OLD | NEW |
(Empty) | |
| 1 // Copyright 2014 The Chromium Authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. |
| 4 |
| 5 // Slightly adapted for inclusion in V8. |
| 6 // Copyright 2014 the V8 project authors. All rights reserved. |
| 7 |
| 8 #ifndef V8_BASE_SAFE_MATH_IMPL_H_ |
| 9 #define V8_BASE_SAFE_MATH_IMPL_H_ |
| 10 |
| 11 #include <stdint.h> |
| 12 |
| 13 #include <cmath> |
| 14 #include <cstdlib> |
| 15 #include <limits> |
| 16 |
| 17 #include "src/base/macros.h" |
| 18 #include "src/base/safe_conversions.h" |
| 19 |
| 20 namespace v8 { |
| 21 namespace base { |
| 22 namespace internal { |
| 23 |
| 24 |
| 25 // From Chromium's base/template_util.h: |
| 26 |
| 27 template<class T, T v> |
| 28 struct integral_constant { |
| 29 static const T value = v; |
| 30 typedef T value_type; |
| 31 typedef integral_constant<T, v> type; |
| 32 }; |
| 33 |
| 34 template <class T, T v> const T integral_constant<T, v>::value; |
| 35 |
| 36 typedef integral_constant<bool, true> true_type; |
| 37 typedef integral_constant<bool, false> false_type; |
| 38 |
| 39 template <class T, class U> struct is_same : public false_type {}; |
| 40 template <class T> struct is_same<T, T> : true_type {}; |
| 41 |
| 42 template<bool B, class T = void> |
| 43 struct enable_if {}; |
| 44 |
| 45 template<class T> |
| 46 struct enable_if<true, T> { typedef T type; }; |
| 47 |
| 48 // </template_util.h> |
| 49 |
| 50 |
| 51 // Everything from here up to the floating point operations is portable C++, |
| 52 // but it may not be fast. This code could be split based on |
| 53 // platform/architecture and replaced with potentially faster implementations. |
| 54 |
| 55 // Integer promotion templates used by the portable checked integer arithmetic. |
| 56 template <size_t Size, bool IsSigned> |
| 57 struct IntegerForSizeAndSign; |
| 58 template <> |
| 59 struct IntegerForSizeAndSign<1, true> { |
| 60 typedef int8_t type; |
| 61 }; |
| 62 template <> |
| 63 struct IntegerForSizeAndSign<1, false> { |
| 64 typedef uint8_t type; |
| 65 }; |
| 66 template <> |
| 67 struct IntegerForSizeAndSign<2, true> { |
| 68 typedef int16_t type; |
| 69 }; |
| 70 template <> |
| 71 struct IntegerForSizeAndSign<2, false> { |
| 72 typedef uint16_t type; |
| 73 }; |
| 74 template <> |
| 75 struct IntegerForSizeAndSign<4, true> { |
| 76 typedef int32_t type; |
| 77 }; |
| 78 template <> |
| 79 struct IntegerForSizeAndSign<4, false> { |
| 80 typedef uint32_t type; |
| 81 }; |
| 82 template <> |
| 83 struct IntegerForSizeAndSign<8, true> { |
| 84 typedef int64_t type; |
| 85 }; |
| 86 template <> |
| 87 struct IntegerForSizeAndSign<8, false> { |
| 88 typedef uint64_t type; |
| 89 }; |
| 90 |
| 91 // WARNING: We have no IntegerForSizeAndSign<16, *>. If we ever add one to |
| 92 // support 128-bit math, then the ArithmeticPromotion template below will need |
| 93 // to be updated (or more likely replaced with a decltype expression). |
| 94 |
| 95 template <typename Integer> |
| 96 struct UnsignedIntegerForSize { |
| 97 typedef typename enable_if< |
| 98 std::numeric_limits<Integer>::is_integer, |
| 99 typename IntegerForSizeAndSign<sizeof(Integer), false>::type>::type type; |
| 100 }; |
| 101 |
| 102 template <typename Integer> |
