Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(554)

Side by Side Diff: src/base/safe_math_impl.h

Issue 336183003: Add safe numerics classes, imported from Chromium (Closed) Base URL: https://v8.googlecode.com/svn/branches/bleeding_edge
Patch Set: addressed comments Created 6 years, 6 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « src/base/safe_math.h ('k') | tools/gyp/v8.gyp » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 // Slightly adapted for inclusion in V8.
6 // Copyright 2014 the V8 project authors. All rights reserved.
7
8 #ifndef V8_BASE_SAFE_MATH_IMPL_H_
9 #define V8_BASE_SAFE_MATH_IMPL_H_
10
11 #include <stdint.h>
12
13 #include <cmath>
14 #include <cstdlib>
15 #include <limits>
16
17 #include "src/base/macros.h"
18 #include "src/base/safe_conversions.h"
19
20 namespace v8 {
21 namespace base {
22 namespace internal {
23
24
25 // From Chromium's base/template_util.h:
26
27 template<class T, T v>
28 struct integral_constant {
29 static const T value = v;
30 typedef T value_type;
31 typedef integral_constant<T, v> type;
32 };
33
34 template <class T, T v> const T integral_constant<T, v>::value;
35
36 typedef integral_constant<bool, true> true_type;
37 typedef integral_constant<bool, false> false_type;
38
39 template <class T, class U> struct is_same : public false_type {};
40 template <class T> struct is_same<T, T> : true_type {};
41
42 template<bool B, class T = void>
43 struct enable_if {};
44
45 template<class T>
46 struct enable_if<true, T> { typedef T type; };
47
48 // </template_util.h>
49
50
51 // Everything from here up to the floating point operations is portable C++,
52 // but it may not be fast. This code could be split based on
53 // platform/architecture and replaced with potentially faster implementations.
54
55 // Integer promotion templates used by the portable checked integer arithmetic.
56 template <size_t Size, bool IsSigned>
57 struct IntegerForSizeAndSign;
58 template <>
59 struct IntegerForSizeAndSign<1, true> {
60 typedef int8_t type;
61 };
62 template <>
63 struct IntegerForSizeAndSign<1, false> {
64 typedef uint8_t type;
65 };
66 template <>
67 struct IntegerForSizeAndSign<2, true> {
68 typedef int16_t type;
69 };
70 template <>
71 struct IntegerForSizeAndSign<2, false> {
72 typedef uint16_t type;
73 };
74 template <>
75 struct IntegerForSizeAndSign<4, true> {
76 typedef int32_t type;
77 };
78 template <>
79 struct IntegerForSizeAndSign<4, false> {
80 typedef uint32_t type;
81 };
82 template <>
83 struct IntegerForSizeAndSign<8, true> {
84 typedef int64_t type;
85 };
86 template <>
87 struct IntegerForSizeAndSign<8, false> {
88 typedef uint64_t type;
89 };
90
91 // WARNING: We have no IntegerForSizeAndSign<16, *>. If we ever add one to
92 // support 128-bit math, then the ArithmeticPromotion template below will need
93 // to be updated (or more likely replaced with a decltype expression).
94
95 template <typename Integer>
96 struct UnsignedIntegerForSize {
97 typedef typename enable_if<
98 std::numeric_limits<Integer>::is_integer,
99 typename IntegerForSizeAndSign<sizeof(Integer), false>::type>::type type;
100 };
101
102 template <typename Integer>
103 struct SignedIntegerForSize {
104 typedef typename enable_if<
105 std::numeric_limits<Integer>::is_integer,
106 typename IntegerForSizeAndSign<sizeof(Integer), true>::type>::type type;
107 };
108
109 template <typename Integer>
110 struct TwiceWiderInteger {
111 typedef typename enable_if<
112 std::numeric_limits<Integer>::is_integer,
113 typename IntegerForSizeAndSign<
114 sizeof(Integer) * 2,
115 std::numeric_limits<Integer>::is_signed>::type>::type type;
116 };
117
118 template <typename Integer>
119 struct PositionOfSignBit {
120 static const typename enable_if<std::numeric_limits<Integer>::is_integer,
121 size_t>::type value = 8 * sizeof(Integer) - 1;
122 };
123
124 // Helper templates for integer manipulations.
