRange<T>(value)) {
|
| + case RANGE_VALID:
|
| + value_ = static_cast<T>(value);
|
| + break;
|
| +
|
| + case RANGE_UNDERFLOW:
|
| + value_ = -std::numeric_limits<T>::infinity();
|
| + break;
|
| +
|
| + case RANGE_OVERFLOW:
|
| + value_ = std::numeric_limits<T>::infinity();
|
| + break;
|
| +
|
| + case RANGE_INVALID:
|
| + value_ = std::numeric_limits<T>::quiet_NaN();
|
| + break;
|
| + }
|
| + }
|
| +
|
| + template <typename Src>
|
| + explicit CheckedNumericState(
|
| + Src value,
|
| + typename enable_if<std::numeric_limits<Src>::is_specialized, int>::type =
|
| + 0)
|
| + : value_(static_cast<T>(value)) {}
|
| +
|
| + // Copy constructor.
|
| + template <typename Src>
|
| + CheckedNumericState(const CheckedNumericState<Src>& rhs)
|
| + : value_(static_cast<T>(rhs.value())) {}
|
| +
|
| + RangeConstraint validity() const {
|
| + return GetRangeConstraint(value_ <= std::numeric_limits<T>::max(),
|
| + value_ >= -std::numeric_limits<T>::max());
|
| + }
|
| + T value() const { return value_; }
|
| +};
|
| +
|
| +// For integers less than 128-bit and floats 32-bit or larger, we can distil
|
| +// C/C++ arithmetic promotions down to two simple rules:
|
| +// 1. The type with the larger maximum exponent always takes precedence.
|
| +// 2. The resulting type must be promoted to at least an int.
|
| +// The following template specializations implement that promotion logic.
|
| +enum ArithmeticPromotionCategory {
|
| + LEFT_PROMOTION,
|
| + RIGHT_PROMOTION,
|
| + DEFAULT_PROMOTION
|
| +};
|
| +
|
| +template <typename Lhs,
|
| + typename Rhs = Lhs,
|
| + ArithmeticPromotionCategory Promotion =
|
| + (MaxExponent<Lhs>::value > MaxExponent<Rhs>::value)
|
| + ? (MaxExponent<Lhs>::value > MaxExponent<int>::value
|
| + ? LEFT_PROMOTION
|
| + : DEFAULT_PROMOTION)
|
| + : (MaxExponent<Rhs>::value > MaxExponent<int>::value
|
| + ? RIGHT_PROMOTION
|
| + : DEFAULT_PROMOTION) >
|
| +struct ArithmeticPromotion;
|
| +
|
| +template <typename Lhs, typename Rhs>
|
| +struct ArithmeticPromotion<Lhs, Rhs, LEFT_PROMOTION> {
|
| + typedef Lhs type;
|
| +};
|
| +
|
| +template <typename Lhs, typename Rhs>
|
| +struct ArithmeticPromotion<Lhs, Rhs, RIGHT_PROMOTION> {
|
| + typedef Rhs type;
|
| +};
|
| +
|
| +template <typename Lhs, typename Rhs>
|
| +struct ArithmeticPromotion<Lhs, Rhs, DEFAULT_PROMOTION> {
|
| + typedef int type;
|
| +};
|
| +
|
| +// We can statically check if operations on the provided types can wrap, so we
|
| +// can skip the checked operations if they're not needed. So, for an integer we
|
| +// care if the destination type preserves the sign and is twice the width of
|
| +// the source.
|
| +template <typename T, typename Lhs, typename Rhs>
|
| +struct IsIntegerArithmeticSafe {
|
| + static const bool value = !std::numeric_limits<T>::is_iec559 &&
|
| + StaticDstRangeRelationToSrcRange<T, Lhs>::value ==
|
| + NUMERIC_RANGE_CONTAINED &&
|
| + sizeof(T) >= (2 * sizeof(Lhs)) &&
|
| + StaticDstRangeRelationToSrcRange<T, Rhs>::value !=
|
| + NUMERIC_RANGE_CONTAINED &&
|
| + sizeof(T) >= (2 * sizeof(Rhs));
|
| +};
|
| +
|
| +} // namespace internal
|
| +} // namespace v8
|
| +
|
| +#endif // BASE_SAFE_MATH_IMPL_H_
|
|
|