| 103 struct SignedIntegerForSize { |
| 104 typedef typename enable_if< |
| 105 std::numeric_limits<Integer>::is_integer, |
| 106 typename IntegerForSizeAndSign<sizeof(Integer), true>::type>::type type; |
| 107 }; |
| 108 |
| 109 template <typename Integer> |
| 110 struct TwiceWiderInteger { |
| 111 typedef typename enable_if< |
| 112 std::numeric_limits<Integer>::is_integer, |
| 113 typename IntegerForSizeAndSign< |
| 114 sizeof(Integer) * 2, |
| 115 std::numeric_limits<Integer>::is_signed>::type>::type type; |
| 116 }; |
| 117 |
| 118 template <typename Integer> |
| 119 struct PositionOfSignBit { |
| 120 static const typename enable_if<std::numeric_limits<Integer>::is_integer, |
| 121 size_t>::type value = 8 * sizeof(Integer) - 1; |
| 122 }; |
| 123 |
| 124 // Helper templates for integer manipulations. |
| 125 |
| 126 template <typename T> |
| 127 bool HasSignBit(T x) { |
| 128 // Cast to unsigned since right shift on signed is undefined. |
| 129 return !!(static_cast<typename UnsignedIntegerForSize<T>::type>(x) >> |
| 130 PositionOfSignBit<T>::value); |
| 131 } |
| 132 |
| 133 // This wrapper undoes the standard integer promotions. |
| 134 template <typename T> |
| 135 T BinaryComplement(T x) { |
| 136 return ~x; |
| 137 } |
| 138 |
| 139 // Here are the actual portable checked integer math implementations. |
| 140 // TODO(jschuh): Break this code out from the enable_if pattern and find a clean |
| 141 // way to coalesce things into the CheckedNumericState specializations below. |
| 142 |
| 143 template <typename T> |
| 144 typename enable_if<std::numeric_limits<T>::is_integer, T>::type |
| 145 CheckedAdd(T x, T y, RangeConstraint* validity) { |
| 146 // Since the value of x+y is undefined if we have a signed type, we compute |
| 147 // it using the unsigned type of the same size. |
| 148 typedef typename UnsignedIntegerForSize<T>::type UnsignedDst; |
| 149 UnsignedDst ux = static_cast<UnsignedDst>(x); |
| 150 UnsignedDst uy = static_cast<UnsignedDst>(y); |
| 151 UnsignedDst uresult = ux + uy; |
| 152 // Addition is valid if the sign of (x + y) is equal to either that of x or |
| 153 // that of y. |
| 154 if (std::numeric_limits<T>::is_signed) { |
| 155 if (HasSignBit(BinaryComplement((uresult ^ ux) & (uresult ^ uy)))) |
| 156 *validity = RANGE_VALID; |
| 157 else // Direction of wrap is inverse of result sign. |
| 158 *validity = HasSignBit(uresult) ? RANGE_OVERFLOW : RANGE_UNDERFLOW; |
| 159 |
| 160 } else { // Unsigned is either valid or overflow. |
| 161 *validity = BinaryComplement(x) >= y ? RANGE_VALID : RANGE_OVERFLOW; |
| 162 } |
| 163 return static_cast<T>(uresult); |
| 164 } |
| 165 |
| 166 template <typename T> |
| 167 typename enable_if<std::numeric_limits<T>::is_integer, T>::type |
| 168 CheckedSub(T x, T y, RangeConstraint* validity) { |
| 169 // Since the value of x+y is undefined if we have a signed type, we compute |
| 170 // it using the unsigned type of the same size. |
| 171 typedef typename UnsignedIntegerForSize<T>::type UnsignedDst; |
| 172 UnsignedDst ux = static_cast<UnsignedDst>(x); |
| 173 UnsignedDst uy = static_cast<UnsignedDst>(y); |
| 174 UnsignedDst uresult = ux - uy; |
| 175 // Subtraction is valid if either x and y have same sign, or (x-y) and x have |