125
126 template <typename T>
127 bool HasSignBit(T x) {
128 // Cast to unsigned since right shift on signed is undefined.
129 return !!(static_cast<typename UnsignedIntegerForSize<T>::type>(x) >>
130 PositionOfSignBit<T>::value);
131 }
132
133 // This wrapper undoes the standard integer promotions.
134 template <typename T>
135 T BinaryComplement(T x) {
136 return ~x;
137 }
138
139 // Here are the actual portable checked integer math implementations.
140 // TODO(jschuh): Break this code out from the enable_if pattern and find a clean
141 // way to coalesce things into the CheckedNumericState specializations below.
142
143 template <typename T>
144 typename enable_if<std::numeric_limits<T>::is_integer, T>::type
145 CheckedAdd(T x, T y, RangeConstraint* validity) {
146 // Since the value of x+y is undefined if we have a signed type, we compute
147 // it using the unsigned type of the same size.
148 typedef typename UnsignedIntegerForSize<T>::type UnsignedDst;
149 UnsignedDst ux = static_cast<UnsignedDst>(x);
150 UnsignedDst uy = static_cast<UnsignedDst>(y);
151 UnsignedDst uresult = ux + uy;
152 // Addition is valid if the sign of (x + y) is equal to either that of x or
153 // that of y.
154 if (std::numeric_limits<T>::is_signed) {
155 if (HasSignBit(BinaryComplement((uresult ^ ux) & (uresult ^ uy))))
156 *validity = RANGE_VALID;
157 else // Direction of wrap is inverse of result sign.
158 *validity = HasSignBit(uresult) ? RANGE_OVERFLOW : RANGE_UNDERFLOW;
159
160 } else { // Unsigned is either valid or overflow.
161 *validity = BinaryComplement(x) >= y ? RANGE_VALID : RANGE_OVERFLOW;
162 }
163 return static_cast<T>(uresult);
164 }
165
166 template <typename T>
167 typename enable_if<std::numeric_limits<T>::is_integer, T>::type
168 CheckedSub(T x, T y, RangeConstraint* validity) {
169 // Since the value of x+y is undefined if we have a signed type, we compute
170 // it using the unsigned type of the same size.
171 typedef typename UnsignedIntegerForSize<T>::type UnsignedDst;
172 UnsignedDst ux = static_cast<UnsignedDst>(x);
173 UnsignedDst uy = static_cast<UnsignedDst>(y);
174 UnsignedDst uresult = ux - uy;
175 // Subtraction is valid if either x and y have same sign, or (x-y) and x have
176 // the same sign.
177 if (std::numeric_limits<T>::is_signed) {
178 if (HasSignBit(BinaryComplement((uresult ^ ux) & (ux ^ uy))))
179 *validity = RANGE_VALID;
180 else // Direction of wrap is inverse of result sign.
181 *validity = HasSignBit(uresult) ? RANGE_OVERFLOW : RANGE_UNDERFLOW;
182
183 } else { // Unsigned is either valid or underflow.
184 *validity = x >= y ? RANGE_VALID : RANGE_UNDERFLOW;
185 }
186 return static_cast<T>(uresult);
187 }
188
189 // Integer multiplication is a bit complicated. In the fast case we just
190 // we just promote to a twice wider type, and range check the result. In the
191 // slow case we need to manually check that the result won't be truncated by
192 // checking with division against the appropriate bound.
193 template <typename T>
194 typename enable_if<
195 std::numeric_limits<T>::is_integer && sizeof(T) * 2 <= sizeof(uintmax_t),
196 T>::type
197 CheckedMul(T x, T y, RangeConstraint* validity) {
198 typedef typename TwiceWiderInteger<T>::type IntermediateType;
199 IntermediateType tmp =
200 static_cast<IntermediateType>(x) * static_cast<IntermediateType>(y);
201 *validity = DstRangeRelationToSrcRange<T>(tmp);
202 return static_cast<T>(tmp);
203 }
204
205 template <typename T>
206 typename enable_if<std::numeric_limits<T>::is_integer &&
207 std::numeric_limits<T>::is_signed &&
208 (sizeof(T) * 2 > sizeof(uintmax_t)),
209 T>::type
210 CheckedMul(T x, T y, RangeConstraint* validity) {
211 // if either side is zero then the result will be zero.