| 176 // the same sign. |
| 177 if (std::numeric_limits<T>::is_signed) { |
| 178 if (HasSignBit(BinaryComplement((uresult ^ ux) & (ux ^ uy)))) |
| 179 *validity = RANGE_VALID; |
| 180 else // Direction of wrap is inverse of result sign. |
| 181 *validity = HasSignBit(uresult) ? RANGE_OVERFLOW : RANGE_UNDERFLOW; |
| 182 |
| 183 } else { // Unsigned is either valid or underflow. |
| 184 *validity = x >= y ? RANGE_VALID : RANGE_UNDERFLOW; |
| 185 } |
| 186 return static_cast<T>(uresult); |
| 187 } |
| 188 |
| 189 // Integer multiplication is a bit complicated. In the fast case we just |
| 190 // we just promote to a twice wider type, and range check the result. In the |
| 191 // slow case we need to manually check that the result won't be truncated by |
| 192 // checking with division against the appropriate bound. |
| 193 template <typename T> |
| 194 typename enable_if< |
| 195 std::numeric_limits<T>::is_integer && sizeof(T) * 2 <= sizeof(uintmax_t), |
| 196 T>::type |
| 197 CheckedMul(T x, T y, RangeConstraint* validity) { |
| 198 typedef typename TwiceWiderInteger<T>::type IntermediateType; |
| 199 IntermediateType tmp = |
| 200 static_cast<IntermediateType>(x) * static_cast<IntermediateType>(y); |
| 201 *validity = DstRangeRelationToSrcRange<T>(tmp); |
| 202 return static_cast<T>(tmp); |
| 203 } |
| 204 |
| 205 template <typename T> |
| 206 typename enable_if<std::numeric_limits<T>::is_integer && |
| 207 std::numeric_limits<T>::is_signed && |
| 208 (sizeof(T) * 2 > sizeof(uintmax_t)), |
| 209 T>::type |
| 210 CheckedMul(T x, T y, RangeConstraint* validity) { |
| 211 // if either side is zero then the result will be zero. |
| 212 if (!(x || y)) { |
| 213 return RANGE_VALID; |
| 214 |
| 215 } else if (x > 0) { |
| 216 if (y > 0) |
| 217 *validity = |
| 218 x <= std::numeric_limits<T>::max() / y ? RANGE_VALID : RANGE_OVERFLOW; |
| 219 else |
| 220 *validity = y >= std::numeric_limits<T>::min() / x ? RANGE_VALID |
| 221 : RANGE_UNDERFLOW; |
| 222 |
| 223 } else { |
| 224 if (y > 0) |
| 225 *validity = x >= std::numeric_limits<T>::min() / y ? RANGE_VALID |
| 226 : RANGE_UNDERFLOW; |
| 227 else |
| 228 *validity = |
| 229 y >= std::numeric_limits<T>::max() / x ? RANGE_VALID : RANGE_OVERFLOW; |
| 230 } |
| 231 |
| 232 return x * y; |
| 233 } |
| 234 |
| 235 template <typename T> |
| 236 typename enable_if<std::numeric_limits<T>::is_integer && |
| 237 !std::numeric_limits<T>::is_signed && |
| 238 (sizeof(T) * 2 > sizeof(uintmax_t)), |
| 239 T>::type |
| 240 CheckedMul(T x, T y, RangeConstraint* validity) { |
| 241 *validity = (y == 0 || x <= std::numeric_limits<T>::max() / y) |
| 242 ? RANGE_VALID |
| 243 : RANGE_OVERFLOW; |
| 244 return x * y; |
| 245 } |
| 246 |
| 247 // Division just requires a check for an invalid negation on signed min/-1. |
| 248 template <typename T> |
| 249 T CheckedDiv( |
| 250 T x, |
| 251 T y, |
| 252 RangeConstraint* validity, |
| 253 typename enable_if<std::numeric_limits<T>::is_integer, int>::type = 0) { |
| 254 if (std::numeric_limits<T>::is_signed && x == std::numeric_limits<T>::min() && |
| 255 y == static_cast<T>(-1)) { |
| 256 *validity = RANGE_OVERFLOW; |
| 257 return std::numeric_limits<T>::min(); |
| 258 } |
| 259 |
| 260 *validity = RANGE_VALID; |
| 261 return x / y; |
| 262 } |
| 263 |
| 264 template <typename T> |
| 265 typename enable_if< |
| 266 std::numeric_limits<T>::is_integer && std::numeric_limits<T>::is_signed, |
| 267 T>::type |
| 268 CheckedMod(T x, T y, RangeConstraint* validity) { |
| 269 *validity = y > 0 ? RANGE_VALID : RANGE_INVALID; |
| 270 return x % y; |
| 271 } |
| 272 |
| 273 template <typename T> |
| 274 typename enable_if< |
| 275 std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed, |
| 276 T>::type |
| 277 CheckedMod(T x, T y, RangeConstraint* validity) { |
| 278 *validity = RANGE_VALID; |
| 279 return x % y; |
| 280 } |
| 281 |
| 282 template <typename T> |
| 283 typename enable_if< |
| 284 std::numeric_limits<T>::is_integer && std::numeric_limits<T>::is_signed, |
| 285 T>::type |
| 286 CheckedNeg(T value, RangeConstraint* validity) { |
| 287 *validity = |
| 288 value != std::numeric_limits<T>::min() ? RANGE_VALID : RANGE_OVERFLOW; |
| 289 // The negation of signed min is min, so catch that one. |
| 290 return -value; |
| 291 } |
| 292 |
| 293 template <typename T> |
| 294 typename enable_if< |
| 295 std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed, |
| 296 T>::type |
| 297 CheckedNeg(T value, RangeConstraint* validity) { |
| 298 // The only legal unsigned negation is zero. |
| 299 *validity = value ? RANGE_UNDERFLOW : RANGE_VALID; |
| 300 return static_cast<T>( |
| 301 -static_cast<typename SignedIntegerForSize<T>::type>(value)); |
| 302 } |
| 303 |
| 304 template <typename T> |
| 305 typename enable_if< |
| 306 std::numeric_limits<T>::is_integer && std::numeric_limits<T>::is_signed, |
| 307 T>::type |
| 308 CheckedAbs(T value, RangeConstraint* validity) { |
| 309 *validity = |
| 310 value != std::numeric_limits<T>::min() ? RANGE_VALID : RANGE_OVERFLOW; |
| 311 return std::abs(value); |
| 312 } |
| 313 |
| 314 template <typename T> |
| 315 typename enable_if< |
| 316 std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed, |
| 317 T>::type |
| 318 CheckedAbs(T value, RangeConstraint* validity) { |
| 319 // Absolute value of a positive is just its identiy. |
| 320 *validity = RANGE_VALID; |
| 321 return value; |
| 322 } |
| 323 |
| 324 // These are the floating point stubs that the compiler needs to see. Only the |
| 325 // negation operation is ever called. |
| 326 #define BASE_FLOAT_ARITHMETIC_STUBS(NAME) \ |
| 327 template <typename T> \ |
| 328 typename enable_if<std::numeric_limits<T>::is_iec559, T>::type \ |
| 329 Checked##NAME(T, T, RangeConstraint*) { \ |
| 330 UNREACHABLE(); \ |
| 331 return 0; \ |
| 332 } |
| 333 |
| 334 BASE_FLOAT_ARITHMETIC_STUBS(Add) |
| 335 BASE_FLOAT_ARITHMETIC_STUBS(Sub) |
| 336 BASE_FLOAT_ARITHMETIC_STUBS(Mul) |
| 337 BASE_FLOAT_ARITHMETIC_STUBS(Div) |
| 338 BASE_FLOAT_ARITHMETIC_STUBS(Mod) |
| 339 |
| 340 #undef BASE_FLOAT_ARITHMETIC_STUBS |
| 341 |
| 342 template <typename T> |
| 343 typename enable_if<std::numeric_limits<T>::is_iec559, T>::type CheckedNeg( |
| 344 T value, |
| 345 RangeConstraint*) { |
| 346 return -value; |
| 347 } |
| 348 |
| 349 template <typename T> |
| 350 typename enable_if<std::numeric_limits<T>::is_iec559, T>::type CheckedAbs( |
| 351 T value, |
| 352 RangeConstraint*) { |