212 if (!(x || y)) {
213 return RANGE_VALID;
214
215 } else if (x > 0) {
216 if (y > 0)
217 *validity =
218 x <= std::numeric_limits<T>::max() / y ? RANGE_VALID : RANGE_OVERFLOW;
219 else
220 *validity = y >= std::numeric_limits<T>::min() / x ? RANGE_VALID
221 : RANGE_UNDERFLOW;
222
223 } else {
224 if (y > 0)
225 *validity = x >= std::numeric_limits<T>::min() / y ? RANGE_VALID
226 : RANGE_UNDERFLOW;
227 else
228 *validity =
229 y >= std::numeric_limits<T>::max() / x ? RANGE_VALID : RANGE_OVERFLOW;
230 }
231
232 return x * y;
233 }
234
235 template <typename T>
236 typename enable_if<std::numeric_limits<T>::is_integer &&
237 !std::numeric_limits<T>::is_signed &&
238 (sizeof(T) * 2 > sizeof(uintmax_t)),
239 T>::type
240 CheckedMul(T x, T y, RangeConstraint* validity) {
241 *validity = (y == 0 || x <= std::numeric_limits<T>::max() / y)
242 ? RANGE_VALID
243 : RANGE_OVERFLOW;
244 return x * y;
245 }
246
247 // Division just requires a check for an invalid negation on signed min/-1.
248 template <typename T>
249 T CheckedDiv(
250 T x,
251 T y,
252 RangeConstraint* validity,
253 typename enable_if<std::numeric_limits<T>::is_integer, int>::type = 0) {
254 if (std::numeric_limits<T>::is_signed && x == std::numeric_limits<T>::min() &&
255 y == static_cast<T>(-1)) {
256 *validity = RANGE_OVERFLOW;
257 return std::numeric_limits<T>::min();
258 }
259
260 *validity = RANGE_VALID;
261 return x / y;
262 }
263
264 template <typename T>
265 typename enable_if<
266 std::numeric_limits<T>::is_integer && std::numeric_limits<T>::is_signed,
267 T>::type
268 CheckedMod(T x, T y, RangeConstraint* validity) {
269 *validity = y > 0 ? RANGE_VALID : RANGE_INVALID;
270 return x % y;
271 }
272
273 template <typename T>
274 typename enable_if<
275 std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed,
276 T>::type
277 CheckedMod(T x, T y, RangeConstraint* validity) {
278 *validity = RANGE_VALID;
279 return x % y;
280 }
281
282 template <typename T>
283 typename enable_if<
284 std::numeric_limits<T>::is_integer && std::numeric_limits<T>::is_signed,
285 T>::type
286 CheckedNeg(T value, RangeConstraint* validity) {
287 *validity =
288 value != std::numeric_limits<T>::min() ? RANGE_VALID : RANGE_OVERFLOW;
289 // The negation of signed min is min, so catch that one.
290 return -value;
291 }
292
293 template <typename T>
294 typename enable_if<
295 std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed,
296 T>::type
297 CheckedNeg(T value, RangeConstraint* validity) {
298 // The only legal unsigned negation is zero.
299 *validity = value ? RANGE_UNDERFLOW : RANGE_VALID;
300 return static_cast<T>(
301 -static_cast<typename SignedIntegerForSize<T>::type>(value));
302 }
303
304 template <typename T>
305 typename enable_if<
306 std::numeric_limits<T>::is_integer && std::numeric_limits<T>::is_signed,
307 T>::type
308 CheckedAbs(T value, RangeConstraint* validity) {
309 *validity =
310 value != std::numeric_limits<T>::min() ? RANGE_VALID : RANGE_OVERFLOW;
311 return std::abs(value);
312 }
313
314 template <typename T>
315 typename enable_if<
316 std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed,
317 T>::type
318 CheckedAbs(T value, RangeConstraint* validity) {
319 // Absolute value of a positive is just its identiy.