| 353 return std::abs(value); |
| 354 } |
| 355 |
| 356 // Floats carry around their validity state with them, but integers do not. So, |
| 357 // we wrap the underlying value in a specialization in order to hide that detail |
| 358 // and expose an interface via accessors. |
| 359 enum NumericRepresentation { |
| 360 NUMERIC_INTEGER, |
| 361 NUMERIC_FLOATING, |
| 362 NUMERIC_UNKNOWN |
| 363 }; |
| 364 |
| 365 template <typename NumericType> |
| 366 struct GetNumericRepresentation { |
| 367 static const NumericRepresentation value = |
| 368 std::numeric_limits<NumericType>::is_integer |
| 369 ? NUMERIC_INTEGER |
| 370 : (std::numeric_limits<NumericType>::is_iec559 ? NUMERIC_FLOATING |
| 371 : NUMERIC_UNKNOWN); |
| 372 }; |
| 373 |
| 374 template <typename T, NumericRepresentation type = |
| 375 GetNumericRepresentation<T>::value> |
| 376 class CheckedNumericState {}; |
| 377 |
| 378 // Integrals require quite a bit of additional housekeeping to manage state. |
| 379 template <typename T> |
| 380 class CheckedNumericState<T, NUMERIC_INTEGER> { |
| 381 private: |
| 382 T value_; |
| 383 RangeConstraint validity_; |
| 384 |
| 385 public: |
| 386 template <typename Src, NumericRepresentation type> |
| 387 friend class CheckedNumericState; |
| 388 |
| 389 CheckedNumericState() : value_(0), validity_(RANGE_VALID) {} |
| 390 |
| 391 template <typename Src> |
| 392 CheckedNumericState(Src value, RangeConstraint validity) |
| 393 : value_(value), |
| 394 validity_(GetRangeConstraint(validity | |
| 395 DstRangeRelationToSrcRange<T>(value))) { |
| 396 // Argument must be numeric. |
| 397 STATIC_ASSERT(std::numeric_limits<Src>::is_specialized); |
| 398 } |
| 399 |
| 400 // Copy constructor. |
| 401 template <typename Src> |
| 402 CheckedNumericState(const CheckedNumericState<Src>& rhs) |
| 403 : value_(static_cast<T>(rhs.value())), |
| 404 validity_(GetRangeConstraint( |
| 405 rhs.validity() | DstRangeRelationToSrcRange<T>(rhs.value()))) {} |
| 406 |
| 407 template <typename Src> |
| 408 explicit CheckedNumericState( |
| 409 Src value, |
| 410 typename enable_if<std::numeric_limits<Src>::is_specialized, int>::type = |
| 411 0) |
| 412 : value_(static_cast<T>(value)), |
| 413 validity_(DstRangeRelationToSrcRange<T>(value)) {} |
| 414 |
| 415 RangeConstraint validity() const { return validity_; } |
| 416 T value() const { return value_; } |
| 417 }; |
| 418 |
| 419 // Floating points maintain their own validity, but need translation wrappers. |
| 420 template <typename T> |
| 421 class CheckedNumericState<T, NUMERIC_FLOATING> { |
| 422 private: |
| 423 T value_; |
| 424 |
| 425 public: |
| 426 template <typename Src, NumericRepresentation type> |
| 427 friend class CheckedNumericState; |
| 428 |
| 429 CheckedNumericState() : value_(0.0) {} |
| 430 |
| 431 template <typename Src> |
| 432 CheckedNumericState( |
| 433 Src value, |
| 434 RangeConstraint validity, |
| 435 typename enable_if<std::numeric_limits<Src>::is_integer, int>::type = 0) { |
| 436 switch (DstRangeRelationToSrcRange<T>(value)) { |
| 437 case RANGE_VALID: |
| 438 value_ = static_cast<T>(value); |
| 439 break; |
| 440 |
| 441 case RANGE_UNDERFLOW: |
| 442 value_ = -std::numeric_limits<T>::infinity(); |
| 443 break; |
| 444 |
| 445 case RANGE_OVERFLOW: |
| 446 value_ = std::numeric_limits<T>::infinity(); |
| 447 break; |
| 448 |
| 449 case RANGE_INVALID: |
| 450 value_ = std::numeric_limits<T>::quiet_NaN(); |
| 451 break; |
| 452 } |
| 453 } |
| 454 |
| 455 template <typename Src> |
| 456 explicit CheckedNumericState( |
| 457 Src value, |
| 458 typename enable_if<std::numeric_limits<Src>::is_specialized, int>::type = |
| 459 0) |
| 460 : value_(static_cast<T>(value)) {} |
| 461 |
| 462 // Copy constructor. |
| 463 template <typename Src> |
| 464 CheckedNumericState(const CheckedNumericState<Src>& rhs) |
| 465 : value_(static_cast<T>(rhs.value())) {} |
| 466 |
| 467 RangeConstraint validity() const { |
| 468 return GetRangeConstraint(value_ <= std::numeric_limits<T>::max(), |
| 469 value_ >= -std::numeric_limits<T>::max()); |
| 470 } |
| 471 T value() const { return value_; } |
| 472 }; |
| 473 |
| 474 // For integers less than 128-bit and floats 32-bit or larger, we can distil |
| 475 // C/C++ arithmetic promotions down to two simple rules: |
| 476 // 1. The type with the larger maximum exponent always takes precedence. |
| 477 // 2. The resulting type must be promoted to at least an int. |
| 478 // The following template specializations implement that promotion logic. |
| 479 enum ArithmeticPromotionCategory { |
| 480 LEFT_PROMOTION, |
| 481 RIGHT_PROMOTION, |
| 482 DEFAULT_PROMOTION |
| 483 }; |
| 484 |
| 485 template <typename Lhs, |
| 486 typename Rhs = Lhs, |
| 487 ArithmeticPromotionCategory Promotion = |
| 488 (MaxExponent<Lhs>::value > MaxExponent<Rhs>::value) |
| 489 ? (MaxExponent<Lhs>::value > MaxExponent<int>::value |
| 490 ? LEFT_PROMOTION |
| 491 : DEFAULT_PROMOTION) |
| 492 : (MaxExponent<Rhs>::value > MaxExponent<int>::value |
| 493 ? RIGHT_PROMOTION |
| 494 : DEFAULT_PROMOTION) > |
| 495 struct ArithmeticPromotion; |
| 496 |
| 497 template <typename Lhs, typename Rhs> |
| 498 struct ArithmeticPromotion<Lhs, Rhs, LEFT_PROMOTION> { |
| 499 typedef Lhs type; |
| 500 }; |
| 501 |
| 502 template <typename Lhs, typename Rhs> |
| 503 struct ArithmeticPromotion<Lhs, Rhs, RIGHT_PROMOTION> { |
| 504 typedef Rhs type; |
| 505 }; |
| 506 |
| 507 template <typename Lhs, typename Rhs> |
| 508 struct ArithmeticPromotion<Lhs, Rhs, DEFAULT_PROMOTION> { |
| 509 typedef int type; |
| 510 }; |
| 511 |
| 512 // We can statically check if operations on the provided types can wrap, so we |
| 513 // can skip the checked operations if they're not needed. So, for an integer we |
| 514 // care if the destination type preserves the sign and is twice the width of |
| 515 // the source. |
| 516 template <typename T, typename Lhs, typename Rhs> |
| 517 struct IsIntegerArithmeticSafe { |
| 518 static const bool value = !std::numeric_limits<T>::is_iec559 && |
| 519 StaticDstRangeRelationToSrcRange<T, Lhs>::value == |
| 520 NUMERIC_RANGE_CONTAINED && |
| 521 sizeof(T) >= (2 * sizeof(Lhs)) && |
| 522 StaticDstRangeRelationToSrcRange<T, Rhs>::value != |
| 523 NUMERIC_RANGE_CONTAINED && |
| 524 sizeof(T) >= (2 * sizeof(Rhs)); |
| 525 }; |
| 526 |
| 527 } // namespace internal |
| 528 } // namespace base |
| 529 } // namespace v8 |
| 530 |
| 531 #endif // V8_BASE_SAFE_MATH_IMPL_H_ |
OLD | NEW |