320 *validity = RANGE_VALID;
321 return value;
322 }
323
324 // These are the floating point stubs that the compiler needs to see. Only the
325 // negation operation is ever called.
326 #define BASE_FLOAT_ARITHMETIC_STUBS(NAME) \
327 template <typename T> \
328 typename enable_if<std::numeric_limits<T>::is_iec559, T>::type \
329 Checked##NAME(T, T, RangeConstraint*) { \
330 UNREACHABLE(); \
331 return 0; \
332 }
333
334 BASE_FLOAT_ARITHMETIC_STUBS(Add)
335 BASE_FLOAT_ARITHMETIC_STUBS(Sub)
336 BASE_FLOAT_ARITHMETIC_STUBS(Mul)
337 BASE_FLOAT_ARITHMETIC_STUBS(Div)
338 BASE_FLOAT_ARITHMETIC_STUBS(Mod)
339
340 #undef BASE_FLOAT_ARITHMETIC_STUBS
341
342 template <typename T>
343 typename enable_if<std::numeric_limits<T>::is_iec559, T>::type CheckedNeg(
344 T value,
345 RangeConstraint*) {
346 return -value;
347 }
348
349 template <typename T>
350 typename enable_if<std::numeric_limits<T>::is_iec559, T>::type CheckedAbs(
351 T value,
352 RangeConstraint*) {
353 return std::abs(value);
354 }
355
356 // Floats carry around their validity state with them, but integers do not. So,
357 // we wrap the underlying value in a specialization in order to hide that detail
358 // and expose an interface via accessors.
359 enum NumericRepresentation {
360 NUMERIC_INTEGER,
361 NUMERIC_FLOATING,
362 NUMERIC_UNKNOWN
363 };
364
365 template <typename NumericType>
366 struct GetNumericRepresentation {
367 static const NumericRepresentation value =
368 std::numeric_limits<NumericType>::is_integer
369 ? NUMERIC_INTEGER
370 : (std::numeric_limits<NumericType>::is_iec559 ? NUMERIC_FLOATING
371 : NUMERIC_UNKNOWN);
372 };
373
374 template <typename T, NumericRepresentation type =
375 GetNumericRepresentation<T>::value>
376 class CheckedNumericState {};
377
378 // Integrals require quite a bit of additional housekeeping to manage state.
379 template <typename T>
380 class CheckedNumericState<T, NUMERIC_INTEGER> {
381 private:
382 T value_;
383 RangeConstraint validity_;
384
385 public:
386 template <typename Src, NumericRepresentation type>
387 friend class CheckedNumericState;
388
389 CheckedNumericState() : value_(0), validity_(RANGE_VALID) {}
390
391 template <typename Src>
392 CheckedNumericState(Src value, RangeConstraint validity)
393 : value_(value),
394 validity_(GetRangeConstraint(validity |
395 DstRangeRelationToSrcRange<T>(value))) {
396 // Argument must be numeric.
397 STATIC_ASSERT(std::numeric_limits<Src>::is_specialized);
398 }
399
400 // Copy constructor.
401 template <typename Src>
402 CheckedNumericState(const CheckedNumericState<Src>& rhs)
403 : value_(static_cast<T>(rhs.value())),
404 validity_(GetRangeConstraint(
405 rhs.validity() | DstRangeRelationToSrcRange<T>(rhs.value()))) {}
406
407 template <typename Src>
408 explicit CheckedNumericState(
409 Src value,
410 typename enable_if<std::numeric_limits<Src>::is_specialized, int>::type =
411 0)
412 : value_(static_cast<T>(value)),
413 validity_(DstRangeRelationToSrcRange<T>(value)) {}
414
415 RangeConstraint validity() const { return validity_; }
416 T value() const { return value_; }
417 };
418
419 // Floating points maintain their own validity, but need translation wrappers.
420 template <typename T>
421 class CheckedNumericState<T, NUMERIC_FLOATING> {
422 private:
423 T value_;
424
425 public:
426 template <typename Src, NumericRepresentation type>
427 friend class CheckedNumericState;
428
429 CheckedNumericState() : value_(0.0) {}
430
431 template <typename Src>
432 CheckedNumericState(
433 Src value,
434 RangeConstraint validity,
435 typename enable_if<std::numeric_limits<Src>::is_integer, int>::type = 0) {
436 switch (DstRangeRelationToSrcRange<T>(value)) {
437 case RANGE_VALID:
438 value_ = static_cast<T>(value);
439 break;
440
441 case RANGE_UNDERFLOW:
442 value_ = -std::numeric_limits<T>::infinity();
443 break;
444
445 case RANGE_OVERFLOW:
446 value_ = std::numeric_limits<T>::infinity();
447 break;
448
449 case RANGE_INVALID:
450 value_ = std::numeric_limits<T>::quiet_NaN();
451 break;
452 }
453 }
454
455 template <typename Src>
456 explicit CheckedNumericState(
457 Src value,
458 typename enable_if<std::numeric_limits<Src>::is_specialized, int>::type =
459 0)
460 : value_(static_cast<T>(value)) {}
461
462 // Copy constructor.
463 template <typename Src>
464 CheckedNumericState(const CheckedNumericState<Src>& rhs)
465 : value_(static_cast<T>(rhs.value())) {}
466
467 RangeConstraint validity() const {
468 return GetRangeConstraint(value_ <= std::numeric_limits<T>::max(),
469 value_ >= -std::numeric_limits<T>::max());
470 }
471 T value() const { return value_; }
472 };
473
474 // For integers less than 128-bit and floats 32-bit or larger, we can distil
475 // C/C++ arithmetic promotions down to two simple rules:
476 // 1. The type with the larger maximum exponent always takes precedence.
477 // 2. The resulting type must be promoted to at least an int.
478 // The following template specializations implement that promotion logic.
479 enum ArithmeticPromotionCategory {
480 LEFT_PROMOTION,
481 RIGHT_PROMOTION,
482 DEFAULT_PROMOTION
483 };
484
485 template <typename Lhs,
486 typename Rhs = Lhs,
487 ArithmeticPromotionCategory Promotion =
488 (MaxExponent<Lhs>::value > MaxExponent<Rhs>::value)
489 ? (MaxExponent<Lhs>::value > MaxExponent<int>::value
490 ? LEFT_PROMOTION
491 : DEFAULT_PROMOTION)
492 : (MaxExponent<Rhs>::value > MaxExponent<int>::value
493 ? RIGHT_PROMOTION
494 : DEFAULT_PROMOTION) >
495 struct ArithmeticPromotion;
496
497 template <typename Lhs, typename Rhs>
498 struct ArithmeticPromotion<Lhs, Rhs, LEFT_PROMOTION> {
499 typedef Lhs type;
500 };
501
502 template <typename Lhs, typename Rhs>
503 struct ArithmeticPromotion<Lhs, Rhs, RIGHT_PROMOTION> {
504 typedef Rhs type;
505 };
506
507 template <typename Lhs, typename Rhs>
508 struct ArithmeticPromotion<Lhs, Rhs, DEFAULT_PROMOTION> {
509 typedef int type;
510 };
511
512 // We can statically check if operations on the provided types can wrap, so we
513 // can skip the checked operations if they're not needed. So, for an integer we
514 // care if the destination type preserves the sign and is twice the width of
515 // the source.
516 template <typename T, typename Lhs, typename Rhs>
517 struct IsIntegerArithmeticSafe {
518 static const bool value = !std::numeric_limits<T>::is_iec559 &&
519 StaticDstRangeRelationToSrcRange<T, Lhs>::value ==
520 NUMERIC_RANGE_CONTAINED &&
521 sizeof(T) >= (2 * sizeof(Lhs)) &&
522 StaticDstRangeRelationToSrcRange<T, Rhs>::value !=
523 NUMERIC_RANGE_CONTAINED &&
524 sizeof(T) >= (2 * sizeof(Rhs));
525 };
526
527 } // namespace internal
528 } // namespace base
529 } // namespace v8
530
531 #endif // V8_BASE_SAFE_MATH_IMPL_H_
OLDNEW
« no previous file with comments | « src/base/safe_math.h ('k') | tools/gyp/v8.gyp » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698